
LPFML: A W3C XML Schema for
Linear Programming

Robert Fourer and Leo Lopes
Department of Industrial Engineering and Management Sciences

McCormick School of Engineering and Applied Science
Northwestern University

Kipp Martin
Graduate School of Business

University of Chicago

17th March 2004

Abstract

There are numerous algebraic modeling languages for generating linear
programs and numerous solvers for computing solutions to linear programs.
This proliferation of modeling languages and solvers is frustrating to model-
ers who find that only certain languages connect to certain solvers. One way
to encourage modeler-solver compatibility is to use a standard representation
of a problem instance, so that all modeling languages and all solvers deal
with problem instances in the same form. Such a standard should be able to
express instance-specific and vendor-specific information, should be simple
to manipulate and validate, and should promote the integration of optimiza-
tion software with other software.

Given the increasing importance of XML for data representation and ex-
change, and XML’s ability to support the characteristics above, it is natu-
ral to base a proposal for a standard for representing problem instances on
XML. In this paper, we present the LPFML Schema, a W3C Schema for
representing linear programming problem instances in XML. We also de-
scribe a library of open-source C++ classes that we have written to facilitate
the exchange of information between modeling languages and solvers. We
show how these classes have been used to provide previously unavailable
language-solver connections.

1

1 Introduction

There are many algebraic modeling languages for expressing linear programming
models as input to computer systems. Examples include AIMMS [1], AMPL [10],
GAMS [4], ILOG OPL [15], LINGO [26], MPL [28], and Xpress-Mosel [6]. There
are also many efficient solvers for linear programs, such as CLP [11], CPLEX
[14], GLPK [20], LINDO[25], MINOS [23], MOSEK [22], OSL [12], and Xpress-
Optimizer [7]. This proliferation of languages and solvers is a difficulty for de-
velopers of linear programming software, as modelers may want to use any solver
with any modeling language – see Figure 1. If there areM modeling languages
andN solvers, thenM ×N “drivers” are required for complete interoperability.

Figure 1: Software required without common interface

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

MN Drivers Required
Without XML

One way to increase modeler-solver compatibility is to adopt a standard repre-
sentation of a problem instance. Here it is important to make a distinction between
models and instances. Amodelis an abstract algebraic representation of a prob-
lem, aninstanceis an explicit description of a problem’s objective and constraints.
For linear programming, an instance can be represented as a list of nonzero coeffi-
cients of variables in the objective and constraint functions, along with bounds on
the variables and constraint functions.

Using the standard representation of an instance, onlyM +N software drivers

1

Figure 2: Software required with common interface

Modeling
Language 1

Modeling
Language 2

Modeling
Language M

Solver 1

Solver 2

Solver N

M + N Drives
Required

With XML

XML
Instance

are needed for complete interoperability – see Figure 2. Each modeling language
translator generates an instance in the standard format and each solver reads an
instance in the standard format. Note that the arrows in Figures 1 and 2 are double-
headed: a standard form should be able to receive results back from a solver, as
well as send problems to a solver.

An algebraic representation of a simple product mix model, in the AMPL mod-
eling language, is given in Example 1.1.

Example 1.1 Product Mix Example

set PROD; # products
set DEP; # processing departments
param hours {DEP}; # time available in dept i
param rate {DEP,PROD}; # hours used per time unit
param profit {PROD}; # profit per product made
var Make {PROD} >= 0; # number of each product to be made

maximize TotalProfit:
sum {j in PROD} profit[j] * Make[j];

2

subject to HoursAvailable {i in DEP}:
sum {j in PROD} rate[i,j] * Make[j] <= hours[i];

This model describes the data needed by any product mix problem, but does
not supply particular data. Instead the data for an instance of the product mix
linear program is given separately. Here is an example of the data (see [2]) for an
instance, in AMPL’s format for data:

param: PROD: profit :=
std 10
del 9 ;

param: DEP: hours :=
cutanddye 630
sewing 600
finishing 708
inspectandpack 135 ;

param: rate: std del :=
cutanddye 0.7 1.0
sewing 0.5 0.8333
finishing 1.0 0.6667
inspectandpack 0.1 0.25 ;

The AMPL model together with the above data produces a problem instance.
People do not normally look at an instance representation, but AMPL can be di-
rected to display it in a fairly readable form:

maximize TotalProfit:
10*Make[’std’] + 9*Make[’del’];

subject to HoursAvailable[’cutanddye’]:
0.7*Make[’std’] + Make[’del’] <= 630;

subject to HoursAvailable[’sewing’]:
0.5*Make[’std’] + 0.8333*Make[’del’] <= 600;

subject to HoursAvailable[’finishing’]:
Make[’std’] + 0.6667*Make[’del’] <= 708;

subject to HoursAvailable[’inspectandpack’]:
0.1*Make[’std’] + 0.25*Make[’del’] <= 135;

The one widely used standard for representing problem instances in terms of
coefficients and limits is the so-called MPS form [13]. The above instance has the
following equivalent MPS-form representation:

3

NAME PRODMIX
ROWS

N OBJ
L R0001
L R0002
L R0003
L R0004

COLUMNS
C0001 OBJ 10
C0001 R0001 0.7 R0002 0.5
C0001 R0003 1 R0004 0.1
C0002 OBJ 9
C0002 R0001 1 R0002 0.8333
C0002 R0003 0.6667 R0004 0.25

RHS
RHS1 R0001 630
RHS1 R0002 600
RHS1 R0003 708
RHS1 R0004 135

ENDATA

The MPS format illustrated in Example 1.1 has serious disadvantages, how-
ever. It is needlessly verbose, as can be seen in the repetitions of the column names
and the right-hand side name (RHS1). It does not extend well, moreover. It can
be generalized easily enough to specify some integer-valued variables, thus repre-
senting instances ofmixed-integerprograms (or MIPs). Occasional proposals for
major extensions, such as for nonlinear expressions, have failed to catch on; nor
is there any useful provision for conveying solver-specific algorithmic directives,
such as branching preferences for MIP solvers.

Current modeling systems instead use their own proprietary model instance
formats that various solvers have been adapted to recognize. The existence of all of
these forms suggests that the MPS format, even in extended guises, has not proved
to be all that modeling language implementers need. At the same time, separate
implementations of the MPS form in different modeling systems and solvers have
gradually diverged in their handling of spacing and defaults. As a result, the MPS
form is today used almost exclusively in test problem libraries and in instances
that accompany bug reports to solver vendors. A companion form for results from
solvers has mostly fallen into disuse. In addition, there is no MPS format for
reporting the results of a linear programming model solution.

Two factors have thus contributed to the proliferation of proprietary model in-
stance formats: the lack of a formal mechanism for validating an instance that
claims to adhere to a standard, and the presence of vendor-specific or problem-

4

specific extensions. In addition, the inability of the standard to carry metadata –
data about the data, such as branching rules in integer programming – has forced
developers to adopt proprietary mechanisms even when the standard representation
of data alone might be understood by all parties.

Our research specifically addresses these issues. In addition, we have given
special consideration to designing a standard that can be more easily integrated
into general information technology infrastructures. We accomplish this through
the use of XML.

XML (Extensible Markup Language) is rapidly becoming an accepted format
for storing data. In this research, we develop an XML-based dialect, LPFML, for
representing instances of linear programs. An XML dialect is formally defined
by an XML schema(explained in Section 2) against which every file written in
the dialect can be automatically validated. This arrangement alone gives an XML
dialect several important advantages over MPS and the various proprietary formats:

• Validation against a schema promotes stability of the standard.

• An XML schema can restrict data values to appropriate types – row names
to string , row indices toint , and coefficient values todouble , for in-
stance.

• An XML schema can definekeydata to insure, for example, that no row or
column name is used more than once.

• As the name suggests, XML schemas are extensible. Our LPFML Schema
acts a base class that can be extended to include, for example, new constraint
types or solver directives. Of course an instance that validates against the
extended schema may not validate against the original schema.

Also, XML is increasingly being adopted as a standard for the interchange of
information of many kinds. This broader relevance also has benefits for linear
programming systems:

• XML is becoming a very popular format for storing data. By storing an in-
stance in XML format we are bringing the model closer to the data source
and facilitating the integration of optimization-based solutions into IT infras-
tructures.

• XML is the data interchange language of Web services. Future linear (and
other) solvers are likely to be made available as Web services, in which case
it will be important to have an XML representation of problem instances.

5

• XML lends itself very well to compression. In Section 5 we describe com-
pressed representations of our XML representations of linear programs, which
are still in XML format.

• XML-based Extensible Stylesheet Language Transformations (XSLT) offer
a convenient way to specify translations of XML documents. If a linear
program instance (with perhaps corresponding solution) is stored in XML,
then XSLT can be applied to the instance to easily produce a Web browser
(HTML) document that displays the linear program data or solution data in
human-readable form.

• Encryption standards such as XML Encryption are emerging for XML data
– seehttp://www.w3.org/Encryption/2001/ . This option is im-
portant to commercial linear programming applications, where the problem
instances may contain confidential data.

All of XML’s advantages for validating files, defining keys, compression, and
the like are provided by numerous XML tools designed for manipulating and pars-
ing XML data. It suffices to define our XML dialect in the form of a schema that
these tools can work with. This contrasts to ad hoc formats that require specially
writing, debugging, and maintaining the routines equivalent to these tools.

A related problem to the one we address is that of developing an XML dialect
for optimizationmodels. It is certainly feasible to develop an XML dialect for
expressing the concepts of set, index, variable, parameter, and so forth within an
XML dialect. In fact, many of the necessary constructs are already present in the
MathML dialect [29]. An XML modeling dialect could take its place alongside
the other modeling languages in Figures 1 and 2. However, this is not the goal
of the research we report here. Creating a standard for instances is fundamentally
different from creating a standard for models. The mathematical components are
different, the efficiency and representational considerations are different, and the
context in which the solutions to each problem are to be applied are very different.
Modeling systems are often audience-specific or application-specific or both. We
want a methodology where a minimum amount of agreement about syntax is re-
quired among the user community. The model instance requires the least amount
of agreement, and has the widest applicability.

This paper is not the first attempt to incorporate XML into mathematical mod-
eling. See Chang [5] and Kristjánsson [17] for two proposals for representing linear
program instances in XML. In contrast to others’ proposals for XML dialects for
representing linear programming instances, however, we are providing associated
open-source libraries that developers of modeling languages or solvers can use to
read and write files expressed in our proposed format.

6

Ezechukwu and Maros [8] describe their own AML (Algebraic Markup Lan-
guage) which uses XML to describe the model rather than the instance. Finally,
Martin [21] demonstrates how to bypass a traditional algebraic modeling language
and use XSLT to transform raw data into an XML description of the problem in-
stance that validates against the LPFML Schema of this paper. Finally, see the
survey paper by Bradley [3] for a good presentation of the uses of XML technolo-
gies in Operations Research.

In the next section we provide the necessary background material on XML,
schemas, and other technologies used in this paper. In Section 3 we describe
LPFML, a W3C XML Schema used to define the format for representing instances
of linear programs. Any format for linear programming can of course handle
mixed-integer programming by allowing for some variables to be specified “in-
teger.” This is true of our LPFML format and in this section we describe how to
specify integer valued variables. Furthermore, our schema allows for specification
of branching strategies, cuts, on-the-fly column generation, etc.

In Section 4 we describe the libraries we have written based on the LPFML
linear programming schema. These open-source libraries are designed to facilitate
linking solvers with modeling languages, by taking care of low-level tasks such as
parsing LPFML files. As an illustration, we have used these libraries to provide
for conversion from the AMPL modeling language to LPFML, and for conversion
from LPFML to the LINDO API and COIN OSI solver front-ends. The LINDO
API is a product of LINDO Systems, Inc. and is an interface for the underlying
LINDO solvers. The COIN (COmputational INfrastructure for Operations Re-
search) OSI (Open Solver Interface) library is an open source optimization library,
currently hosted by IBM, that provides a C++ API for numerous solvers such as
CPLEX, GLPK, and CLP. Thus our libraries have helped make possible previously
unavailable connections from AMPL models to the LINDO solver and any solver
that supports an OSI interface.

We expect that under many scenarios, linear programming solvers will be used
as Web services. In this case, instances of linear programs will be sent over the
network, and size is an issue. In Section 5 we describe two methods for compress-
ing the XML representation of a linear program instance. The compressed files are
still in XML format.

The software libraries we developed are released as open source. In Section
6 we discuss the choice of our software license and provide details about the dis-
tribution. The paper concludes in Section 7 with several important extensions and
implications for this work.

7

2 Basic XML Technologies

In this section we give a brief overview of the XML technologies used in this paper.
See also the excellent overview of these technologies by Skonnard and Gudgin
[27]. An XML file is a text file that contains both data and markup. Consider the
text in Figure 3, describing the rows of a linear program.

Figure 3: XML Representation of Row Data

<rows>
<row rowName="cutanddye" rowUB="630"/>
<row rowName="sewing" rowUB="600"/>
<row rowName="finishing" rowUB="708"/>
<row rowName="inspectandpack" rowUB="135"/>

</rows>

This text contains both data, such as a row upper bound of 630; and a row
name,cutanddye . The text also contains markup, or metadata, in the form of
elementsandattributesthat describe or give meaning to the data. In this example
there are two elements,<rows> and<row> . Elements are defined by an opening
<tag> and closing</tag> . In this specific example, the<row> element has two
attributes:rowName androwUB. The attributes are used to define or characterize
each<row> element. In this respect, the<row> elements correspond to records
in a relational database and the attributes correspond to fields.

Unlike a relational database, the XML structure is tree-like or hierarchical and
not restricted to a two dimensional table structure. For example, Figure 4 is an
XML representation of the constraint matrix coefficients of Example 1.1. This
matrix represented in this XML data is encoded in a sparse storage scheme typical
of linear programs. The<pntANonz> element contains<el> elements whose
values point to the start of each column. The<rowIdx> element contains the
row indices of each nonzero, and the actual nonzero elements are contained in the
<nonz> element. The complete tree-like structure corresponding to this XML
data is illustrated in Figure 5.

In Figure 5 the icon next to the<sparseMatrix> tag of a line through the
three dots implies a required sequence of child elements, whereas the “switch”
icon represents a choice among child elements. For example, there is a choice
between either a<rowIdx> child of <sparseMatrix> if we store in col-
umn major form, or a<colIdx> child of <sparseMatrix> if we store in
row major form. Similarly, a<nonz> element may have<el> children or a

8

Figure 4: XML Representation of Constraint Matrix Data

<sparseMatrix>
<pntANonz>

<el>4</el><el>8</el>
</pntANonz>
<rowIdx>

<el>0</el><el>1</el><el>2</el><el>3</el>
<el>0</el><el>1</el><el>2</el><el>3</el>

</rowIdx>
<nonz>

<el>.7</el><el>.5</el><el>1.0</el><el>0.1</el>
<el>1.0</el><el>0.8333</el><el>0.6667</el><el>0.25</el>

</nonz>
</sparseMatrix>

<base64BinaryData> child if compression is used (see Section 5). The rect-
angles containing the element names are either solid or dashed. A solid rectangle
indicates that the element is mandatory and must be a singleton. A dashed rectan-
gle denotes that the element is optional. Note also the0..∞ icon below the<el>
element. This indicates that an unlimited number of elements of this type are al-
lowed.

In the XML representation of the constraint matrix data illustrated in Figure 4,
the text markers surrounding each tag (< and >), as well as other elements of the
XML syntax, serve a very important purpose: they make XML instances very easy
to parse and to validate. In order for a parser to parse and construct an appropriate
tree such as the one illustrated in Figure 5 from an XML document, the document
must bewell formed. An XML document is well formed if 1) both opening and
closing tags are present, 2) the opening and closing tag names exactly match both
in name and case (XML is case sensitive), and 3) the tags are nested properly (the
closing tag of a child element must precede the closing tag of its parent element).
Numerous parsers, both open source and proprietary, are available for parsing an
XML document and determining if the document is well formed. In our work
we use the Xerces parser from The Apache Software Foundation (www.apache.
org).

The concept of well formed relates only to the syntax of an XML file. An
even more useful concept is that of avalid XML document. An XML document is
valid if it is well formed and the use of elements and attributes in the document is
consistent with an associatedschema. Specifying the format for the instance of a

9

Figure 5: Sparse Matrix Element

linear program amounts to specifying a schema against which the XML document
is validated. It is useful to think of the schema as a set of class descriptions and the
actual XML document elements as objects in the classes.

A powerful feature of the XML Schema standard defined by the World Wide
Web consortium is that it allows for both built-in and user-defined “types” (or
classes). We illustrate this concept using the schema associated with Figures 3
and 4. In Figure 6 is a schema for the<rows> element illustrated in Figure 3.
This schema, part of the LPFML Schema, is described further in Section 3. The
<complexType> in Figure 6 is a user-defined type and can contain other ele-
ments, attributes, or text. In this case the<rows> element contains child elements
of type<row> . Each<row> element has four optional attributes. These attributes
are built-in types, not user-defined types. For example the attributerowName is of
typestring and the row upper and lower boundsrowUB androwLB are of type
double .

A second example of a user-defined type isintVector . In order to support
sparse storage of the constraint matrix, we require integer vectors. They are used

10

Figure 6: Rows element of LPFML Schema

<xs:element name="rows">
<xs:complexType>

<xs:sequence>
<xs:element name="row" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="rowName" type="xs:string"

use="optional"/>
<xs:attribute name="rowUB" type="xs:double"

use="optional"/>
<xs:attribute name="rowLB" type="xs:double"

use="optional"/>
<xs:attribute name="mult" type="xs:int"

use="optional"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

both as pointers and to store row or column indices. An integer vector is a good
example of a user-defined type that is used in the definition of other types.

Consider the schema definition of theintVector type illustrated in Figure
7. The typeintVector contains a<choice> between: exactly one element
of type <base64BinaryData> ; or (the mutually exclusive or) between 0 and
an unbounded number of elements of type<el> . The element<el> is also a
<complexType> . It contains text that is of built-in typeint . This implies that
the text contained in the<el> element of anintVector type must be parsed
as integer data. A validating parser should give an error message if non-integer
data are encountered. This is a desirable feature when validating the instance of
a linear program. We can check for data of an incorrect type. The<el> element
also has two attributes,mult andincr . These attributes are used for compression
and their use is described in Section 5. TheintVector type does not get instan-
tiated as an element in an XML file. It is not valid to have an<intVector>
element. Rather, theintVector type is used to define other elements that ap-
pear in the XML file. The elements<pntANonz> and<rowIdx> introduced in
Figure 4, which are also a<complexType> , are of typeintVector . The type
intVector is like an abstract class in C++ with<pntANonz> and<rowIdx>
classes that derive from it.

11

Figure 7: complexType intVector of LPFML Schema

<xs:complexType name="intVector">
<xs:choice>

<xs:element name="base64BinaryData"
type="base64BinaryData"/>

<xs:element name="el" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:int">

<xs:attribute name="mult" type="xs:int"
use="optional"/>

<xs:attribute name="incr" type="xs:int"
use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

In the definition of the typeintVector in Figure 7 the element<el> is
defined and required to contain integer data. Thus<el> behaves much like a local
type in a class definition. However,<el> is also a local type in the definition of the
typedoubleVector (part of LPFML Schema but not shown in Figure 7). The
constraint matrix nonzero elements are stored in the<el> element. The<el>
element is a child of the<nonz> element, as shown Figure 4, which is of type
<doubleVector> . In this case the text of an<el> element must be a double
precision real number.

We illustrated how the W3C XML Schema specification allows the attribute
and element text to be of numerous built-in data types, e.g. string, int, double,
base64, etc. These basic types are further enhanced by a<simpleType> type.
The <simpleType> element specification allows the user to define the type of
text that can make up an element or an attribute. Consider the example in Figure 8.

In this example we are defining an attribute type we callcolType . This at-
tribute must be a string consisting of a single character which is eitherC if the
corresponding column element represents a continuous variable,B if the corre-

12

Figure 8: simpleType colType of LPFML Schema

<xs:simpleType name="colType">
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>

</xs:restriction>
</xs:simpleType>

sponding column element represents a binary variable, orI if the corresponding
column element represents a general integer variable.

An XML schema is itself an XML document. Indeed, the W3C XML Schema
standard is an XML vocabulary for defining schemas. Each<complexType>
and<simpleType> in our examples is qualified with anxs . This qualification
on a tag is saying that the tag is in a specifiednamespace. In this particular exam-
ple, there is an attribute in the root element of the schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

This attribute in the root element tells the parser that any element qualified by
xs belongs to the namespace uniquely identified by the URI (uniform resource
identifier)

http://www.w3.org/2001/XMLSchema

Another important XML technology is Extensible Stylesheet Language Trans-
formations (XSLT). This is an XML-based programming language for transform-
ing XML files into other XML files. The transformation is based upon astylesheet.
A stylesheet consists of a set oftemplates. A template specifies what action to
take when the XSLT processor encounters a given pattern in the input document.
A template is somewhat similar to a function or method in a procedural language
such as C++ or Java. However, unlike C++ and Java, XSLT is a functional pro-
gramming language, not a procedural programming language. With regard to our
work, one important use of XSLT is to take the XML representation of a linear
programming instance and solution and convert it into an HTML document that is
easily readable by humans. For example, with XSLT it is easy to read the solution
to a linear program in an XML file, select the variables of interest along with their
solution values, and display the results in an HTML table. For a excellent treatment
of XSLT programming see Kay [16].

13

3 LPFML Schema

In this section we describe our LPFML Schema. The root element is<mathProgram> .
The root element has four children. See Figure 9.

Figure 9: Math Program Element and Children

The<linearProgramDescription> element is used to convey the basic
properties of the linear program instance. See Figure 10. This element’s children
are self-explanatory except for the<option> element.

The<option> element is an extension mechanism. Its role is to support the
transfer of informationrelated to the model. For example, user preferences (such
as precision digits in displaying results, or the frequency with which intermediary
results are produced) or parameters useful to the solution method (such as useful
cut generation strategies or stability and sparsity parameters) can be communicated
using the<option> element.

The <option> element has an optionalsolver attribute. This attribute is
set when using solver-specific options (e.g.<option solver="lindo">).
An application may issue a warning if it doesn’t find an<option> for itself, es-
pecially if it finds<option> tags for other elements. If it does find an<option>
tag for itself, it should attempt to parse the contents of the<option> tag. In this
case, if it finds a discrepancy, it should raise an error message.

If the solver attribute is not used, then the content of the<option> element
is free. It is up to the individual application to parse the content of the<option>
tags. If an application does not understand the content of an<option> tag with-
out asolver attribute, it should ignore the directive. The application may issue
a warning, but should not raise an error condition.

The<linearProgramDescription> element and its children for the lin-
ear program instance in Example 1.1 are

<linearProgramDescription>

14

Figure 10: Linear Program Description Element

<source>Par Inc. Problem from Anderson, Sweeny,
and Williams </source>

<maxOrMin>max</maxOrMin>
<numberRows>4</numberRows>
<numberVars>2</numberVars>

</linearProgramDescription>

The actual data that comprise the linear program instance are contained in the
element<linearProgramData> . See Figure 11. This element has four chil-
dren.

1. The<rows> element, which contains an unbounded number of<row> chil-
dren. There is a one-to-one correspondence between rows in the instance and
<row> elements. Each<row> has four optional attributes. The attributes
arerowName, rowUB, rowLB , andmult . Themult attribute is used for
compression and is described in Section 5. If row names are not provided, the
rows are uniquely identified by an index assigned to them based on their or-
der in the file. For the linear program instance in Example 1.1, the<rows>
element and its children are

<rows>
<row rowName="cutanddye" rowUB="630"/>
<row rowName="sewing" rowUB="600"/>

15

<row rowName="finishing" rowUB="708"/>
<row rowName="inspectandpack" rowUB="135"/>

</rows>

2. The<columns> element, which contains an unbounded number of<col>
children. There is a one-to-one correspondence between columns in the in-
stance and<col> elements. Each<col> has six optional attributes. The
attributes arecolName , colUB , colLB , objVal , colType , andmult .
The objVal attribute is the objective function coefficient and is zero by
default. ThecolType attribute has three possible values, i)C for continu-
ous, ii)B for binary, and iii)I for general integer. If the colType attribute is
not present,C is the default value. As with the rows, themult attribute is
used for compression and if column names are not provided, the columns are
uniquely identified by an index assigned to them based on their order in the
file. For the linear program instance Example 1.1, the<columns> element
and its children are

<columns>
<col objVal="10" colName="x1" colType="C" colLB="0.0"/>
<col objVal="9" colName="x2" colType="C" colLB="0.0"/>

</columns>

3. The <aMatrix> element currently has only one child element which is
<sparseMatrix> (described in detail below). In the future, users may
wish to incorporate matrices stored differently than in<sparseMatrix> .

4. The <metaData> tag may appear in several sections of the file. It is an-
other extension mechanism, similar to the<option> tag discussed earlier.
Like <option> , it contains data about the data, its contents are application-
specific, and it should be ignored if not understood by an application. Un-
like <option> , it contains information about specific components of the
instance, rather than about the instance as a whole. For example, to com-
municate branching priorities, a<sparseVector> might be enclosed in
a <metaData info=“priorities” object=“columns”> tag at
the end of<linearProgramData> . If the modeling environment and the
language agree that “priorities” associated with “columns” stands for branch-
ing priorities, then the priorities can be correctly interpreted and used. Other-
wise, the solver simply ignores the directive and possibly issues a warning.
The labels “priorities” and “columns” used in<metaData> are not pre-
scribed by the standard.

16

Figure 11: Linear Program Data Element

The <sparseMatrix> stores the nonzero elements of the constraint ma-
trix (refer back to Figure 5 used earlier to illustrate the hierarchical nature of
XML). It does so using a traditional sparse storage scheme. There is an element
<pntANonz> which is an integer array of pointers. This element can have two
types of children. If base 64 compression is not used, then<pntANonz> has an
unbounded number of children elements<el> . In this case theith <el> element
points to the start of the nonzero elements for column (row)i + 1. These nonzero
elements are stored in the elementnonz which is a vector of elements where each
element<el> must be a double precision value. The<nonz> element is illus-
trated in Figure 12. If the matrix is stored in column major form, the row indices
are stored in the element<rowIdx> as an integer vector. Similarly column indices
are stored in<colIdx> if the constraint matrix is stored in row major form.

Figure 12: nonz Element

In many modeling situations it is desirable to add rows or columns to the matrix
after an initial solution has been obtained; for example, adding cuts when solving
an integer program or adding columns when using column generation. Thus, in

17

a sparse representation it is important to leave extra room for nonzero elements.
This is done using the<numNonz> element. For example, if the matrix is stored
in column major form, there is a child element of<numNonz> for each variable.
The ith child element<el> of <numNonz> is the number of potential nonzero
elements in columni.

In order to make for a smaller file, all of the vectors in<sparseMatrix>
may be stored in base 64 format. More on this in Section 5. For the linear program
instance in Example 1.1, the<sparseMatrix> element and its children are

<sparseMatrix>
<pntANonz>

<el>4</el><el>8</el>
</pntANonz>
<rowIdx>

<el>0</el><el>1</el><el>2</el><el>3</el>
<el>0</el><el>1</el><el>2</el><el>3</el>

</rowIdx>
<nonz>

<el>.7</el><el>.5</el><el>1.0</el><el>0.1</el>
<el>1.0</el><el>0.8333</el><el>0.6667</el><el>0.25</el>

</nonz>
</sparseMatrix>

ThelinearProgramSolution element is used to store the solution to the
linear program. See Figure 13. There are six child elements.

1. The<primalSolution> element contains an elementsol for each el-
ement in the solution. The<sol> element has three attributes. They are
idx , val , name. Both idx andval are required, whilename is optional.
The logic for this is that the user may wish to present the solution in sparse
format, e.g. list only the nonzero primal or dual variables. In this case, the
index on a variable cannot be based on the position of the element in the file.
The solution value must be assigned a unique index and this is done with the
attributeidx . The variable name associated withidx is optional.

2. The<dualSolution> element is analogous to<primalSolution> .

3. <optimalValue> – self explanatory

4. The <status> element is used to indicate whether the given solution is
optimal, or if the problem is unbounded, or infeasible.

5. <solverMessage> – any solution related message returned by the solver

18

Figure 13: Linear Program Solution Element

6. <metaData> (described earlier).

For the instance in Example 1.1, the<linearProgramSolution> ele-
ment and its children are

<linearProgramSolution>
<primalSolution>

<sol idx="1" name="x1" val="540"/>
<sol idx="2" name="x2" val="252"/>

</primalSolution>
<dualSolution>

<sol idx="1" name="cutanddye" val="4.37457"/>
<sol idx="3" name="finishing" val="6.9378"/>

</dualSolution>
<optimalValue>7667.94</optimalValue>
<status statusId="optimalSolutionFound">Put in here

any other status message desired</status>
<solverMessage>This was solved using LINDO from LINDO

Systems, Inc.</solverMessage>
</linearProgramSolution>

Users may wish to use a solver in an iterative fashion, for example, add columns
or cuts (or both) on the fly. ThelinearProgramIterative element is de-

19

Figure 14: Linear Program Iterative Element

signed to handle this need without requiring parts of the problem which remain
unchanged to be specified anew.

4 The Libraries

A major contribution of this work is a set of open source libraries for reading and
writing LP instances in XML format. This library serves three purposes:

1. It allows the format to be used immediately.

2. It hides all the parsing code, allowing solver and modeling language devel-
opers to deal only with familiar mathematical objects, like objectives, con-
straints, etc.

3. It allows for future changes and extensions to be implemented without re-
quiring any solver or modeling language code to be rewritten.

In Section 4.1, we explain how to use the library to parse an instance of a linear
program. In Section 4.2, we explain how to use the library to write an instance of
a linear program. Section 4.3 is a more detailed description of the classes in the
library, how they relate to each other, and how they use the technology provided
by XML parsers.

4.1 Parsing

The key service provided by the library is to parse the XML file, get the neces-
sary data, put those data into a sparse matrix storage scheme convenient for lin-
ear programming, and present the data to the solver without burdening the solver

20

with any of the parsing implementation. In order to parse an XML file with a lin-
ear programming instance, amain function creates a single class, derived from
FMLParser . This class that inherits from theFMLParser class is a function of
the solver used, for example an OSI solver or LINDO. This inherited class receives
(via ahandler class described in Section 4.3) the instance data in the XML file
and transforms this instance data into the format that is compatible for the solver
API. Which solver to use and correspondingFMLParser class to create is con-
trolled by command line arguments to themain function. Themain function is
in theFMLParse utility that is described in further detail later in this section.

TheFMLParser class contains several methods for accessing different com-
ponents of a linear program. For example,FMLParser has a method called
onObjectiveSense . This method iscalled by the libarywhen the library
finds out whether the file being read contains a minimization or a maximization
problem. When a solver-specific class is derived fromFMLParser , it is the de-
rived version of the method that is called. In that method, solver-specific initial-
ization can be accomplished. For example, here is the OSI implementation of
FMLParser::onObjectiveSense :

void FMLOSIParser::onObjectiveSense(const bool isMin)
{

isMin_ = isMin;
solver_->setObjSense(isMin? 1. : -1.);

}

In the code above, solver_ is a pointer to an OSI-specific interface class, which
has a method::SetObjSense and isMin_ is class variable of typebool in
the FMLParser class and defines the direction of the optimization. Notice that
the person implementing this parser needed to know the solver’s interface library,
but did not have to deal with any XML-specific concepts at any time.

Analogous methods exist for variables, constraints, and coefficient matrices, as
well as for initial points, solutions, and dual information. In each case, the method
is invoked with regular C++ vectors or constants as parameters,after the XML
parsing has been done by the library. By implementing the parser as an event-
driven library, we achieve two very important benefits:

1. We avoid having to search the file at any point. The file is read sequentially,
which is especially important when the solver and the modeling environment
reside at different places on a network.

2. We reduce the number of simultaneous copies of the same data that have to
exist at any given time. As soon as the method associated with the appropri-

21

ate event is called, the parsers’ representation of the objects can be deleted,
which is especially relevant for very large problems.

In addition to the event-driven methods,FMLParser also contains asolve
method and awrite method, that need to be specialized for each solver, and a few
other utilility methods, that should not need to be overriden. Thesolve method is
used to send the instance data to a solver using the solver specific API. Thewrite
method is described in more detail in the next subsection.

4.2 Writing

In addition to parsing services, the library also provides writing services. As with
the parsing services, the writing services provided by the library also abstract com-
pletely the XML manipulation, providing instead an intuitive mathematical inter-
face in terms of vectors and matrices.

Advanced features provided by the LPFML proposal, like structural compres-
sion and base64 encoding, can be enabled or disabled by a simple call. The library
then takes care of writing an instance with the features selected by the user.

The library makes available, as members of theFMLLPToXMLclass, several
::setXYZ types of methods. For example, there is a::setRows method, a
::setColumns method, a::setLPDescription method, etc.

Each method has at least two signatures: one using C-style representations of
arrays (using pointers); and one using C++ style representations of arrays (using
the STL). In addition, more signatures might be available if they provide some con-
venient functionality. For example, here are three signatures for the::setRows
method:

void setRows(char** const rowNames,
const double* lhs, const double* rhs);

void setRows(const vector<string> &rowNames,
const vector<double> &lhs,
const vector<double> &rhs);

void setRows(const vector<double> &lhs,
const vector<double> &rhs);

The first signature provides the C-style interface, while the second and third pro-
vide C++-style interfaces. In addition, the third signature dispenses with the use of
row names.

22

4.3 Classes

The discussion in this subsection is especially relevant for those who wish to add
functionality to the library, understand how it is implemented, or make significant
changes to the library to try to improve its efficiency, like replacing the parser
library we used (Xerces) with another parser library. Here we provide a more
detailed description of the classes in the library, how they relate to each other, and
how they use the technology provided by XML parsers.

Figure 15: The Parser Classes

23

There are several generic ways to read an XML file. Two widely accepted
technologies are the Simple API for XML (SAX) 2.0 and Document Object Model
(DOM). We chose to use SAX2 in this parser, because it is faster and requires less
memory than DOM. We use DOM to write an XML file, as described later.

SAX parsers are event-based. They call functions in the user’s code upon find-
ing specific elements, attributes, characters, etc. Our library provides essentially
the same functionality, but at an optimization level. Our library calls functions in
its user’s code when it finds objectives, matrices, constraints, etc. Below is a brief
description of the main classes in our library. Complete documentation generated
by Doxygen is available at our LPFML Web site. The classes used to read and
parse the XML instance file are illustrated in Figure 15.

There are two key classes in the SAX 2.0 standard used to parse an XML file.
The first class isXMLReader. An object of this class is used to actually parse
the XML file. The second class isDefaultHandler. When the parser object
detects various XML constructs such as elements (begin and end) and attributes,
methods in theDefaultHandler class are called. The following classes in the
LPFML Library use these two classes.

FMLHandler: This class inherits from the DefaultHandler class (which im-
plements the default behavior for the SAX2 ContentHandler interface). When the
SAX parser encounters the start and end of elements, the appropriate method (for
example,startElement or endElement) in FMLHandler is called. These
methods aggregate several pieces of data, and build the components of the linear
program. These data are used in arguments for methods such asonConstraints
in the classFMLParser described next.

FMLParser: This class takes care of initializing the Xerces library, includ-
ing creation of anXMLReader parser object. It also provides numerous virtual
methods that are called by anFMLHandler object. For example, the method
onConstraints is used to get row information.

virtual int onConstraints(vector<std::string>
const &label, vector<double> const &lhs,
vector<double> const &rhs)

{return 0;};

When overriden by a solver specific implementation, these methods create or
populate the necessary data structures in the solver. InFMLParser all these meth-
ods do nothing. The solver specific classes that inherit fromFMLParser are re-
sponsible for the actual implementation of the methods.

FMLCOINParser: This class inherits fromFMLParser , and adds a con-
venient methodonCoinPackedMatrix , that provides the constraint matrix in

24

a CoinPackedMatrix data structure. To accomplish this,FMLCOINParser
implements theonAMatrix virtual method ofFMLParser and creates an object
in the classCoinPackedMatrix class.

FMLOSIParser: This class inherits from theFMLCOINParser class. This
class implements all of the methods inFMLCOINParser (and consequently in
FMLParser) needed to describe a linear program. It is used to connect an LPFML
file (an XML file that validates against the LPFML Schema) to any solver that has
an Open Solver Interface implementation. For example, as illustrated below, the
methodonConstraints is used to get the name of the rows and the upper and
lower bounds on each row.

int FMLOSIParser::onConstraints(vector<std::string>
const &label, vector<double> const &lhs,
vector<double> const &rhs)

{
int i;
lhs_ = new double[nRows_];
rhs_ = new double[nRows_];
std::copy(&lhs[0], &*lhs.end(), lhs_);
std::copy(&rhs[0], &*rhs.end(), rhs_);
vector<string>::const_iterator iConNameLabel =
label.begin();
char *p;
rowNames_ = new char*[nRows_];
cout << "nRows = " << nRows_ << endl;
for(i = 0; i < nRows_; i++)
{

p = new char[iConNameLabel->size() + 1];
strcpy(p, iConNameLabel->c_str());
rowNames_[i] = p;
iConNameLabel++;

}
return 0;

}

TheFMLOSIParser implementation ofFMLParser::solve() also uses
only the OSI. Thus, this class can call any solver that has an OSI interface. This is
done by including the solver specific OSI header file and creating the correspond-
ing solver interface class. In our implementation we tested the CLP (Coin Linear
Program) and GLPK (GNU Linear Programming Kit) solvers.

FMLLINDOParser: This is another implementation of a parser, specific for
the LINDO solver. FMLLINDOParser inherits fromFMLParser and imple-
ments the same methods thatFMLOSIParser does. It plays the same role as

25

FMLOSIParser , but generates data structures for the LINDO API as opposed to
those for an OSI solver. An interesting distinction between theFMLLINDOParser
andFMLOSIParser classes is that the LINDO API makes copies of all the pa-
rameters passed to it. The OSI API allows the data to be assigned to the solver,
which takes responsibility for the management of that memory from that point on.
Our library supports either scheme, and in the OSI case this prevents another copy
of the data from being made in memory.

FMLLPToXML: After the linear program instance is read into a solver and
optimized, the classFMLLPToXMLis used to output the primal and dual solution
(with the original linear programming data if the boolean variableoutputLPdata
is true) to a document object model (DOM). In the present implementation the
DOM is written to file. However, the DOM is a very flexible data structure and
could be used several different ways. For example, the DOM output could be used
in an iterative fashion where the dual variables are used to form a Langrangian
relaxation of the problem. A second use of the DOM is in conjunction with an
XSLT transformer to transform the linear programming solution into human read-
able HTML. This is illustrated in Section 7.

FMLAMPLParser: This class inherits fromFMLParser. Unlike the other
parser classes that implement methods for reading theinput XML file, this class
implements methods for reading the primal and dual solution in the XML file cre-
ated by theFMLLPToXMLclass. There is an additionalwrite method that is
AMPL specific and returns the data to AMPL. If a different modeling language
were used this method would need to be modified accordingly.

We also distribute some utilities with the library. These utilities serve as exam-
ples, provide some convenient functionality, and play a demonstration and debug-
ging role. The classes used to write the solver solution in XML format and convert
MPS format to XML format are illustrated in Figure 16.

FMLParse: This utility takes an LPFML file, and through our library, solves
the linear program using any of the currently supported solvers.FMLParse cre-
ates and manipulates only anFMLParser object. Depending on which solver is
selected by the user (currently GLPK, CLP, or LINDO), an appropriate child of
FMLParse is instantiated and used to solve the problem. As new solvers become
available, only the selection mechanism inFMLParse needs to be changed. As
of this writing, the CLP solver does not work in the Windows environment with
libraries compiled using Visual Studio .NET.

nl2fml: This utility is designed to work with the AMPL modeling language.
In AMPL terms, it is adriver. A model instance is input into AMPL in AMPL
format. Then the solver option in AMPL is set tonl2fml . Upon execution,
nl2fml.exe converts an AMPL nl file into an XML problem instance. A parser
object (for exampleFMLOSIParser or FMLLINDOParser) is created to parse

26

Figure 16: The Writer Classes

the XML file and call the appropriate solver. Then the solution XML file is parsed
by FMLAMPLParser and the results read back into AMPL for further analysis.
This sequence of operations is illustrated in Figure 17.

FMLCOINMPSToXML and FMLLINDOToXML: Finally, in order to pro-
vide a clean transition to XML, we have implemented two classes for converting
MPS files, as well as files in other formats readable by LINDO, into LPFML files.
These classes (and associated utilities) use the COIN classCoinMpsIO to parse
MPS files, or the functionality of the LINDO API to parse other file types. They
then write instances in XML format that validate against the LPFML Schema.

Using these utilities, we implemented a connection between AMPL and any
solver that has an OSISolverInterface, as well as LINDO. We used the Xerces C++
XML open source software available from Apache.org. However, any SAX 2.0
compliant parser can be used. Unfortunately, C++ is not as XML friendly as Java
and there is not a C++ equivalent of JAXP (Java API for XML Processing) that is
parser independent. However, it would be relatively easy to modify our libraries to
use another SAX parser.

27

Figure 17: Using AMPL with a solver

5 Compression

XML is verbose. For instance, it requires start and end tags for all elements. This
is the price paid to allow easy conversion and validation. However, verbosity is po-
tentially a problem in the context of data-intensive applications like optimization,
especially if large files are sent over a network.

To support arrays, it may seem that every nonzero element would have to be
stored using a tag. For example, in LPFML, elements of an array are described by
the tag<el> . One alternative to this approach is to implement some additional
notation to describe arrays. Unfortunately, arrays represented using additional no-
tation would require specialized parsing code, virtually eliminating some of the
main advantages of XML, like the ability to easily parse, convert, and validate
the content of the files. Instead, our schema has provisions for two compression
schemes. The first scheme is based upon the structure of the problem. The sec-
ond scheme is based upon encoding the text description of the problem in a more

28

efficient manner.
It is important to note that a class that inherits fromFMLParser class in order

to deliver the data to a solver doesnot need to implement the compression scheme
used to write the file. TheFMLHandler class uncompresses the XML file before
calling the methods inFMLParser . Consider the following example taken from
Winston [31].

Example 5.1

min x1 +x2 +x3 +x4 +x5 +x6

s.t. x1 +x2 ≥ 1
x1 +x2 x6 ≥ 1

x3 +x4 ≥ 1
x3 +x4 +x5 ≥ 1

+x4 +x5 +x6 ≥ 1
x2 +x5 +x6 ≥ 1

In Example 5.1 all of the constraint matrix nonzero elements are 1. Also, in
every column, at least two nonzero elements appear in consecutive rows. We take
advantage of these features by defining two attributes in LPFML Schema for the
<el> element. The attributes are multiplicitymult and incrementincr . These
attributes are used to compress the nonzero elements and row (or column) index
elements. First consider the nonzero elements. All of the nonzero elements are 1.
We use the multiplicity attribute to record how many consecutive nonzero elements
have the same value. In the case of Example 5.1 since all 16 nonzero elements have
value 1, the multiplicity is 16 and the nonzero elements for this example are stored
as follows.

<nonz>
<el mult="16">1</el>

</nonz>

In the row index section we take advantage of the fact that nonzero elements
in a column may appear in consecutive rows. Consider variablex2. This variable
has nonzero elements in rows indexed by 0,1, and 5. We store this information by
settingmult="2" andincr="1" for the element with an index value of 0. This
tells the parser that the first row index for variablex2 is 0 and since the multiplicity
is 2 with an increment of 1, that there is a second row index with value 1 (we
increment 0 byincr). The third row index of 5 is stored separately. The row
indicies for variablex4 are stored using only one element with a multiplicity of 3
and increment of 1. The row index storage for Example 5.1 is illustrated below.

29

<rowIdx>
<el incr="1" mult="2">0</el>
<el incr="1" mult="2">0</el>
<el>5</el>
<el incr="1" mult="2">2</el>
<el incr="1" mult="3">2</el>
<el incr="1" mult="3">3</el>
<el>1</el>
<el incr="1" mult="2">4</el>

</rowIdx>

The compression scheme just described is very effective if there are numerous
columns with nonzero elements of equal value in consecutive rows. If this is not
the case an alternative compression scheme is available.

An XML file is a text file. For example, in Example 1.1 we store the nonzero
element .8333 in the second constraint as:

<el>.8333</el>

Using UTF-8 encoding (typical of XML files) which requires one byte per
ASCII character, this single nonzero element requires 14 bytes. The LPFML
Schema also supports the base 64 data type through the<base64BinaryData>
element. This element may appear as a child element of<nonz> , <pntANonz> ,
<rowIdx> and <colIdx> . The <base64BinaryData> has two required
attributes,numericType andsizeOf . ThenumericType attribute value is
the data type converted to base 64 (for example double or int). ThesizeOf at-
tribute value is the number of bytes used in representing each number of the in-
dicated numeric type. TheFMLParser andFMLLPToXMLclasses support the
<base64BinaryData> element and can read and write the matrix nonzeros,
indicies, and pointers in base 64.

Base 64 binary methods read a file in 6 bit chunks and convert the associated
binary number between 0 and 63 into one of the ASCII characters a-z, A-Z, 0-9,
and +,/. Each ASCII character then requires one byte of storage. To store a four
byte integer using UTF-8 requires nine bytes for the<el> and</el> start and
end tags, plus a byte for each character in the integer. This is a minimum of 10
bytes (for a single digit integer). Storing a four byte integer as base 64 requires
at most 6 bytes for a 40% reduction. A similar analysis can be made for storing
double precision nonzero elements.

To give the reader some feeling for how well these compression schemes work,
we took a bank location set covering linear programming instance from Mairose,

30

Sweeney, and Martin [19]. The problem had 89 rows and 176 variables. The
MPS file is 39KB. The XML file with no compression is 50KB. With base 64
compression it is 28KB and using the increment and multiplicity compression it is
29KB. In Table 1 we give results for 10 linear programs from the Netlib library (see
www.netlib.org). The linear programs selected were the 10 largest in terms of
the size of the corresponding MPS file. In Table 1 the first column is the problem
name and the second column is the size of the corresponding MPS file. The third
column is the size of the file in compressed MPS format. The fourth column is the
corresponding problem represented as XML that validates against LPFML Schema
but without using any of the compression schemes above. The fifth column is the
same problem instance with the data stored in base 64 format. The sixth column
is the same problem instance using compression based upon the multiplicity of
the nonzero elements. The last column is the size of the original XML instance
compressed using an XML specific compression routine implemented inxmill .
See [30]. (Unfortunately this compressed format is a binary format that is not a
W3C standard. This is a potential problem if, for example, the solver is called as
a Web service.) The results of this table clearly show that moving from an MPS
format to an XML format is not a problem in terms of file size. The XML and
MPS specific compression algorithms lead to far more compact files than general
compression algorithms (e.g. LZW) hence we do not report sizes for .zip or .gz
format.

Table 1: NETLIB Problem Sizes (in KB)

MPS MPS XML XML XML XML
Problem Format Comp Format Base64 Mult Comp

fit2d 4669 482 6515 2894 4866 121
fit2p 2255 439 3663 1976 2592 126

wood1p 2235 328 3518 1308 2892 74
dfl001 1402 353 2953 1715 2657 178

woodw 1231 240 2494 1230 2466 71
d2q06c 1208 258 2084 981 1877 112

80bau3b 1155 293 1997 1196 1896 111
greenbeb 1057 235 2047 990 1968 73
greenbea 1057 235 2047 990 1969 73

degen3 878 128 1315 589 542 33

31

6 The Software Distribution

The objective of this research is to propose a standard for representing the instance
of a linear program using XML. However, it is clear from previous work, that with-
out an open set of convenient tools forusing the proposed standard, its adoption
would be hindered. Thus, we are distributing a software library in conjunction with
this paper. In order to facilitate the use of this library among the researcher and
practitioner community, we decided to release the library as open source software.

People disagree about the meaning of “Open Source”. For the purposes of
this discussion, we define “Open Source” as software whose source code is avail-
able without additional charge. Releasing the source code provides the following
advantages:

• Increased quality through peer review, frequent updates, and contributions
from third parties.

• Transparency. Releasing the code as open source prevents users from having
any concerns about functionality being deliberately changed or omitted for
business motives, and makes it clear to all parties that their investment in the
technology will not be wasted.

• Better documentation, especially from a technical perspective, of the goals
and achievements of the project.

In releasing open source software, the license is a key consideration. There are
numerous open source software licenses. These licenses differ in the restrictions
they place on how the source code and binaries are used. Here are some common
licenses, ordered from most restrictive to less restrictive in terms of redistribution
requirements. For a thorough discussion of open source software licenses see Fink
[9].

• The GPL (GNU General Public License) orcopyleft license: The GPL is
due to Richard Stallman and it is aquid-pro-quolicense. The key feature
of the GPL license is that if youuseor modify GPL-licensed software, you
must distribute the modifications, as well as any software you develop that
incorporates GPL-licensed code, under the terms of the GPL. The Linux op-
erating system is a well known example of open source software distributed
under a GPL license.

• The LPGL (Lesser or Library GPL) license: As the name implies, this li-
cense often (but not always) applies to libraries. With this license you can

32

write software thatusesLPGL code and then redistribute an executable that
contains your proprietary software and the LPGL codewithout having to
distribute the source code for your own application. This is under the as-
sumption that the LPGL-licensed software is not altered, but merely used by
your program.

• Non-copyleft licenses: These licenses do not insist that modified and redis-
tributed software also be open source. They typically contain a copyright (in
contrast to public domain software which does not carry a copyright) clause
and require modified software to retain the clause. Examples of non-copyleft
licenses include the Apache software license and the MIT license.

Our main goal with this research is to make available a thorough standard that
can be used extensively in a wide variety of scenarios. We therefore chose to dis-
tribute our FML library under a non-copyleft license. This allows developers of
proprietary software to modify our libraries and then include them in their propri-
etary software. However, two of our utilities that are not part of the FML library,
nl2fml andFMLParse , link to the GLPK library which is licensed under the
GPL. Because we are providing a complete distribution that contains all of the
libraries that link with our code, we had to releasenl2fml andFMLParse , un-
der the GPL. (Thenl2fml andFMLParse utilities can use LINDO or any OSI
solver. We do this because the user mightwish to use GLPK.)

The software described in this paper is available for download athttp://
gsbkip.uchicago.edu/fml/fml.html . We currently have distributions
for the Windows and Linux operating systems. The file structure of our distribution
is illustrated in Figure 18. This is a complete distribution and the user does not
need to download any other software. As mentioned in Section 4, we use the
Xerces parser in our libraries and include the necessary Xerces library and dll file.
Similarly, COIN and Lindo libraries are provided. Makefiles are provided for both
the Linux and Windows distribution. We also provide a Microsoft Visual Studio
2003 .NET solution filefml.sln for the Windows distribution.

7 Extensions and Future Work

There are a number of possible extensions of this work. First, it is important to de-
velop schemas for more specialized linear programs and nonlinear programs. Cur-
rently, we only take advantage of special structure through theincr andmult
attributes. For example, the nonzero element 1 in a set covering problem is stored
only once using themult attribute. However, the current schema does not take ad-
vantage of other structures such as network flows, variable upper and lower bounds,

33

Figure 18: Software distribution file structure

or stochastic programs (see Lopes and Fourer [18]). Representing instances of
nonlinear programs is also important. An existing XML dialect that can be used to
represent nonlinear terms is Content MathML. See, for example, Sandhu [24]. One
direction of research is to develop a schema that uses the MathML namespace, but
is specialized for optimization problems.

A natural extension of this work is to enhance the libraries with style sheet
processing. As discussed in Section 2, XSLT is a language for transforming XML.
We illustrate in Figure 19 a transformation of the solution to Example 1.1 into
HTML. This was done using the library classFMLLPToXMLwith the Xalan XSLT
processor from apache.org.

Clearly far more elegant transformations are possible. For example, problems
might be solved in client server mode. The client machine would have the instance
data and send it to the server machine where the FML libraries and the LP solver
are located. After solving the problem instance the user at the client machine might
query the server for information such as the value of all primal variables that start
with an “x”, or the dual values for all of the constraints where the dual value is
above a threshold number. This could be done using Web service technologies and
is facilitated by the use of XML.

Finally, an important feature of XML is that it supports encryption standards
such as XML Encryption. With XML Encryption a user can specify which ele-
ments to encrypt. For example, if a user wished to encrypt the data in the constraint

34

Figure 19: Result of Style Sheet Transformation

matrix of a linear program this would be possible by choosing to encrypt all of the
child elements of the<sparseMatrix> element.

References

[1] AIMMS. The AIMMS modeling language, 2003.http://www.aimms.
com/aimms/product/modeling_language.html .

[2] D. R. Anderson, D. J. Sweeney, and T. A. Williams.An Introduction to Man-
agement Science. West Publishing, St. Paul, MN, sixth edition, 1991.

[3] G. Bradley. Introduction to extensible markup language (xml) with operations
research examples.Newletter of the INFORMS Computing Society, 24:1–20,
2003.

35

[4] A. Brooke, D. Kendrick, and A Meeraus.GAMS, A User’s Guide. Scientific
Press, Redwood City, CA, 1988.

[5] T-H. Chang. Modelling and presenting mathematical programs with xml:lp.
Masters thesis, University of Canterbury, 2003.

[6] Dash Optimization. Xpress-mosel, 2003. http://www.
dashoptimization.com/pdf/mosel.pdf .

[7] Dash Optimization. Xpress-optimizer reference manual, 2003.
http://computing.ee.ethz.ch/sepp/xpress-13b-et/
optimizer/optimizer.pdf .

[8] O.C. Ezechukwu and I. Maros. Oof: Open optimization framework. Techni-
cal Report ISSN 1469-4174, Imperial College of London, 2003.

[9] M. Fink. The Business and Economics of Linux and Open Source. Prentice
Hall PTR, Upper Saddle River, PTR, first edition, 2003.

[10] R. Fourer, D.M. Gay, and B.W. Kernighan.AMPL A Modeling Language for
Mathematical Programming. Scientific Press, San Francisco, CA, 1993.

[11] IBM. Coin lp, 2003. http://oss.software.ibm.com/
developerworks/opensource/coin/index.html .

[12] IBM. Optimization subroutine library, 2003.http://www.research.
ibm.com/osl/ .

[13] IBM. Passing your model using mathematical programming system (MPS)
format, 2003. http://www-306.ibm.com/software/data/bi/
osl/pubs/Library/featur11.htm .

[14] ILOG. Ilog cplex, 2003. http://www.ilog.com/products/
cplex/ .

[15] ILOG. Ilog tutorial, 2003. http://www.ilog.com/products/
oplstudio/tutorial/index.cfm .

[16] M. Kay. XSLT Programmer’s Reference 2nd Edition. Wrox Press, Birming-
ham, UK, 2001.

[17] B. Kristjánsson. Optimization modeling in distributed applications: How
new technologies such as xml and soap allow or to provide web-
based services, 2001.http://www.maximal-usa.com/slides/
Svna01Max/index.htm .

36

[18] Leo Lopes and Bob Fourer. An xml-based format for communicating opti-
mization problems. Presented at INFORMS Annual Meeting, Miami Beach,
2001.

[19] L. Mairose, D. Sweeney, and K. Martin. Strategic planning in bank location.
Proceeding of American Institute of Decision Sciences, 1979.

[20] Free Software Foundation (Andrew Makhorin). GLPK (gnu linear program-
ming kit), 2003. http://www.gnu.org/software/glpk/glpk.
html .

[21] K. Martin. A modeling system for mixed integer linear programming using
xml technologies. Technical report, University of Chicago, 2002.

[22] Mosek ApS. Mosek, 2003.http://www.mosek.com/ .

[23] B.A. Murtagh and M.A. Saunders. MINOS 5.4 user’s guide. Systems Opti-
mization Laboratory SOL 83-20R, Stanford University, 1983.

[24] Pavi Sandhu.The MathML handbook. Charles River Media, 2003.

[25] L. Schrage.Optimization Modeling with LINDO. Brooks/Cole, Pacific Grove,
CA, fifth edition, 1997.

[26] L. Schrage. Optimization Modeling with LINGO. Lindo Systems, Inc,
Chicago, IL, 2000.

[27] Aaron Skonnard and Martin Gudgin.Essential XML Quick Reference. Pear-
son Education, Inc, 2002.

[28] Maximal Software. MPL manual, 2002.http://www.maximal-usa.
com/mplman/mplwtoc.html .

[29] Neil Soiffer. Mathml: a proposal for representing mathematics in html.ACM
SIGSAM Bulletin, 31(3):44–45, 1997.

[30] D. Suciu and H. Liefke. Xmill an efficient compressor for xml, 1999.http:
//www.research.att.com/sw/tools/xmill/ .

[31] W. Winston. Operations Research Applications and Algorithms. Duxbury
Press, Belmont, California, third edition, 1994.

37

