
Scheduling Doctors to Clinical and Surgical Time
Slots: A Column Generation Approach

Craig Froehle and Michael Magazine
University of Cincinnati

Kipp Martin
University of Chicago

With help from:
Linda Kromer
Omkar Saha
Cary Wise

University of Cincinnati

October 11, 2009

1

Outline

Problem Introduction

System Architecture

Key Concepts

Model Formulation

Column Generation

2

The Problem

Develop an application to take:

I Requests for surgical spaces (a cardiology surgery, at Location
1, in the AM, two days a week, two weeks per planning
horizon)

I Requests for clinical spaces (an ENT clinic, at Location 2, all
day, Monday and Wednesday, every week)

I Doctor requests (I play golf every Tuesday afternoon)

Find a schedule:

I Match available surgery and clinic rooms at the various
locations with the space requests

I Match doctor requests as closely as possible to the space
request assignments

3

The Problem

I Administrative assistants for each specialty need to sit at their
desktop machines and enter the space and doctor request
information for the given specialty.

I The requests across all specialties must be gathered and
stored somewhere.

I An optimization model must be built and solved that finds a
feasible allocation of space requests to available rooms and
doctors to meet the requests

I The results need to be returned to the desktops of each
administrative assistant in order to schedule the doctors.

I The system must be run and used every month by people that
know nothing about optimization.

4

System Architecture

MySQL

Java
Database

Driver

Java
Web Services

Application
Tomcat

Web Server

Excel
UserForm

Figure: Entering the Data.

5

System Architecture

MySQL

Java
Database

Driver

Java
Web Services

Application

Tomcat
Web Server

Excel
UserForm

COIN-OR
OS

COIN-OR
Bcp

Tomcat
Web Server

Figure: Calling the Scheduling Application

6

System Architecture

I Excel (Client User Form)

I Visual Basic (Create SQL requests from User Form)

I MySQL (Relational Data Base)

I COIN-OR Bcp Solver

I COIN-OR OS

I HTTP / Tomcat

I JDBC (The database drivers)

I Java (Web Services)

7

Key Concepts

I Space: a room or set of rooms (pod) that can service either a
clinic or surgery visit – each space has a capacity

I Space Request: a specification of

I location

I type – surgery or clinic

I specialty

I weeks

I days

I shifts (AM or PM)

I number of spaces

8

Key Concepts

Assignment: A complete specification weeks, days, shifts, and
spaces that satisfy a request for a clinic or surgery space at a
location

Request Assignment
Liberty Liberty
Surgery Liberty
ENT ENT
one week second week
two days Wed, Fri
either shift AM (Wed), PM(Fri)
2 spaces Room 212

Request Slot: a specification of location, week, day, shift,
space(room) ID, request type (surgery or clinic). As assignment
is a specification request slots.

9

Example of Request and Request Slots

A request:

ENT,Surgical Space,Liberty, A.M., 3 days, 2 weeks

This request generates an assignment that specifies the following
request slots:

ENT,Liberty,Surgical,Storz,Week 1,M,AM
ENT,Liberty,Surgical,Storz, Week 1,W,AM
ENT,Liberty,Surgical,Storz, Week 1,F,AM
ENT,Liberty,Surgical,Stryker, Week 2,M,AM
ENT,Liberty,Surgical,Stryker, Week 2,W,AM
ENT,Liberty,Surgical,Stryker, Week 2,F,AM

Note: We are not worried about doctors right now.

10

Model Formulation
Indexes:

I i – index of requests

I j – index for assignments

I k – index of request slots

Parameters:

n – number of requests

m – number of slots

d – number of dummy slots (every location has a dummy
surgery room and a dummy clinic room)

Si – an index set of assignments for request i

ck – capacity of room in slot k

aijk – number of spaces allocated to request slot k in assignment j
of request i

11

Model Formulation – Space Requests Only

Variables:

I xij –1 if assignment j is selected for request i
I zk – number of spaces allocated to dummy slot k, each

location has a “dummy” space for each time slot (day, week,
shift).

min
∑
k

zk (1)

s.t.
n∑

i=1

∑
j∈Si

aijkxij ≤ ck , k = 1, . . . ,m (2)

n∑
i=1

∑
j∈Si

aijkxij ≤ zk , k = m + 1, . . . ,m + d (3)

∑
j∈Si

xij = 1, i = 1, . . . , n (4)

xij ∈ {0, 1}, j ∈ Si , i = 1, . . . , n (5)
12

Model Formulation – Now Add Docs

Key Doc Concept 1 – a doc slot: a specification of location, week,
day, shift, request type (surgery or clinic)

Example Doc Slot: Liberty, clinic, second week, Tuesday, AM,
cardiology

A doc slot is like a request slot except that it does not have a
room specification, but does have a specialty.

13

Slot Summary

Request Slot:

I week

I day

I shift

I location

I clinic or surgery

I room

Doc Slot:

I week

I day

I shift

I location

I clinic or surgery

I specialty

14

Slot Summary

Slots Continued:
Time Slot:

I week

I day

I shift

15

Model Formulation – Now Add Docs

Key Doc Concept: a doc feasibility vector: a list of indexes of
doc slots a doctor is available to fill. Note: The doc slot might
correspond to clinic, it might correspond to surgery.

Each doc has a feasibility vector.

The feasible vector is found for each doc by looping over the doc
requests for that doc.

16

Model Formulation – Building Doc Feasibility
Vector

I Education

I Research

I Academic

I Unavailable (specific location or all)

I Specific Clinic

I Specific Surgery

So doc requests have two flavors: when the doc cannot do a clinic
or surgery (education, research, academic, unavailable) and when
the doc would like to do either a clinic or surger.

17

Model Formulation – – Building Doc
Feasibility Vector

For Specific Clinic Request Any Location – eliminate all
doc slots for surgery in that time slot at every location. Do not
eliminate any doc slots for clinics in any location and makes these
variables more desirable in the objective function.

For Specific Clinic Request Specific Location –
eliminate all doc slots for surgery in that time slot and every
location. Eliminate all doc slots for clinics in locations other than
the specified location

Do a similar thing for Specific Surgery Requests.

18

Model Formulation – With Docs

Additional Indexes:

h – index of docs, h = 1, . . . , q

l – index of doc slots, l = 1, . . . , p

Additional Parameters:

q – number of docs

p – number of doc slots

bhl is 1 if doc slot l is an index in the doc h feasibility vector
(actually we do not define a variable yhl when bhl = 0)

θl is an index set of (specialty, request slot) pairs that map onto
doc slot l, l = 1, . . . , p

19

Model Formulation – With Docs

Example: (Specialty, Request slot) pairs

(ENT, Liberty, surgery, second week, Tuesday, AM, Pod 1)
(ENT, Liberty, surgery, second week, Tuesday, AM, Pod 2)

map onto doc slot

(ENT, Liberty, surgery, second week, Tuesday, AM)

implemented using C++ STL Container Map.

20

Model Formulation – With Docs

So for each assignment j in request i (the request determines the
specialty) we sum up over all the (specialty , k) pairs that map to
doc slot l

αijl =
∑
k∈θl

aijk

21

Model Formulation – With Docs

Additional Variables:

yhl – 1 if doc h assigned doc slot l , 0 otherwise

Additional Constraints:

n∑
i=1

∑
j∈Si

αijlxij ≤
q∑

h=1

bhlyhl , l = 1, . . . , p (6)

22

Model Formulation – With Docs

Finally, one more a constraint. In each time slot a doc can only
have assignment. Let t index time slots.

Additional Constraints:

p∑
l=1

dtlyhl ≤ 1, t = 1, . . . ,T , h = 1, . . . , q (7)

where dtl = 1 if time slot t coincides with doc slot l.

For example, the doc slot

ENT, Liberty, clinic, second week, Tuesday, AM

corresponds with time slot

second week, Tuesday, AM

23

Model Formulation – With Docs

Critical ideas:

1. Do NOT solve (1)-(7) for all columns.

2. Solve a restriction of (1)-(7).

3. Generate all y variables up front

4. Generate x variables with column generation

24

Column Generation

The are less than 100 thousand rows. Not a big deal.

What about variables? Let’s just think about a single request and
how many assignments might be possible to satisfy the single
request.

The request is for either shift, every day, every week and there are
two rooms available at the requested location that can handle this
request. How many columns do we need in the model to handle
this?

There are 25 days in the planning horizon and each day there are 4
choices (2 shifts and 2 room). The number of assignments is

425 = 250 ≈ 1015

25

CCH – Number of Assignments

Let:

I m – number of weeks requested

I n – number of days requested

I s – number of spaces that satisfy the request

(
5!

m!(5−m)!

)(
5!

n!(5− n)!

)m

(2n)m (sn)m

A request for either shift, every day, every week with two rooms
available at the requested location that can handle the request
corresponds to m = 5, n = 5, and s = 2.

26

Column Generation

The column generation makes heavy use of object oriented
programming. We have a class for each dimension:

I Location class

I Request Type class (surgery or clinic)

I Week class

I Day class

I Room class

I Shift class (AM or PM or Both)

We organize these classes in a hierarchy.

27

Column Generation
The Class structure used for pricing:

CapacityConstraint Class

constraint_cost(SpaceRequest *req, double *dual)

Location Class

location_cost(SpaceRequest *req, double *dual)

RequestType Class

requesttype_cost(SpaceRequest *req, double *dual)

Week Class

week_cost(SpaceRequest *req, double *dual)

Day Class

day_cost(SpaceRequest *req, double *dual)

Room Class

room_cost(SpaceRequest *req, double *dual)

Shift Class

shift_cost(SpaceRequest *req, double *dual)

28

Column Generation

Amount of work: Recall pricing a request for a location that has
two rooms that can handle the request. The request is for either
shift, every day, every week and would require pricing out 250.

4 + 4 + 4 + ...+ 4 + 4 = 4× 25 = 100 operations

Order Matters: Working with these objects is like working with
Lego blocks. I can put them together different ways. For example,
in the current setup, I can schedule an ortho surgery in a different
room at Liberty every day of the week. What if I want surgery in
the same room every day?

29

Column Generation

Week Class

week_cost(SpaceRequest *req, double *dual)

Day Class

day_cost(SpaceRequest *req, double *dual)

Room Class

room_cost(SpaceRequest *req, double *dual)

Shift Class

shift_cost(SpaceRequest *req, double *dual)

The following assignments:

Assignment 776,Liberty,Surgery,Stryker,1,M,AM,1
Assignment 776,Liberty,Surgery,Storz,1,T,AM,1
Assignment 777,Liberty,Surgery,Storz,1,M,AM,1
Assignment 777,Liberty,Surgery,Stryker,1,T,AM,1

satisfy the requests:

Request 776,Ortho,Surgery,Liberty,AM,M,T,Week 1
Request 777,ENT,Surgery,Liberty,AM,M,T,Week 1

30

Column Generation

Week Class

week_cost(SpaceRequest *req, double *dual)

Day Class

day_cost(SpaceRequest *req, double *dual)

Room Class

room_cost(SpaceRequest *req, double *dual)

Shift Class

shift_cost(SpaceRequest *req, double *dual)

The following assignments:

Assignment 776,Liberty,Surgery,Stryker,1,M,AM,1
Assignment 776,Liberty,Surgery,Storz,1,T,AM,1
Assignment 777,Liberty,Surgery,Storz,1,M,AM,1
Assignment 777,Liberty,Surgery,Stryker,1,T,AM,1

are not allowed for the requests:

Request 776,Ortho,Surgery,Liberty,AM,M,T,Week 1
Request 777,ENT,Surgery,Liberty,AM,M,T,Week 1

31

Column Generation Results

Root Node Total
Problem Potential Columns Columns Generated Nodes

1 9,154 62 172 117
2 9,893 29 145 123
3 20,978,496,312 502 3,092 1,341

A Key Takeaway: With Bcp you have CONTROL over the
branch-and-bound tree in terms of adding cuts or columns.

32

	Problem Introduction
	System Architecture
	Key Concepts
	Model Formulation
	Column Generation

