On Generalized Branching Methods for Mixed Integer Programming

Sanjay Mehrotra

Department of IE/MS Northwestern University Evanston, IL 60208

Joint Work with

Zhifeng Li

and

Huan-yuan Sheng

Organization

- > Introduction and Review
- > Adjoint Lattice
- > Theoretical Results
- Computational Results
- **Conclusions**

Problem Formulation

```
(GMICP) minimize c_0(x) subject to Rx = r c_i(x) \leq 0 for i = 1, \ldots, l, x_z \in \mathbb{Z}^n, \ x_c \in \mathbb{R}^{\bar{n}},
```

where $x=(x_z,x_c)$, $c_i(x):\mathbb{R}^{n+\bar{n}}\to\mathbb{R}$ for $i=0,\ldots,l$ are convex functions. Note that $c_i(x)\leq 0$ may include semi-definite and second-order cone constraints.

(FILP) Find
$$\{x \in \mathbb{Z}_+^n \mid Ax = a\}.$$

Approaches to Branching

- Branching Strategies
 - ➤ Branching on variables
 - ➤ Most infeasible branching
 - Strong branching
 - ➤ Nested Cluster Branching
 - > Pseudo-cost branching
 - Branching on constraints
- ➤ Branching on variables may not be efficient for solving general MIP.

An Example

min
$$x + y$$

s.t. $px - qy \le \frac{1}{2}$
 $-px + qy \le \frac{1}{2}$
 $-p + \frac{1}{2} \le y \le \frac{1}{2}$

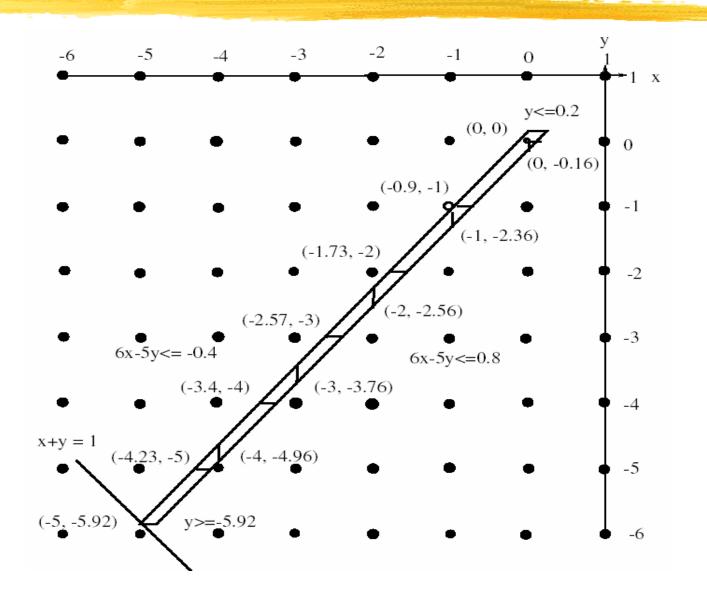
Relaxed optimal solution $(-q + \frac{q-1}{2p}, -p + \frac{1}{2})$. The optimal integer solution (0,0). BB-algorithm is O(p). The input size is $O(\log p)$. The BB-method is exponential.

Matter of Definitions

Given $B = [b_1, \dots, b_k] \in \mathbb{Z}^{n \times k}$, a lattice \mathcal{L} is

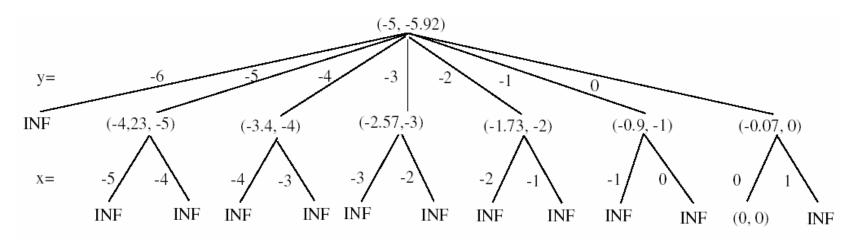
$$\mathcal{L} \equiv \{x | x = \sum_{i=1}^{k} \lambda_i b_i, \lambda_i \in \mathbb{Z}\}.$$

The set of vectors

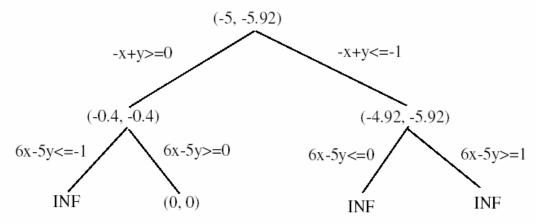

$$\Lambda \equiv \{ z \in \mathbb{Z}^n | Az = 0 \}$$

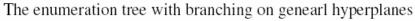
give a lattice called the integer kernel lattice of A, and a basis for this lattice is represented by Z. The *dual lattice* of \mathcal{L} :

$$\mathcal{L}^{\perp} \equiv \{ z \in \mathbb{Q}^n | z^T x \in \mathbb{Z}, \text{ for all } x \in \mathcal{L} \}.$$



Example (continued)





An Example (continued)

The enumeration tree with branch-and-bound

Lenstra's Algorithm

Step 0 Dimension Reduction

Transform $\mathcal{P} \equiv \{x \in \mathbb{R}^n_+ | Ax = a\}$ to $\mathcal{Y} \equiv \{y \in \mathbb{R}^k | Zy \geq -v\}$, $\{x = Zy + v, Av = a, Z \text{ is a Kernel Lattice of } A, \text{ i.e., } AZ = 0\}$

Repeat by Processing a node in the Branch and Bound Tree as

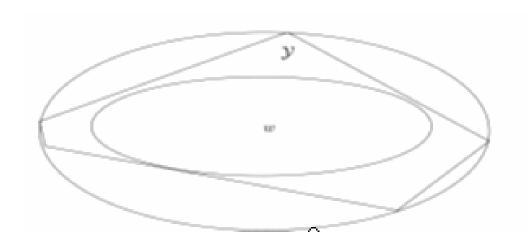
Step 1 Ellipsoidal Rounding

Find a positive definite matrix $Q \in \mathbb{R}^{k \times k}$ so that $\mathcal{E}(w,Q) \subseteq \mathcal{Y} \subseteq \mathcal{E}(w,Q/\gamma) \equiv \{y | \|y - w\|_Q \leq \gamma\}.$

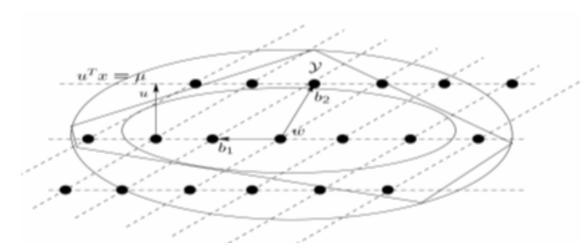
Lenstra's Algorithm (continued)

Step 3 Feasibility Check And Finding A Thin Direction

Find a LLL reduced basis b_1, \ldots, b_k of \mathbb{Z}^k such that b_i are short and nearly orthogonal under $\|\cdot\|_Q$. Round w to $y \in \mathbb{Z}^k$. If y is feasible, done; Otherwise, find a u satisfying $u^Tb_1 = 0, \ldots, u^Tb_{k-1} = 0$.


Step 4 Branching On Hyperplanes

Add hyperplanes $u^Tx=\mu$ for the entire range of μ , reduce problem dimensionality and Pick up a new node and return to Step 1.



Lenstra's Algorithm (Geometry)

Step 2:

Step 3:

Pervious Work

- Lenstra [83] proposed algorithm branching on hyperplane
- > Grötschel, Lovász and Schrijver [84] used ellipsoidal approximation directly.
- Lovász and Scarf [92] developed Generalized Basis Reduction (GBR) algorithm that does not require ellipsoidal approximation and works with the original model, however, assumes full dimensionality.
- Cook, et. al. [93] implemented GBR algorithm for some hard network design problems.
- ➤ Wang [97] implemented GBR algorithm for LP and NLP (<100 integer variables).
- Aardal, Hurkens, and Lenstra [98,00], Aardal et. al. [00], Aardal and Lenstra [02], proposed a reformulation technique and solved some hard equality constrained integer knapsack and market split problems using this reformulation.
- Owen and Mehrotra [02] computationally showed that good branching disjunctions are available using heuristics for smaller problems in the MIPLIB testset.
- Gao and Zhang [02] implemented Lenstra's algorithm and tested an interior point algorithm for finding the maximum volume ellipsoid.

Issues

- Dimension reduction... hmm...
 - Don't know what to do when continuous variables are present
 - Continuous variables are "projected" out
 - How to do this for the more general convex problem?
 - It is just nice to work in the original space!
- Basis Reduction at every node...
 - Finding a feasible solution or
 - finding good branching directions
- Ellipsoidal Approximation
 - We should use the modern technologies!
- > Feasibility problem vs. Optimization Problem
 - Disjunctive branching (instead of branching on hyperplanes)

Adjoint Lattice

The lattice generated by an integer matrix Z^* satisfying $Z^TZ^*=I$ is called an *adjoint lattice* of A (associated with Z). An adjoint lattice exists and in fact, it is not unique.

Example 1 (Example 2.2 in Aardal et al. [02])

$$\mathcal{P} := \{x: 2x_1 + 4x_2 + 5x_3 = 8, 0 \le x_j \le 1, 1 \le j \le 3\}$$

i.e.,A = [2,4,5], a = 8, and $v = [0,2,0]^T$ is a particular solution

of
$$Ax = a$$
. A kernel lattice basis is given by $Z = \begin{bmatrix} -2 & 5 \\ 1 & 0 \\ 0 & -2 \end{bmatrix}$

and
$$Z^*=\left[egin{array}{ccc} 0&1\\1&2\\0&2\end{array}
ight],$$
 respectively. Note that $Z^*+A^T[0,-1]=$

$$\begin{bmatrix} 0 & -1 \\ 1 & -2 \\ 0 & -3 \end{bmatrix}$$
 gives another adjoint lattice basis.

Branching Hyperplane finding Problem

Proposition: In the branching hyperplane finding problem for \mathcal{Y} :

$$\min_{p \in \mathbb{Z}^k \setminus \mathbf{0}} \left\{ \max_{y \in \mathcal{Y}} p^T y - \min_{y \in \mathcal{Y}} p^T y \right\},$$

equals

$$\min_{u \in Z^* \setminus 0} \left\{ \max_{x \in \mathcal{P}} u^T x - \min_{x \in \mathcal{P}} u^T x \right\},\,$$

$$\mathcal{P} \equiv \{x | Ax = a, x \ge 0\}$$

Find An integral Adjoint Basis

This goes back to the gcd calculation. Let U be such that AU = [H:0], where H is a lower triangular matrix. Let $U = [U_I:Z]$, then

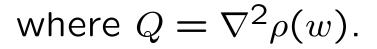
$$AU_I = H, AZ = 0.$$

Let $U^{-1}=\left[egin{array}{c} U_A^T \ Z^{*T} \end{array}
ight]$. Then Z^* is a basis of Λ^*

because

$$Z^{*T}Z = Z^TZ^* = I.$$

By Λ^* denote the lattice generated from the columns of Z^* .


Ellipsoidal Approximation

- ➤ John [48] showed the existence of k-rounding for a given convex set with non-empty interior point.
- Lenstra [83] gave a constructive procedure for finding an ellipsoidal rounding.
- Interior-Point Methods: Analytic center, Vaidya Center, Volumetric center and corresponding ellipsoidal rounding.

Analytic Center:

$$\max \rho(x) \equiv \sum_{i=1}^{n} \ln x_i$$
 satisfying $x \in \mathcal{P}$.

$$\mathcal{E}(w,Q) \subseteq \mathcal{P} \subseteq \mathcal{E}(w,Q/\gamma),$$

The Quality of Approximation

 $\gamma = O(n)$ in the linear case. When general convex constraints are present, if the feasible set admits a self-concordant barrier, $\gamma = O(\theta)$, where θ is the complexity value of a self-concordant barrier. Note also that the log-barrier is well defined over twice continuously differentiable convex functions.

Bound on Minimum Width Using Ellipsoidal Approximation

Theorem 1 Either there exists a branching direction $u \in \Lambda^*$ such that

$$W(u, \mathcal{P}) \leq 2\gamma (\frac{3}{\sqrt{2}})^k,$$

or we can find a feasible solution of (FILP) (or Feasibility integer convex program). We can compute this direction in polynomial time by using basis reduction algorithm of Lenstra, Lenstra, and Lovasz (or other such algorithm).

How to Solve Minimum Width Problems

Definition (Lenstra, Lenstra, and Lovász Reduced Basis). A basis b_1, \ldots, b_k of a lattice \mathcal{L} is called LLL-reduced basis (under $\|\cdot\|_E$) for a given $\delta \in (.25,1)$, if the following two conditions hold for $i=1,\ldots,k-1$:

(1) $|\hat{b}_{k+1}||_E^2 \ge (\delta - \Gamma_{k,k+1}^2) ||\hat{b}_k||_E^2$, where $||\hat{b}_k||$ are Gram-Schmidt orthogonal vectors under $||\cdot||_E$, and $\Gamma_{i,i+1}$ are the corresponding Gram-Schmidt coefficients.

(2)
$$|\Gamma_{j,i}| \le 1/2$$
, for $1 \le j < i \le n$.

Lovasz and Scarf Basis

Definition (Lovász and Scarf Reduced Basis). A basis b_1, \ldots, b_k of Λ^* is called LS-reduced basis for a given $0 < \epsilon < \frac{1}{2}$ if the following two conditions hold for $i = 1, \ldots, k-1$:

(1)
$$F_i(b_{i+1} + \mu b_i) \ge F_i(b_{i+1})$$
 for integral μ ,

(2)
$$F_i(b_{i+1}) \geq (1 - \epsilon)F_i(b_i)$$
,

where

$$F_i(u) = \max \{u^T x - u^T y : x \in \mathcal{X}, y \in \mathcal{X}, b_1^T (x - y) = 0, \dots, b_{i-1}^T (x - y) = 0\}.$$

An interpretation of the Aardal, Hurkens and Lenstra Reformulation

Find a LLL-reduced Z in L_2 norm and then reduce the problem to a lower dimension. Branch on the coordinates $e_i, i = k, \ldots, 1$.

Result: Finding an LLL reduced Z is "equivalent" to finding an LLL reduced Z^* under $\|\cdot\|_{P_A}$, where $P_A = I - A^T (AA^T)^{-1}A$.

Mixed Integer Programming

Feasibility Mixed Integer Linear Program (FMILP) is to

Find
$$x \in \bar{\mathcal{X}}$$
,

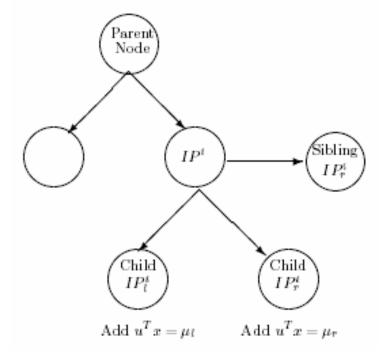
where
$$\bar{\mathcal{X}} \equiv \left\{ x = \begin{bmatrix} x_z \\ x_c \end{bmatrix} \mid Rx = r, x_z \in \mathbb{Z}_+^n, x_c \in \mathbb{R}_+^{\bar{n}} \right\}$$
,

$$R = \begin{bmatrix} B & C \\ A & 0 \end{bmatrix}, r = \begin{bmatrix} b \\ a \end{bmatrix}, B \in \mathbb{Z}^{\bar{m} \times n}, \text{ and } C \in \mathbb{Z}^{\bar{m} \times n}$$

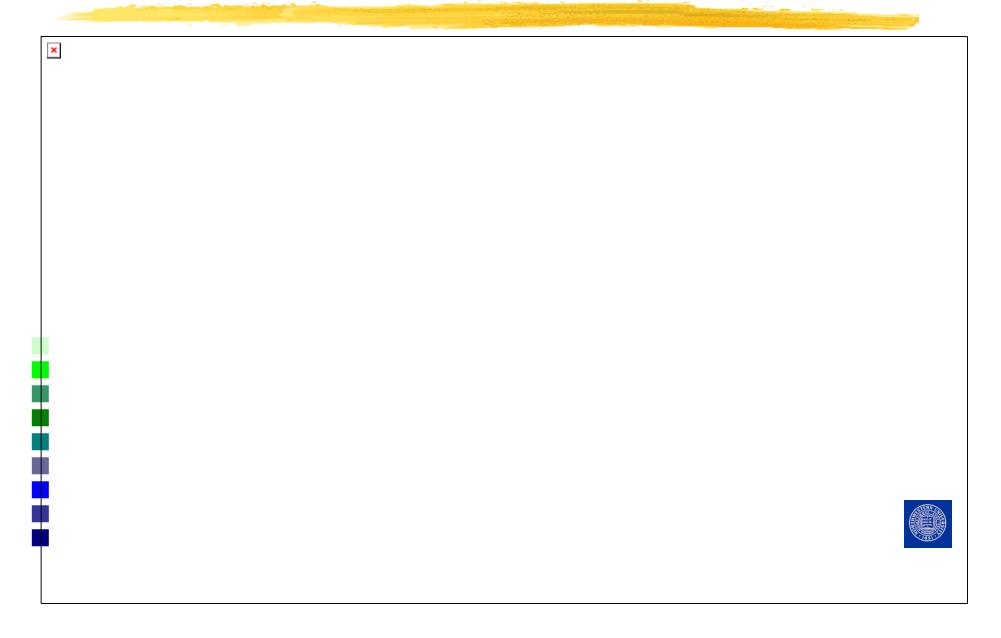
Mixed Integer Problem

Theorem 2: There exists a branching direction $u \in \Lambda^*$ such that

$$\mathcal{W}\left(\left[\begin{array}{c} u \\ 0 \end{array}\right], \bar{\mathcal{X}}\right) \leq \gamma (3/\sqrt{2})^k,$$

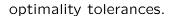

or we can find a feasible solution of the mixed integer convex feasible set. Note that γ is a function of $(n + \bar{n})$ instead of n.

Generalized B&B Method


IMPACT (Integer Mathematical Programming Advanced Computational Tool) implementation of GBB.

> A growing search tree

Knapsack Test Problems


Numerical Results on Hard Knapsack Problems

Program	LLL	<u>-L2</u>	LLL-	Ellip-R	LLL-	Ellip-E	GBI	R-R	GB	R-E	GBR	Only-R	GBR	Only-E	CPLEX
	#N	#T	#N	#T	#N	#T	#N	#T	#N	#T	#N	#T	#N	#T	#N
Law1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	50MN
Law2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2586612
Law3	3	1	3	1	3	1	3	1	3	1	3	1	3	1	50MN
Problem5	5	3	6	3	3	1	6	3	3	1	6	3	3	1	50MN
Problem6	3	1	3	1	5	3	3	1	3	1	3	1	3	1	50MN
Problem7	5	3	5	3	3	1	5	3	3	1	5	3	3	1	50MN
Problem8	3	1	3	1	3	1	3	1	3	1	3	1	3	1	50MN
Problem15	34	21	28	17	17	12	35	29	24	13	35	29	24	16	80,624
Problem16	46	31	21	14	15	10	30	23	15	9	30	23	15	9	484,564
Problem17	39	29	24	16	21	17	27	19	24	17	27	19	22	17	62,792
Problem18	58	32	29	23	11	7	29	22	17	12	29	22	15	11	110,711
Problem19	57	38	32	21	21	13	34	23	22	15	34	23	22	16	116,304
Problem20	27	18	21	18	14	11	20	17	13	11	20	17	13	11	230,562

Market Split Problems

Problem #nodes LLL(iter) sec. width nodes nodes nodes nodes msp31 3 428 0.15 0 3 5 3 7 msp32 5 459 0.14 1 5 3 9 5 msp33 1 565 0.15 0 1 <			LLL-R(P	P_A)		LLL-R(P)	LLL-E(P)	GBR-R	GBR-E
msp32 5 459 0.14 1 5 3 9 5 msp33 1 565 0.15 0 1 1 1 1 1 msp44 1 619 0.16 0 1 1 1 1 1 msp41 66 1321 0.73 2 66 117 100 315 msp42 F 21 1281 0.6 2 21 22 47 102 msp43 15 1728 0.57 1 15 15 15 15 msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 † † 1 msp52 438 2308 4.41 2 438 986 636 † † 1 1 1 1 1 1 1	Problem	#nodes	LLL(iter)		width	nodes	nodes	nodes	nodes
msp32 5 459 0.14 1 5 3 9 5 msp33 1 565 0.15 0 1	msp31	3	428	0.15	0	3	5	3	7
msp34 1 619 0.16 0 1 1 1 1 1 msp41 66 1321 0.73 2 66 117 100 315 msp42 F 21 1281 0.6 2 21 22 47 102 msp43 15 1728 0.57 1 15 15 15 15 msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 † † msp52 438 2308 4.41 2 438 986 636 † msp53 661 2341 5.78 3 661 1,059 899 † msp54 214 3115 2.72 2 214 256 177 † msp61 4,258 3978 44.23 2 4,258 12,455	msp32	5	459	0.14	1	5	3	9	5
msp41 66 1321 0.73 2 66 117 100 315 msp42 F 21 1281 0.6 2 21 22 47 102 msp43 15 1728 0.57 1 15 15 15 15 msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 † † msp52 438 2308 4.41 2 438 986 636 † msp53 661 2341 5.78 3 661 1,059 899 † msp54 214 3115 2.72 2 214 256 177 † msp61 4,258 3978 44.23 2 4,258 12,455 † † msp62 6,587 4693 77.39 3 6,587 12,030	msp33	1	565	0.15	0	1	1	1	1
msp42 F 21 1281 0.6 2 21 22 47 102 msp43 15 1728 0.57 1 15 15 15 15 msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 † † msp52 438 2308 4.41 2 438 986 636 † † † † msp53 661 2341 5.78 3 661 1,059 899 † † msp53 661 2341 5.78 3 661 1,059 899 † † msp53 661 2341 5.78 3 661 1,059 899 † † msp53 462 214 256 177 † msp55 84 2929 1.84 2 84 256 † † †	msp34	1			_		1	1	1
msp44 19 1645 0.57 1 15 15 15 15 msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 † † † msp52 438 2308 4.41 2 438 986 636 † <t< td=""><td>msp41</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>315</td></t<>	msp41								315
msp44 19 1645 0.57 1 19 23 24 17 msp51 F 817 1895 8.32 3 817 2,498 †	msp42 F				2				102
msp51 F 817 1895 8.32 3 817 2,498 † † msp52 438 2308 4.41 2 438 986 636 † msp53 661 2341 5.78 3 661 1,059 899 † msp54 214 3115 2.72 2 214 256 177 † msp55 84 2929 1.84 2 84 256 † † msp61 4,258 3978 44.23 2 4,258 12,455 † † msp62 6,587 4693 77.39 3 6,587 12,030 † † msp63 13,725 3879 136.5 3 13,725 14,176 † † msp31Gen F 27 428 0.00 4 49 51 52 † msp33Gen F 13 459 0.00 3 25 3	msp43		1728	0.57	1			15	15
msp52 438 2308 4.41 2 438 986 636 1 msp53 661 2341 5.78 3 661 1,059 899 1 msp54 214 3115 2.72 2 214 256 177 1 msp55 84 2929 1.84 2 84 256 † 1 msp61 4,258 3978 44.23 2 4,258 12,455 † † msp62 6,587 4693 77.39 3 6,587 12,030 † † † † † msp63 13,725 3879 136.5 3 13,725 14,176 † † † † † † * * † * * * * † * † * * * * * * * * * * * * * * <t< td=""><td>msp44</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>24</td><td>17</td></t<>	msp44				1			24	17
msp53 661 2341 5.78 3 661 1,059 899 1 msp54 214 3115 2.72 2 214 256 177 1 msp55 84 2929 1.84 2 84 256 † 1 msp61 4,258 3978 44.23 2 4,258 12,455 † † † msp62 6,587 4693 77.39 3 6,587 12,030 † † † † msp63 13,725 3879 136.5 3 13,725 14,176 † <								†	†
msp54 214 3115 2.72 2 214 256 177 1 msp55 84 2929 1.84 2 84 256 1 7 msp61 4,258 3978 44.23 2 4,258 12,455 1 1 msp62 6,587 4693 77.39 3 6,587 12,030 1 1 msp63 13,725 3879 136.5 3 13,725 14,176 1 1 msp64 141,852 3012 1407 1 141,852 1	msp52								†
msp55 84 2929 1.84 2 84 256 † msp61 4,258 3978 44.23 2 4,258 12,455 † msp62 6,587 4693 77.39 3 6,587 12,030 † msp63 13,725 3879 136.5 3 13,725 14,176 † msp64 141,852 3012 1407 1 141,852 † † msp31Gen F 27 428 0.00 4 49 51 52 † msp32Gen F 13 459 0.00 3 25 30 19 † msp33Gen 13 565 0.01 2 13 11 28 † msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † <t< td=""><td>msp53</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>† </td></t<>	msp53								†
msp61 4,258 3978 44.23 2 4,258 12,455 † msp62 6,587 4693 77.39 3 6,587 12,030 † † msp63 13,725 3879 136.5 3 13,725 14,176 †	msp54							177	†
msp62 6,587 4693 77.39 3 6,587 12,030 † <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>†</td> <td>† </td>								†	†
msp63 13,725 3879 136.5 3 13,725 14,176 † msp64 141,852 3012 1407 1 141,852 † † msp31Gen F 27 428 0.00 4 49 51 52 † msp32Gen F 13 459 0.00 3 25 30 19 † msp33Gen 13 565 0.01 2 13 11 28 † msp34Gen 22 619 0.02 3 19 13 21 † msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579	msp61				2			†	†
msp64 141,852 3012 1407 1 141,852 † *							12,030	†	†
msp31Gen F 27 428 0.00 4 49 51 52 msp32Gen F 13 459 0.00 3 25 30 19 msp33Gen 13 565 0.01 2 13 11 28 msp34Gen 22 619 0.02 3 19 13 21 1 msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 1 msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 1 msp43Gen 1,817 1,728 0.16 5 774 763 935 1 msp44Gen 870 1,645 0.10 5 423 540 1,511 1 msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 1 msp52Gen F 54,994 2,308 2.87 9 428,826 156,181	msp63				3		14,176	†	†
msp32Gen F 13 459 0.00 3 25 30 19 msp33Gen 13 565 0.01 2 13 11 28 msp34Gen 22 619 0.02 3 19 13 21 † msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †					1			†	†
msp33Gen 13 565 0.01 2 13 11 28 † msp34Gen 22 619 0.02 3 19 13 21 † msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †									†
msp34Gen 22 619 0.02 3 19 13 21 † msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †									†
msp41Gen F 373 1,321 0.03 6 1,066 2,289 753 † msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †									†
msp42Gen F 507 1,281 0.01 7 3,464 1,994 2,213 † msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †									†
msp43Gen 1,817 1,728 0.16 5 774 763 935 † msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †									†
msp44Gen 870 1,645 0.10 5 423 540 1,511 † msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 † msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216 †					•				†
msp51Gen F 4,006 1,895 .25 10 42,057 15,579 10,929 msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216							763		†
msp52Gen F 54,994 2,308 2.87 9 428,826 156,181 137,216									†
									†
									†
1113500 0011 10,100 2,011 100 1 30,100 00,100 1			2,341	.53	7		38,186		†
msp54Gen 79,941 3,115 4.59 6 67,476 32,926 55,515 †								55,515	†
msp55Gen 53,761 2,929 2.68 7 65,119 55,113 † †	msp55Gen	53,761	2,929	2.68	7	65,119	55,113	†	†

Legends: + indicates out-of-memory; † numerical failure due to LP

Larger Market Split Problems

					LLL-R(P))	
Problem	\overline{m}	n	Status	#nodes	LLL(iter)	sec.	$\mathcal{W}_I(Z_1^*)$
msp41	4	30	N	130	1321	0.73	2
msp42	4	30	F	77	1281	0.6	2
msp43	4	30	N	34	1728	0.57	1
msp44	4	30	N	46	1645	0.57	1
msp51	5	40	F	2,395	1895	8.32	3
msp52	5	40	N	939	2308	4.41	2
msp53	5	40	N	1,393	2341	5.78	3
msp54	5	40	N	442	3115	2.72	2
msp55	5	40	N	196	2929	1.84	2
msp61	6	50	N	9,042	3978	44.23	2
msp62	6	50	N	15,999	4693	77.39	3
msp63	6	50	N	29,791	3879	136.5	3
msp64	6	50	N	316,383	3012	1407	1
msp71	7	60	F	10,512,209 **	3610	637,577	1
msp72	7	60	F	3,764,124 **	3463	68,067	1
msp73	7	60	N	171,466	6281	1,028	1
msp74	7	60	N	216,972	6356	1,249	4

of LLL iterations and GBB Tree Size

	LLL-	$-R(P) \ (\delta = 0.9)$	LLL-R(P) (δ = 0.99)			
Problem	#nodes	#LLL(iter)	sec.	#nodes	#LLL(iter)	sec.
msp41	265	723	1.02	130	1321	0.73
msp42	301	659	0.99	77	1281	0.6
msp43	67	1038	0.58	34	1728	0.57
msp44	52	1116	0.55	46	1645	0.57
msp51	8,300	1071	23.42	2,395	1895	8.32
msp52	2,694	1397	10.22	939	2308	4.41
msp53	3,752	1270	14.09	1,393	2341	5.78
msp54	746	1703	3.54	442	3115	2.72
msp55	1,987	1518	4.81	196	2929	1.84
msp61	38,611	2162	172.5	9,042	3978	44.23
msp62	29,524	2412	144.7	15,999	4693	77.39
msp63	106,192	2111	469.4	29,791	3879	136.5
msp64	1,203,447	1537	5523	316,383	3012	1407

Conclusions

- ➤ Developed general branching methods for Linear and Convex Mixed Integer Programs.
- It is possible to develop stable codes for Dense Difficult Market Split problems using Adjoint Lattice Basis.