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Abstract

In order to use an optimization solver, it is necessary to communicate an opti-
mization instance to the solver. Additionally, solvers typically take options to specify
tolerances, set algorithmic parameters, etc. Finally, the solver must communicate the
result instance back to the user. In this article we review existing formats for optimiza-
tion instances, solver option instances, and result instances and describe the research
issues involved in designing these instance formats.
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In order to use an optimization solver, it is necessary to communicate a model in-
stance to the solver. Early users of optimization solvers often created a specific model
instance from input data by writing a matrix generator. Mixed-integer linear program-
ming solvers such as IBM’s MPSX/370 package and LINDO provided an application
program interface that allowed a user to write a matrix generator in a procedural pro-
gramming language such as PL/I or Fortran. The matrix generator was then linked to
the solver library to produce an executable program that solved the specific instance.
The term matrix generator arose because, initially, the most widely used optimization
solvers were for mixed-integer linear programming, and specifying the constraint matrix
and objective function vector was sufficient to describe a model instance (along with a
characterization of variable types and bounds and constraint right-hand-sides).

Matrix generators were tightly coupled with the solver because the model instance
was communicated directly in-memory to the solver. However, modelers still needed to
store the model instance in a persistent state for archival, communication, and debug-
ging purposes. The classic MPS format developed at IBM was the first widely adopted
instance format. Even today, most linear or MIP solvers read and write files in MPS
format. See [1].

The development of algebraic modeling languages represented a major breakthrough
for the field of Operations Research because they greatly reduced the effort required
to produce an optimization model instance. Modeling languages such as GAMS [2]
and AMPL [3], that communicate with solvers by writing an instance to a file, have
resulted in additional instance formats. Indeed, both GAMS and AMPL have their
own instance representation formats. There now exits a plethora of proposed instance
formats, depending on the optimization type. In Table 1 we list some key optimization
types and corresponding formats. This table is illustrative, but by no means complete.

Table 1: Optimization Classes and Proposed Formats

Optimization Type Instance Format
Mixed-Integer Linear Program MPS, lpsolve-lp, CPLEX-lp, AMPL nl,

OSiL, OptML, GAMS dat
Nonlinear xMPS, MOI, SIF, OSiL, AMPL nl,

GAMS dat, LINDO MPI
Stochastic Linear Programming SMPS, OSiL
Semidefinite and Second Order Cone sparse SDPA, SDPLR, OSiL
Linear Network Optimization NETGEN, NETFLO, DIMACS, RELAX4
Traveling Salesman Problem tsp

It is crucial to understand the difference between an algebraic model and a specific
instance of that model. The description of a specific optimization instance is very dif-
ferent from the description of a generic algebraic model. An algebraic model description
is symbolic, general, concise, and understandable. See [4]. An algebraic model contains
declarations of high-level algebraic components such as sets, parameters, variables, ob-
jectives, and constraints. By contrast, a model instance is explicit, specific, verbose, and
convenient for the solver rather than for the human modeler. An algebraic modeling
language takes a model and compiles it into an instance using a specific data set. A
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linear programming model instance is illustrated in Figure 1. (The details of this rep-
resentation are discussed in Section 2.) An appropriate analogy from object-oriented
programming is that the algebraic model corresponds to a class and the model instance
corresponds to an instantiated object in that class.

In this article we review existing instance formats for optimization problems, solver
options, and solver results. We describe the research issues involved in designing in-
stance formats. We do not address algebraic models. See the companion article [5] in
this Volume.

In the next section we discuss key issues that must be considered when designing
an instance format. In Section 2 we describe formats for representing optimization
instances. In addition to optimization instances, it is necessary to have formats for
solver options (Section 3) and results (Section 4). There are obviously numerous types
of optimization models. Extensions to some of the more recently studied optimization
areas are the topic of Section 5.

1 Key Design Issues

There are several key design issues when designing an instance representation. First
is the decision of which instance to represent. Is the proposed format only for the
model instance, or does it include instances of solver options, solver results, or instance
modifications? This is discussed more thoroughly in Section 1.1. Then there is the
key issue of how to format or represent optimization instance information. This is
discussed in Section 1.2. The next issue is how comprehensive and extensible should
the representation be. This is discussed in Section 1.3. Finally there is the issue of
how the instance representations map to in-memory objects on the solver side. This is
discussed in Section 1.4.

1.1 Key Issue 1: Separation of Functionality

In a modeling language-solver infrastructure an instance passed to the solver must
contain information on the problem to be optimized and must specify solver options.
Likewise a result is returned from the solver. There are actually four distinct instance
formats that can be specified.

1. Optimization problem instance format – this is discussed briefly in Section 1.2 and
in more detail in Section 2.

2. Solver option instance format – it is often necessary to pass options to a solver.
This is a challenge given the wide variety of solvers and a complete lack of a
standard for option formats. See Section 3 for a proposed standard.

3. Solver result instance format – after a problem is optimized (or terminated) results
must be passed back from the solver to the client. See Section 4 for more discussion
on result instance formats.

4. Instance modification format – there are many solution procedures such as col-
umn generation and cutting plane algorithms that require modifying the original
problem instance. To date there is no standard instance modification format that
the authors are aware of. This is a good topic for further research.
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1.2 Key Issue 2: Optimization Instance Format

A typical optimization instance might include millions of nonzero coefficients in linear
terms and hundreds, if not thousands, of nonlinear terms. A central problem in repre-
senting instances is managing these entries and ensuring that they are handled correctly
and efficiently. There are three basic styles or formats that have been used to represent
a model instance.

1.2.1 Natural Algebraic Format

Consider the simple constraint .5x0 + .8333x1 ≤ 600. One way to represent this con-
straint instance is in its natural algebraic format. For example, in the LINDO solver,
this constraint is expressed as

R0000001) +0.5 x0 + 0.8333 x1 < +600.

Other solvers have similar algebraic formats, for example CPLEX LP file format, lpsolve
lp-format, and Xpress lp format. The primary advantage of this format is that it is easily
read by a human and convenient for debugging purposes. This format is also verbose
and will not be parsed as quickly as more compact schemes.

1.2.2 Packed

Modeling languages take an algebraic model and compile that with the data to produce
a model instance. In the case of modeling languages such as AMPL and GAMS, the
model instance is temporarily written to a file which is then read by the solver. In
order to make this process efficient, modeling languages use a packed instance represen-
tation. For example, the body of the constraint .5x0 + .8333x1 ≤ 600 has the following
representation in the AMPL nl format [6].

J1 2
0 0.5
1 0.8333

For more on how to interpret these lines and on representing the right-hand side see
figure 2.

1.2.3 Markup Language

Yet another option for model instance representation is to use a markup language such
as Extensible Markup Language (XML). Two proposed XML based instance formats are
OSiL [7] and OptML [8]. In OSiL XML markup the constraint matrix is represented
in packed matrix format [9], either by row or by column. In row representation the
constraint .5x0 + .8333x1 ≤ 600 might appear as follows.

The <start> element contains the children

...<el>2</el><el>4</el>...

The <colIdx> element contains the children

...<el>0</el><el>1</el>...

The <values> element contains the children
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...<el>.5</el><el>0.8333</el>...

Although verbose, there are good reasons to use XML for an instance format.
(See [10] for a discussion.)

1.3 Key Issue 3: Design of Format: Level of Detail and Flexi-
bility

An optimization instance is a well-defined entity. A certain amount of detail is required
and it is not possible to be flexible in deciding whether or not problem components
should be present. For example, we cannot have a linear program without constraints
or variables, but we can have a linear programming solution without reduced costs
or right-hand side sensitivity information. In general, different optimization solvers
may present their results in different formats, and some may include more detail than
others. The level of solution detail is up to the solver developer and would be difficult
to standardize. Similar logic applies to solver options. Thus, when representing an
optimization instance, it is necessary to express the instance in a very rigorous fashion.
However, when designing option or result instances, flexibility may be more desirable.
We elaborate on this issue more in Sections 3 and 4.

1.4 Key Issue 4: Design of an In-Memory Instance Object

In various situations, e.g. when using a modeling language such as GAMS or AMPL,
the optimization instance may be serialized (e.g. written to a file) and then deserialized
(e.g read back into memory) by the solver. The way that an optimization instance is
represented in memory may look very different from the format that persists in a string
or file. There is no “standard way” to represent, for example, an instance in the MPS
format as an in-memory object. The Optimization Services framework is the first to
specify a set of mapping or binding rules on how to transform the persistent instance
format into in-memory objects. The OS format (OSiL) for representing an instance
is based on a W3C XML Schema. The use of a schema to specify the XML instance
format is key to providing a binding between the format and the the OSInstance class
which is the in-memory representation of the optimization instance. For example, each
XML schema complexType corresponds to a class in OSInstance. For more details on
this binding see [7].

2 Optimization Instance Format

Instance formats are used to store problem instances in a file or string before sending
them to the solver. These can be created by hand, or be output from a matrix generator
or an algebraic modeling language. Formats can be either text or binary.

An instance format must be able to represent all components of a problem instance.
Special purpose formats for narrow problem classes such as network problems might
have more restricted requirements than formats for general ones, but some problem
components are universal to all problem classes, such as decision variables, objectives,
and constraints.

Information about the number of variables and constraints must be contained in
the instance format, but there are at least two ways to accomplish this goal. For
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example, the AMPL nl format [6] has a header section that contains explicit information
about the number of continuous, integer, and binary variables and breaks this down
further into variables that appear in nonlinear expressions in the objective, constraints,
both, or neither. The MPS format [21], on the other hand, contains the information
implicitly and requires the reader to keep count of the variables as the instance is being
processed. Similarly for constraints. Many instance formats (one notable exception
being the MPS format) assume that the problem has a unique objective, so that there
is no need to record the number of objectives. Obviously, formats designed to handle
multi-objective problems must be able to express the number of objectives found in the
problem instance.

Along with the number of decision variables, it is necessary to store information
about them, such as upper and lower bounds. Finally, for report generation purposes
and communication of the optimization result to the user, it is desirable that each
variable have a unique identifier, which may or may not be communicated to the solver.
For that reason some instance formats refer to variables as well as constraints by number,
while others, including the MPS format, refer to them by name. The latter allows more
flexibility in the ordering of certain problem components but is more costly to parse.

The biggest challenge for a problem instance format is handling nonzero elements
in the constraints. In problems of realistic size, it is essential to exploit sparsity in the
linear, quadratic, and nonlinear components of the problem. Sparse representations of
linear constraint matrices can be achieved in several different ways. MPS records the
matrix coefficients as triples of (row, column, value), where row and column are names
instead of numbers. AMPL nl format stores the matrix column by column with markers
separating one column from another and with a row number and coefficient value for
every nonzero value in the column. OSiL uses a combination of three arrays, giving the
column starts, row indices and coefficient values. Row-wise storage schemes are also
possible.

As an illustration of the above ideas, we offer the following small linear programming
problem.

max 10x0 + 9x1

s.t. 0.7x0 + 1.0x1 ≤ 630
0.5x0 + 0.8333x1 ≤ 600
1.0x0 + 0.6667x1 ≤ 708
0.1x0 + 0.25x1 ≤ 135

(1)

Figure 1 is a representation of instance (1) in MPS format. Lines 3–7 set up the
objective and constraint rows, the number being determined implicitly. Lines 9–11 give
the objective and constraint coefficients associated with the first column, x0; lines 12–14
give the coefficients for the second column, x1. Lines 16–17 specify the right-hand side
values associated with the four constraints.

The AMPL nl format can be stored in either binary or text format; we give the text
form for instance (1) in Figure 2. The annotated section of the problem (lines 1–10) is
used to set up the problem dimension; the next ten lines are used to show any nonlinear
expressions (of which there are none, as indicated by the special code n0 in lines 12,
14, 16, 18 and 20) in the constraints and the objective. The right-hand sides are set
up in lines 21–25. (The number 1 preceding the right-hand side values mark them as
upper bounds.) Lines 26–28 give lower bounds on the decision variables. The constraint
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1 NAME ParInc. From Anderson, Sweeney, and Williams
2 ROWS
3 N OBJ
4 L R0000000
5 L R0000001
6 L R0000002
7 L R0000003
8 COLUMNS
9 x0 OBJ -10
10 x0 R0000000 0.7 R0000001 0.5
11 x0 R0000002 1 R0000003 0.1
12 x1 OBJ -9
13 x1 R0000000 1 R0000001 0.8333
14 x1 R0000002 0.6667 R0000003 0.25
15 RHS
16 RHS1 R0000000 630
17 RHS1 R0000001 600
18 RHS1 R0000002 708
19 RHS1 R0000003 135
20 BOUNDS
21 ENDATA

Figure 1: A sample MPS file

matrix is given in row format starting in line 31. Line 31 specifies that the first row
contains two entries, and the following two lines contain index-value pairs. This pattern
repeats for the remaining three constraints. A similar format is used in lines 43–45 to
specify the objective row.

Finally we give the OSiL format for the same problem (see figure 3). OSiL is an
extremely general problem instance format for representing linear, integer, quadratic
and nonlinear problem instances as well as a large number of special features, such as
multi-objectives, stochastic programs, cone programs, special ordered sets, and others.
The OSiL format is largely self-documenting, so we only highlight a few main points.
Header information is given in lines 3 to 5. The actual optimization data start in
line 6. Separate sections give information about variables (line 7–10: bounds, variable
type and an optional name), objective function (direction of optimization and objective
coefficients) and constraints (right-hand side values). The start values in line 26 give
the column starts in the linear constraint matrix, which allow the computation of the
number of nonzeroes in each column, and the indices and values appear in lines 29–32,
and 35–38, respectively.

Due to the availability of fast linear programming codes, linear models were initially
of primary interest. However, as progress is made with nonlinear solution algorithms,
there is increased interest in formats for nonlinear instances. Quadratic programs are
the most natural extension of linear programs. A quadratic term is easily stored as
a 4-tuple: (row index, variable 1 index, variable 2 index, coefficient value). The QPS
extension to the MPS format allows quadratic terms only in the objective and achieves
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1 g3 0 1 0 # problem parinc
2 2 4 1 0 0 # vars, constraints, objectives, ranges, eqns
3 0 0 # nonlinear constraints, objectives
4 0 0 # network constraints: nonlinear, linear
5 0 0 0 # nonlinear vars in constraints, objectives, both
6 0 0 0 1 # linear network variables; functions; arith, flags
7 0 0 0 0 0 # discrete variables: binary, integer, nonlinear (b,c,o)
8 8 2 # nonzeros in Jacobian, gradients
9 0 0 # max name lengths: constraints, variables
10 0 0 0 0 0 # common exprs: b,c,o,c1,o1
11 C0
12 n0
13 C1
14 n0
15 C2
16 n0
17 C3
18 n0
19 O0 1
20 n0
21 r
22 1 630
23 1 600
24 1 708
25 1 135
26 b
27 2 0
28 2 0
29 k1
30 4
31 J0 2
32 0 0.7
33 1 1
34 J1 2
35 0 0.5
36 1 0.8333
37 J2 2
38 0 1
39 1 0.6667
40 J3 2
41 0 0.1
42 1 0.25
43 G0 2
44 0 10
45 1 9

Figure 2: A sample nl file
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <osil xmlns="os.optimizationservices.org">
3 <instanceHeader>
4 <name>Par Inc. </name>
5 </instanceHeader>
6 <instanceData>
7 <variables numberOfVariables="2">
8 <var name="x0" lb="0" type="C" />
9 <var name="x1" lb="0" type="C" />
10 </variables>
11 <objectives numberOfObjectives="1">
12 <obj name = "Par, Inc. Objective Function"
13 maxOrMin="max" numberOfObjCoef="2">
14 <coef idx="0">10</coef>
15 <coef idx="1">9</coef>
16 </obj>
17 </objectives>
18 <constraints numberOfConstraints="4">
19 <con name="cutanddye" ub="630" />
20 <con name="sewing" ub="600"/>
21 <con name="finishing" ub="708"/>
22 <con ub="135"/>
23 </constraints>
24 <linearConstraintCoefficients numberOfValues="8">
25 <start>
26 <el>0</el> <el>4</el> <el>8</el>
27 </start>
28 <rowIdx>
29 <el>0</el> <el>1</el>
30 <el>2</el> <el>3</el>
31 <el>0</el> <el>1</el>
32 <el>2</el> <el>3</el>
33 </rowIdx>
34 <value>
35 <el>0.7</el> <el>.5</el>
36 <el>1.</el> <el>.1</el>
37 <el>1.0</el> <el>0.8333</el>
38 <el>0.6667</el><el>0.25</el>
39 </value>
40 </linearConstraintCoefficients>
41 </instanceData>
42 </osil>

Figure 3: A sample OSiL file
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this by adding a QSECTION where each record lists both variables in the quadratic
term and the coefficient.

There are several ways in which general nonlinear expressions can be captured in
an instance format. We illustrate with a modification of the Rosenbrock function [11].
The model is:

min (1− x0)2 + 100 ∗ (x1 − x2
0)2 + 9 ∗ x1

s.t. x0 + 10.5 ∗ x2
0 + 11.7 ∗ x2

1 + 3 ∗ x0 ∗ x1 ≤ 25
ln(2 ∗ x0 ∗ x1) + 7.5 ∗ x0 + 5.25 ∗ x1 ≥ 10

(2)

In instance (2) the terms 100 ∗ (x1 − x2
0)2 and ln(2 ∗ x0 ∗ x1) are not quadratic and

must use a more general representation. We illustrate approaches to modeling general
nonlinear terms using the ln(2∗x0∗x1) term. The standard algebraic format ln(2∗x0∗x1)
is called infix and is ambiguous with regard to the order of operations. The ambiguity
is resolved by using parentheses (or by convention with regard to operator precedence
and left or right associativity), where for example, ln((2 ∗ x0) ∗ x1) specifies an order
of operations. Due to the infix ambiguity, most instance formats store each nonlinear
term as a prefix or postfix sequence of operands and operators. The list of operators
and operands is also called an instruction list. The prefix and postfix sequence for
ln((2 ∗ x0) ∗ x1) is

ln * * 2 x_0 x_1

and

x1 2 x0 * * ln,

respectively. A prefix or postfix instruction list is trivial to evaluate using a stack
data structure and is also convenient for algorithmic or automatic differentiation. The
postfix or prefix instruction list is a key part of several instance formats. For example,
the AMPL nl format uses prefix combined with numerical codes for the operators ln
and * and writes

o43
o2
o2
n2
v0
v1

where o43 is the code for the logarithm operator, o2 is the code for the multiplication
operator and n and v denote references to numbers and variables, respectively.

The OSiL instance format also corresponds to a prefix instruction list. The term
ln((2 ∗ x0) ∗ x1) in OSiL is:

<nl idx="1">
<ln>

<times>
<times>

<number type="real" value="2.0"/>
<variable coef="1.0" idx="0"/>

</times>
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<variable coef="1.0" idx="1"/>
</times>

</ln>
</nl>

The sequence of open tags is

<ln><times><times><number><number><variable><variable>

and corresponds directly to the prefix instruction list.
A nonlinear extension of MPS based on postfix is described by Halldórsson et al. [12].

It puts the postfix instruction list into the MPS record structure. For example, ln((2 ∗
x0) ∗ x1) is written as:

NONLINEAR
CON1 V1 mult 2 X0
CON1 V2 mult V1 X1
CON1 RES ln V2

Lines 2 and 3 compute the product 2x0x1 and store it into the intermediate object V2;
the last line computes the natural logarithm of V2 and stores into the reserved object
RES, which is used to designate the final result of the computation, which gets added to
the linear and quadratic terms for constraint CON1.

A completely different format, SIF (standard input format), was developed by Conn
et al. [13, 14]. A SIF file consists of two pieces, a declarative portion in which a number
of declarations of auxiliary quantities are interspersed with declarations of variables,
objectives and constraints, and a procedural portion where the nonlinear functions
are defined in terms of the original variables and coefficients as well as the auxiliary
quantities previously defined. SIF [14] is a very complex and far-reaching proposal that
did not achieve universal acceptance.

Formats for specialized problems can occasionally streamline the information needs
and reduce, often greatly, the size of the resulting instance file. For instance, a stochas-
tic programming problem may need to record values for problem coefficients that take
different values in a number of different scenarios — along with a number of deter-
ministic coefficients that do not change from one scenario to the next. If the random
variables are time-staged, this can lead to a geometric explosion of the event tree. The
SMPS format for stochastic programs was designed to use redundancy and only store
the stochastic components explicitly. When the random variables are independent from
one stage to the next, the SMPS format can store the event tree in linear space. See [15]
for more detail. Similar features are available in OSiL. See [16]. Compact specialized in-
stance formats exist for other problem classes, such as semi-definite cone programming,
network problems and traveling salesman problems.

3 Solver Option Instance Format

Solver options are an integral part of the solution process and are usually tied to the
problem instance. Traditionally there have not been any standards for the commu-
nication of options, since each solver tended to have its own API with which the user
communicates either through files, command line options or interactive keyboard inputs.
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Standardizing the input format for solver options is hard since the options tend to
be very specific to the solver and algorithm. In designing a common format it is useful
to break down the process into syntax (how to represent options) and semantics (how to
interpret their meanings). While the former is relatively easy to standardize, the latter
is nearly impossible, even though a number of common options may be identified that
are implemented in the majority of solvers. Standard option formats therefore need to
be both rigid in format and flexible in content, and must be extensible to leave room
for future solver development.

The development of option formats is driven by other considerations as well. Since
solver options form only part of the input sent to a solver, it is desirable to have some
way to ensure that the options are linked to the correct problem instance. This is
necessary particularly where the options provide values for the elements of an instance
component, such as initial variable values. Some solvers such as LINDO allow solver
options to have different scopes, applying either to one particular problem only, or to
the entire solver environment. This is useful, because it allows the user to set an output
level once for a series of problems instead of having to repeat the information for each
separate problem.

Solvers are not the only component of a mathematical programming system; op-
tions could be sent to an optimization analyzer, simulation tool, or similar. If a large
environment has such diverse tools, it seems advantageous to design option formats
that can be shared among all components. In order to establish the correct match of
option file and analysis tool, the intended target must be recorded in the option file.
Additionally, especially in a commercial environment, basic security features such as
license information, username and password may be needed in the options file. Finally,
especially in a distributed environment, additional facilities are often needed to monitor
the progress of the solution process on the remote computer, to verify capabilities of
the computer system on which the solver is to be run, and perhaps to perform ancillary
file operations before and after the solution.

In order to describe the design of an options format, we distinguish several classes
of solver options. First, options may apply to the problem instance. For example,
the MPS input format does not allow specifying the direction of optimization (min or
max). Solver options (so called agenda cards) [21] can be used to communicate this
information.

A second category of options controls the flow of the solution algorithm. In this
category there are options to select a particular algorithm class (e.g., primal simplex,
dual simplex or interior point method in a linear program) or algorithm variant (for
instance a particular pricing scheme). Options such as whether to scale a coefficient
matrix or not, what crashing and preprocessing procedures to use, as well as limits on
the number of iterations or the solution time, would also fall into this category. For
nonlinear problems one can also specify an initial point.

Other solver options include various tolerances, the amount and type of output gen-
erated (including the level of diagnostic messages when parsing the input), the location
and name of input and output files, whether the solution needs to be saved for sub-
sequent runs, perhaps with modified data, etc. It does not stop there. Especially in
distributed computing it may be necessary to control the environment in which the
solution is obtained. For example, it may be known that the solution of an instance
places space requirements on a server, which may limit the number of servers that could
potentially be used.
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The Optimization Services option Language (OSoL) schema is to our knowledge the
first attempt at standardizing the specification of solver and process options. See [19]
and [20]. We end this section with a small file in the OSoL format. This file should be
self-explanatory. It first specifies that the job is to be run only on computers with at
least 1Gb of memory, provides initial values for two decision variables, and gives four
solver options. Two of these options are intended for the Ipopt solver [17]; the other
two are for the LINDO solver [18]. This demonstrates that an option file can be shared
between different solvers. The two Ipopt options control the amount of output to be
generated and where the output is to be directed; the LINDO options illustrate that
the same option can be used with different scope, applying to a single model in the first
case and to the entire session in the second case.

<?xml version="1.0" encoding="UTF-8"?>
<osol>

<system>
<minMemorySize unit="gigabyte">1.0</minMemorySize>

</system>
<optimization>

<variables numberOfOtherVariableOptions="2">
<initialVariableValues numberOfVar="2">

<var idx="0" value="1"/>
<var value="4.742999643577776e-2" idx="1"/>

</initialVariableValues>
</variables>
<solverOptions numberOfSolverOptions="4">

<solverOption name="print_level" solver="ipopt"
type="integer" value="5"/>

<solverOption name="output_file" solver="ipopt"
type="string" value="ipopt.out"/>

<solverOption name="LS_IPARAM_LP_PRINTLEVEL" solver="lindo"
category="model" type="integer" value="0"/>

<solverOption name="LS_IPARAM_LP_PRINTLEVEL" solver="lindo"
category="environment" type="integer" value="1"/>

</solverOptions>
</optimization>

</osol>

4 Solver Result Instance Format

It is necessary for an optimization solver to communicate the solution result back to
the user. Most solvers have their own result format or API for communicating the
solution result. Although not nearly as widespread as the MPS instance format, there
is also an MPS format for reporting solver results. See Murtagh [21]. The MPS result
format is table-based and separated into three sections: header, rows and columns.
The header section lists such information as problem instance name, objective value,
status and number of iterations. The rows section provides results on the constraints
such as constraint values, slacks and duals. The columns section provides results on
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the variables such as solution values and reduced costs. The two major problems with
the MPS result instance format are that it is optimization centric and is not easily
extensible.

An alternative result instance format is OSrL (Optimization Services result Lan-
guage). See [19] and [20]. OSrL supports multiple solutions with multi-objectives. Each
solution contains a separate set of variable, objective, constraint and other results. For
results that are uncommon, or solver specific, or subject to different interpretations,
OSrL provides the mechanism of otherSolutionResult and otherSolverOutput that
can be either scalar values or vector-based result values optionally indexed over each
objective, variable, or constraint. We show below a small segment of OSrL from an
actual application that illustrates “non-standard” solver output that is important to
communicate.

<otherSolutionResult name="ReqDocPairings" numberOfItems="55">
<item>778,Liberty,Surgical,Pod1,1,M,AM,1</item>
<item>778,Liberty,Surgical,Pod2,1,T,AM,1</item>
<item>551,Liberty,Surgical,Pod3,1,M,AM,1</item>

. . .
</otherSolutionResult>

In addition to the optimization category, which communicates output directly re-
lated to the optimization, the OSrL format contains four further categories: general,
system, service, and job. The general result section contains such information as
general status and message, service name and uri, instance name, job ID, solver in-
voked and time stamp. The system section contains information about available disk
space, memory and CPU. The service section contains information about the host
optimization service, such as its current state (busy or idle) and service utilization. The
job section contains information about the particular optimization job process like its
submit/scheduled/start/end time, used CPU, disk and memory usage. Each of these
sections provides the “other” mechanism for custom results.

5 Extensions

If an optimization instance format is well designed, it should be flexible enough to extend
the standard “core” optimization types such as continuous and mixed integer linear,
quadratic, and general nonlinear programs. In this section we list potential extensions
to the core instance format. It is critical that the core instance format is not affected
by the extensions and that whenever a new optimization type is added, the core format
remains unchanged, keeping the standards backward compatible.

1. Logic and Constraint Programs. If the instance format has a built-in nonlinear
expression tree, it should be quite natural for it to be extended to this type of
programs, as logic and relational operators are expressed in the same way as all
regular nonlinear operators. For example if is simply an operator that takes three
operands. Constraint programs uses other special operators such as and, or, xor,
not, if, implies, eq, neq, geq, gt, leq, and lt.

2. Complementarity Problems. Similar to extending the logic and constraint pro-
grams, we can add a complements operator to express such problems. The
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complements operator takes two operands, which must both be inequality op-
erators. complements evaluates to true if both operands are true and at least one
inequality is tight.

3. Special Ordered Sets (SOS). There are several types of SOS [22, 23, 24, 25], but
each type is essentially expressed as a set of indices of variables already defined in
the core programs, plus optional information such as a convexity row.

4. Cone Programs. There are four widely used cone types including nonnegative
cone, quadratic cone, rotated quadratic cone, and semidefinite cone.

5. Disjunctive Programs. Among all the possible extensions, the disjunctive program
extension is probably the one that benefits the most from building on the core, as
almost all the data have already been represented in the core, and each disjunction
usually just alters a tiny piece of information from the core, e.g. change of a matrix
coefficient or constraint bound. Each disjunction is essentially trying to construct
a separate optimization instance with the least amount of extra data.

6. Robust Optimization and Stochastic Optimization. These are two ways for dealing
with uncertainty in the problem parameters. Robust optimization can be thought
of as a special case of stochastic programming, and it is a design choice whether
to define it as a separate extension or just subsume it under the more general
heading of stochastic programming.

7. Instance Modification. Popular algorithms such as branch-cut-and-price often
require adding or deleting constraints and variables. Currently there is no instance
format for specifying model changes.

8. Real-time Data. In a tightly coupled modeling environment, a modeler creates a
problem instance using a modeling language. The instance file is self contained
and has all of the parameters necessary for optimization by a solver. However,
as data are updated in real time it is desirable from an efficiency standpoint to
update only the data that have changed and not regenerate the entire instance.

9. User-defined functions. No matter how many nonlinear operators and functions
an instance format supports, it cannot exhaust all of them and should support
custom defined functions, to be used in the nonlinear expression tree along with
other standard functions.

10. Optimization via Simulation. Not all functions (constraints or objectives) have
explicit forms and if the function is a black box simulation that cannot be easily
modeled by any user function, one needs the support of optimization via simula-
tion.

11. Network and Graph Problems. Network and graph problems traditionally are
built around the concepts of vertices and arcs, instead of variables and constraints.
Special formats may be needed to deal with them effectively.

12. Instance Communication Over a Network. Given the trend toward cloud comput-
ing and computing on demand there will almost certainly be a need to communi-
cate instance formats over a network. The optimization instance, solver options
and solver results, along with header information, must all be packed in the body
of a larger “instance” that is communicated over a network. For a discussion of
higher level network instance formats for optimization see [19].
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13. Optimization over Vector Spaces. Discrete time optimal control problems are
often merely an approximation of an underlying continuous time problem. The
discretization step is arbitrary and should occasionally be allowed to be refined
by the solution algorithm. It would therefore be useful to have a way to express
the underlying continuous time problem directly.
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