
Industrial Engineering and
Management Sciences

A General and Unified Design and Framework for Distributed Optimization

Ph.D. Proposal

by

Jun Ma

Advisor: Robert Fourer

A thesis proposal submitted in partial fulfillment of the

requirements for the candidacy of

Doctor of Philosophy

Industrial Engineering and Management Sciences

Northwestern University

2003

Approved by Robert Fourer

 Chairperson of Supervisory Committee

 John R. Birge

 Wei Chen

 Thomas Tirpak

Program Authorized

to Offer Degree Industrial Engineering and Management Sciences

Date

NORTHWESTERN UNIVERSITY MA

i

Rev. No. Release Date Reviser(s) Comments

1.0 November 01, 2003 Jun Ma Initial Draft

1.1 December 05, 2003 Robert Fourer, Jun Ma Revised Draft for Proposal

on December 12, 2003

NORTHWESTERN UNIVERSITY MA

ii

Table of Contents

1 ABSTRACT---5
2 BACKGROUND AND INTRODUCTION ---6

2.1 A REAL WORLD EXAMPLE (MOTOROLA)--7
2.2 ANOTHER REAL WORLD EXAMPLE (ARGONNE) --9

3 TWO DISTRIBUTED OPTIMIZATION SYSTEMS -- 11
3.1 MOTOROLA VP MULTIDISCIPLINARY INTELLIGENT OPTIMIZATION SYSTEM --------------------------- 12

3.1.1 General Background --- 12
3.1.2 Knowledge Flow -- 12
3.1.3 Properties of the Model Services --- 12
3.1.4 Initial Modeling of Computational Complication -- 13
3.1.5 An Approach on Robust Design of Distributed Optimization --- 16
3.1.6 Design and Architecture --- 16
3.1.7 Service Requirements and Non-generic Solutions-- 18
3.1.8 Procedure and Reasoning --- 21
3.1.9 Benchmarks-- 26

3.2 AMPL AND NETWORK ENABLED OPTIMIZATION SYSTEM (NEOS)-------------------------------------- 28
3.2.1 Standalone AMPL Architecture--- 28
3.2.2 AMPL-NEOS Architecture -- 29
3.2.3 AMPL-NEOS Optimization Problem Representation Issues -- 30
3.2.4 AMPL-NEOS Optimization Communication Issues -- 32

4 SETTINGS FOR THE DISTRIBUTED OPTIMIZATION DESIGN AND FRAMEWORK -------- 34
4.1 A GENERAL PICTURE – THE FUTURE OF COMPUTING-- 34
4.2 OUR POSITIONING – THE HIERARCHY OF OPERATIONS RESEARCH (OR) -------------------------------- 36
4.3 TECHNOLOGIES, TERMINOLOGIES, CURRENT STATES OF OPTIMIZATION SERVICES RELATED
RESEARCH-- 38

4.3.1 Parallel/Distributed/Grid Computing-- 38
4.3.2 XML -- 38
4.3.3 XML Schema -- 40
4.3.4 Other XML Technologies -- 41
4.3.5 Web Services and Simple Object Access Protocol (SOAP)-- 43
4.3.6 Web Services Description Language (WSDL) -- 45
4.3.7 Web Services Inspection Language (WSIL) --- 46
4.3.8 Universal Description, Discovery and Integration (UDDI)--- 47
4.3.9 Open Grid Services Architecture (OGSA)--- 47

5 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DISTRIBUTED
OPTIMIZATION (PART I – PROPOSING OPTIMIZATION SERVICES) ---------------------------------- 49
6 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DISTRIBUTED
OPTIMIZATION (PART II – ARCHITECTURE DESIGNS) -- 51

6.1 THE CENTRALIZED ARCHITECTURE -- 52
6.2 THE DECENTRALIZED ARCHITECTURE --- 54
6.3 MOTOROLA VP OPTIMIZATION SYSTEM REVISITED (CENTRALIZED ARCHITECTURE) ----------------- 57
6.4 AMPL-NEOS REVISITED (DECENTRALIZED ARCHITECTURE)-- 59

7 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DISTRIBUTED
OPTIMIZATION (PART III – OPTIMIZATION SERVICES FRAMEWORK) ----------------------------- 61

7.1 OPTIMIZATION SERVICES REPRESENTATION -- 62
7.1.1 Optimization Services Template Language (OSTL) -- 62
7.1.2 Optimization Services Result Language (OSRL) --- 66
7.1.3 Optimization Services Option Language (OSOL) -- 68

NORTHWESTERN UNIVERSITY MA

iii

7.1.4 Optimization Services Simulation Language (OSSL) -- 70
7.1.5 Optimization Services Analysis Language (OSAL)--- 71

7.2 OPTIMIZATION SERVICES COMMUNICATION -- 76
7.2.1 Optimization Services Client Language (OSCL) --- 77
7.2.2 Optimization Services Description Language (OSDL) -- 78
7.2.3 Optimization Services Flow Language (OSFL)--- 81
7.2.4 Optimization Services Endpoint Language (OSEL) -- 81

7.3 OPTIMIZATION SERVICES INSPECTION AND DISCOVERY --- 83
7.3.1 Optimization Services Inspection Language (OSIL) --- 84
7.3.2 Optimization Services Process Language (OSPL) --- 86
7.3.3 Optimization Services Benchmark Language (OSBL) --- 87
7.3.4 Optimization Services Query Language (OSQL) --- 91

8 CONCLUSIONS AND FUTURE WORK -- 92
APPENDIX--- 94

A.1 OPTIMIZATION SERVICES TEMPLATE LANGUAGE (OSTL) SCHEMA-------------------------------------- 94
A.1.1 OSTL Example 1 -- 96
A.1.2 OSTL Example 2 -- 96

A.2 OPTIMIZATION SERVICES RESULT LANGUAGE (OSRL) SCHEMA--- 96
A.2.1 OSRL Example 1-- 96
A.2.2 OSRL Example 2-- 96

A.3 OPTIMIZATION SERVICES OPTION LANGUAGE (OSOL) SCHEMA --- 96
A.3.1 OSOL Example 1 --- 96
A.3.2 OSOL Example 2 --- 96

A.4 OPTIMIZATION SERVICES SIMULATION LANGUAGE (OSSL) SCHEMA ----------------------------------- 96
A.4.1 OSSL Example 1 -- 96
A.4.2 OSSL Example 2 -- 96

A.5 OPTIMIZATION SERVICES DEFINITION LANGUAGE (OSDL) EXAMPLE----------------------------------- 96
A.6 OPTIMIZATION SERVICES CLIENT LANGUAGE (OSCL) EXAMPLE -- 96
A.7 OPTIMIZATION SERVICES FLOW LANGUAGE (OSFL) EXAMPLE -- 96
A.8 OPTIMIZATION SERVICES ENDPOINT LANGUAGE (OSEL) EXAMPLE------------------------------------- 96
A.9 OPTIMIZATION SERVICES INSPECTION LANGUAGE (OSIL) SCHEMA ------------------------------------- 96

A.9.1 OSIL Example 1--- 96
A.9.2 OSIL Example 2--- 96

A.10 OPTIMIZATION SERVICES PROCESS LANGUAGE (OSPL) SCHEMA -- 96
A.10.1 OSPL Example 1 -- 96
A.10.2 OSPL Example 2 -- 96

A.11 OPTIMIZATION SERVICES BENCHMARK LANGUAGE (OSBL) SCHEMA----------------------------------- 96
A.11.1 OSBL Example 1 -- 96
A.11.2 OSBL Example 2 -- 96

A.12 OPTIMIZATION SERVICES QUERY LANGUAGE (OSQL) SCHEMA --- 96
A.12.1 OSQL Example 1-- 96
A.12.2 OSQL Example 2-- 96

BIBLIOGRAPHY--- 97

NORTHWESTERN UNIVERSITY MA

iv

ACKNOWLEDGMENTS

I thank Professor Robert Fourer, my advisor at Industrial Engineering and Management
Sciences department, for bringing me into this wonderful and significant project and
providing the vital vision and direction. I thank the whole Optimization Technology Center
team at Argonne for bring NEOS into the world. I thank Tom Tirpak, my manager at
Motorola’s Advanced Technology Center, for providing the perfect environment, opportunity
and motivation. Tom and my fellow researchers at the Motorola lab have sparked my interests
in a lot of other fields, notably Virtual Prototyping in Electrical Engineering and Machine
Learning. I thank my other committee members, Dean John Birge of McCormick Engineering
School and Professor Wei Chen of Mechanical Engineering Department for sharing their
precious time and providing valuable suggestions. I also want to thank my wife, Haiyan Xu–
staying up the nights with me, just not to let me feel working there alone and sleepy. I joked
with her that in “OSXL”, one of the 4-letter acronyms that we coined in this project, the letter
“X” is reserved for her. By now, as a non-Operations Researcher, she is all too familiar with
my babbles of the acronyms.

NORTHWESTERN UNIVERSITY MA

5

1 ABSTRACT

Large-scale optimization has been a subject of investigation for over 50 years, but the challenge

of making it useful in practice has continued to the present day. Initially the primary difficulties were

posed by computation. But as computational needs were addressed by breathtaking increases in

computer power and algorithm sophistication, the more serious difficulties came to be posed by

representation. Again the challenge was eventually met, by increasingly sophisticated modeling

languages and systems.

The primary difficulty of large-scale optimization has now shifted again, to one of

communication. Currently there exist of a plethora of optimization algorithm implementations,

various formats to represent optimization problems and heterogeneous mechanisms to communicate

with optimization components. Besides, there are plentiful research initiatives in developing

supporting tools to analyze and benchmark optimization problems and solvers. Moreover different

optimization components are implemented in different programming languages and located on

different operating systems all over the network.

In this project, I will analyze the above issues under two real world scenarios. One is Motorola’s

Virtual Prototyping Intelligent Optimization System that I have participated in designing over the past

3 years, led by Thomas Tirpak at Motorola Advanced Technology Center. The other is Argonne’s

National Laboratory’s Network Enabled Optimization System, which has been developed by

researchers at Optimization Technology Center led by Robert Fourer and Jorge Moré.

We propose a general design for distributed optimization architecture to bring together the

seemingly significantly distributed optimization systems. The general design will serve as the basis

for our unified framework introduced under our concept of “Optimization Services”, intended as

guidance for designing future Optimization Services components and next-generation optimization

systems. The introduction of Optimization Services framework can be regarded as an initiative to start

a wider level of cooperation to move toward a final standardization and facilitate a healthier

development environment for research in the area of Operations Research.

NORTHWESTERN UNIVERSITY MA

6

2 BACKGROUND AND INTRODUCTION

Large-scale optimization has been a subject of investigation for over 50 years. But the challenge

of making it useful in practice has continued to the present day. Initially the primary difficulties were

posed by computation, but breathtaking increases in computer power and algorithm sophistication

combined to allow for routine solution of large problems arising in practical applications [4]. As

computational needs were addressed, the more serious difficulties came to be posed by

representation, as modelers found that they could solve larger problems than they could manage or

understand [24]. This challenge, too, was eventually met, by increasingly sophisticated modeling

languages, and systems for describing and working with optimization problems [17][37].

 The primary difficulty of large-scale optimization has now shifted again, to one of

communication. Increasing numbers of optimization algorithms are implemented increasingly well,

but prospective users are unaware of these “solvers” or do not see the potential benefit that would

justify obtaining and installing them. Only certain combinations of solvers and modeling systems

work with each other, moreover, and modeling language support is slow to keep up with solver

extensions to new problems types.

NORTHWESTERN UNIVERSITY MA

7

2.1 A Real World Example (Motorola)

In 2001, I helped design an optimization service (though the term “optimization service” was

loosely defined then), based on a modified feasible direction algorithm [41] for the Virtual

Prototyping (VP) group [48], led by Thomas Tirpak at Motorola Advanced Technology Center

(MATC). The service, along with the development of several optimization solvers including linear

and integer programming types was later integrated into the Virtual Prototyping system. The service is

intended to solve general large scale nonlinear constrained optimization problems with discrete

variables. This optimization service has since proved to be of great value to the Motorola engineering

community. It has been applied in areas like print wiring board panel layout problem and embedded

passives selection in circuit board design and has helped achieve great cost reductions.

At the beginning, the VP optimization service was only applied in single and local domain model

services, i.e., the objective function is calculated by one model service that is located on the same

machine as the optimization service. But in the real world, an objective function can consist of metrics

from multiple and distributed model services, as illustrated in Figure 2-1.

The objective f of the optimization service is comprised of metrics yi’s calculated from the

corresponding service i. The variable set x is shared among all the services. The arrows indicate flow

of information for iterations throughout the optimization. At the higher level is the optimization

engine or solver that, at each iteration, suggests new values for the variable set x to individual model

services. At the lower level are the model services that supply the objective functional values, yi(x)

and constraint functional values, gi(x). In nonlinear optimization, which goal is to find a local

minimum or maximum, it is possible to generate an improved solution just by knowing the numeric

values of the objective and constraint functions at current iteration.

Figure 2-1: Dataflow of optimization with metrics calculated from distributed services

NORTHWESTERN UNIVERSITY MA

8

The problem of multidisciplinary optimization (MDO) with an objective function that

incorporates metrics calculated by distributed model services arises from an ambitious multistage

effort to develop and deploy enterprise-wide, suites of state-of-the-art tools that drastically reduce the

cycle time for new or improved designs and technologies. The principal feature of this effort is the

integration of design and development processes among various disciplines, e.g., mechanical

engineering, electrical engineering, environment engineering, manufacturing, supply chain, etc.

In §1 we will address in detail the issues that we encounter in developing such a multidisciplinary

optimization system from the perspective of scheduling procedure; and in §4 from the perspectives of

architecture design and communication framework.

NORTHWESTERN UNIVERSITY MA

9

2.2 Another Real World Example (Argonne)

The Internet is now providing an increasingly practical way of addressing communication

problems in large optimization [28]. Websites offer abundant solver information [25], to be sure, but

the more significant advance is the ability to send optimization problems over the Internet for

submission to a solver at some remote site. The remote optimization “server” can address numerous

problem types and can provide varied solvers for problems of each type, giving modelers much more

of a choice than they could hope to have locally. In previous work under the auspices of Optimization

Technology Center (OTC) co-directed by Robert Fourer at Northwestern University and Jorge Moré

at Argonne National Laboratory since its founding in 1994, member researchers have studied and

experimented with the concept of an optimization server through the creation of the Network Enabled

Optimization System (NEOS) Server [11][14][34].

The continuing goal of the NEOS project is to make optimization a part of the worldwide

software infrastructure that supports science and commerce. To this end, the NEOS Guide

(http://www-fp.mcs.anl.gov/otc/Guide) includes online examples of optimization problems, listings of

test problem collections, and surveys of publications and software. The complementary NEOS Server

(http://www-neos.mcs.anl.gov) provides remote access to solvers and so is the focus of this project.

The NEOS Server currently supports nearly 70 solvers. Collectively these solvers accept about a

dozen different kinds of input, ranging for example from function definition in programming

languages (Fortran, C, Matlab) to explicit problem instance descriptions (MPS, LP, sparse SDPA) to

symbolic modeling language descriptions (AMPL [26], GAMS [6]). A callable interface, Kestrel [13],

also permits direct access to many of the NEOS solvers from within modeling systems’ environments.

Usage of the NEOS Server (Figure 2-2) has grown to an average level of about 10000

submissions per month; peak loads of 5000 in a week have been handled without difficulty.

Submissions have, however, leveled off a bit in the past few months; this has motivated us to direct

some of the proposed research, particularly in §4, toward making the Server easier to use for those

who are not solver experts.

The current NEOS Server only begins to address the communication difficulties of large-scale

optimization, however. The Server cannot tell users which solvers are appropriate for a problem that

has been submitted, or choose a solver host based on the expected resource needs of a problem.

Connections from modeling languages to solvers are still incomplete, and support for benchmarking is

limited. Because NEOS has evolved along with the Web and the Internet – its first interface, through

e-mail, dates back to 1996 – it is limited to some degree by early design decisions.

http://www-fp.mcs.anl.gov/otc/Guide
http://www-neos.mcs.anl.gov/

NORTHWESTERN UNIVERSITY MA

10

0

2000

4000

6000

8000

10000

12000

14000

16000
01

/1
99

9

03
/1

99
9

05
/1

99
9

07
/1

99
9

09
/1

99
9

11
/1

99
9

01
/2

00
0

03
/2

00
0

05
/2

00
0

07
/2

00
0

09
/2

00
0

11
/2

00
0

01
/2

00
1

03
/2

00
1

05
/2

00
1

07
/2

00
1

09
/2

00
1

11
/2

00
1

01
/2

00
2

03
/2

00
2

05
/2

00
2

07
/2

00
2

09
/2

00
2

11
/2

00
2

01
/2

00
3

03
/2

00
3

05
/2

00
3

07
/2

00
3

Su
bm

is
si

on
s

 Internal

 External

Figure 2-2: Monthly total submissions to the NEOS Server since 1999. “Internal” submissions
are those from the domains of Argonne (anl.gov) and Northwestern (nwu.edu).

NORTHWESTERN UNIVERSITY MA

11

3 TWO DISTRIBUTED OPTIMIZATION SYSTEMS

In this section we will discuss two distributed optimization systems – Motorola’s Virtual

Prototyping (VP) Intelligent Optimization System (§3.1) and Argonne National Laboratory’s Network

Enabled Optimization System (NEOS, §3.2). Issues in designing and implementing the two systems

will be raised and discussed in detail. The two seemingly significantly different systems provide us

with the motivations for a general and unified design and framework for distributed optimization. As

will be seen in §6, these two systems can be viewed as special cases of our general design of

distributed optimization architecture. Our general and unified design and framework (see §4) is

intended to resolve the issues regarding architectures, communications, and representations and help

build robust optimization over distributed systems.

NORTHWESTERN UNIVERSITY MA

12

3.1 Motorola VP Multidisciplinary Intelligent Optimization System

3.1.1 General Background

The VP optimization system is a critical step in a multistage effort to develop and deploy

enterprise-wide, suites of state-of-the-art tools that drastically reduce the cycle time for new or

improved designs and technologies. The principal feature of this effort is the integration of design and

development processes among various disciplines. The goal is to plan, design, construct and manage

knowledge-based systems for the transfer, application and execution of knowledge, usually highly

specialized. The main economic benefit is to be realized in terms of reduced engineering effort for

new product ideas, improved compliance with standard design and development rules, and more

optimal design and development trade-offs.

3.1.2 Knowledge Flow

Knowledge derives originally from customers, who express in the form of specifications of their

needed product. The specifications are likely to encompass a wide area of engineering domains such

as electronic engineering, mechanical engineering, material engineering and manufacturing. These

specifications are distributed to the corresponding engineering departments or groups for proof-of-

concept designing or prototyping. Without the Multidisciplinary Intelligent Optimization System, the

engineering solutions that have been developed in a separate manner finally are combined together

into a complete prototype in a more or less mechanical way. If the solutions have a so-called

“technical interface” conflict, then they are sent back for reengineering. Such a process goes on for

several rounds mainly in a time-consuming trial and error mechanism with many inter-departmental

or group meetings until the final complete product is free from design conflicts.

In contrast, the optimization system takes the responsibility of coordinating the design solutions

that originate from separate departments, finds a feasible solution and possibly optimizes within the

feasible choices to find the best combination of design. As shown in Figure 2-1, the optimization

system architecture leverages on knowledge flow in the real engineering world. The system is broken

up into two levels. The higher level is the one that assumes the role of coordination and the lower

level is all the individual functional modules or simulation services that keep on feeding their separate

solutions to the higher level.

3.1.3 Properties of the Model Services

Optimization services and solvers mostly need users to submit all the data of the problem, at least

including mathematical formulas for objectives and constraints. Such requirements cannot be met due

to the properties of our model services:

1. The final objective and constraint functions consist of multiple services.

NORTHWESTERN UNIVERSITY MA

13

2. Many model services are located remotely. Local copies cannot be easily duplicated due to

various reasons. For example, the model service may be tightly coupled with a database

system.

3. Some model services are so complicated that no simple mathematical representation can be

formulated.

4. Some of the model services are proprietary and thus their formulas cannot be revealed.

5. Most importantly, some model services do not return results instantaneously (see §3.1.4). The

delays make it difficult to integrate the model services into the optimization solver.

3.1.4 Initial Modeling of Computational Complication

In our modeling (Figure 3-1), different optimization solvers are extended from a standard

optimizer interface. All solvers interact with optimization problems with a common interface. The

optimization problem interface is connected with a simple accelerator, which purpose is to simulate

the behavior of remote services, and provide estimated function values to the solvers locally, thus

avoiding networking anomalies. Each remote service has a corresponding local optimization problem

client connected with the interface.

Model services are simulated with arbitrarily chosen and relatively simple functions they are

initiated in separate process threads. Though the simple function value calculations take no time to

complete, different time factors are realized by forcing each process thread to sleep or wait according

to the parameters specified for each service, before the function values are returned to the

optimization solver. To speed up the modeling process, all the time units are scaled down to

milliseconds.

The time for a model service to execute may depend on a variety of factors, e.g., the computer on

which the service is running, the time of day, the complexity of the scenario represented by the inputs

(x), etc. Services may be unavailable at certain scheduled and/or unscheduled times; there may be a

delay in transmitting the inputs to the services and/or the outputs from the services or even the model

service may itself be an optimization process.

The model services in Motorola’s Virtual Prototyping System can be characterized mainly

according to three factors, which determine the time each optimization iteration takes: service time,

server load factor, and down time. Down time includes when the server computer is down, when there

is a bug in the model service software, and/or when there are difficulties running the service for a

given set of inputs (x). Communication time between the optimization engine and model services is

insignificant. An optimization can easily take thousands of iterations. If each iteration takes a long

time due to the above factors, it may become impractical to solve the whole optimization within a

reasonable amount of time.

NORTHWESTERN UNIVERSITY MA

14

Figure 3-1: Architecture of Proof-of-Concept Modeling of Optimization with Metrics Calculated
from Distributed Simulation Services.

Moreover when engineers in other areas design and construct their model services, they do not

have the intention that their models will later be used as parts of an optimization system. Therefore,

these model services usually do not provide gradient information. The optimization solver has to be

based on a direct method, that is, an algorithm not using derivatives.

Benchmarking has been conducted on different optimization algorithms, and a method based on

Powell’s algorithm [45] with quadratic step length estimation was tested and implemented in the

prototype modeling system.

Our initial tests have proceeded as follows. Benchmark problems are first tested with their

objective functions unbroken and statistics are collected for comparison with later tests in the

distributed system. Then the objective functions are arbitrarily divided into several parts and

put on different machines communicating based on the TCP/IP networking protocol. The

NORTHWESTERN UNIVERSITY MA

15

server, where the optimization solver is located, sends the current variable values to each

machine for a functional evaluation and waits till it gets all the responses. It then gathers the

functional values and integrates them into a whole function for the optimization solver to

conduct the next iteration step. Primitive estimations or acceleration techniques, for example

quadratic fitting, smoothing splines, have been used. Estimation of execution time is given by

the following formula and data:

T = (Ts) (LF(t)) + DT, (Equation 3-1)

Where:

Ts = Service time for a given server

LF(t) = Load factor as a function of time (t)

DT = Down time.

Three kinds of services with typical behaviors are identified:

Service A:

Ts = Uniform distribution [6, 30] seconds.

LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise.

DT = 5% probability of the service going down for 30 seconds.

• This service has automatic “crash detection” and recovery; therefore, the maximum

down time is 30 seconds.

Service B:

Ts = Uniform distribution [30, 60] seconds.

LF(t) = 1.25 from 0600 to 1400 hours; 1.0 otherwise.

DT = Insignificantly small.

• This service runs on a dedicated server; therefore, the load factor does not change

significantly during the day.

• The down time is insignificant, because this service runs on dual servers, and the

robustness of the model service software has been proven.

Service C:

Ts = Uniform distribution [30, 90] seconds.

LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise.

DT = 1% probability of the service going down for anywhere between 15 minutes and 16

hours.

Through our initial modeling, we have shown that without any estimation and acceleration

techniques, the optimizations in distributed system are solved with the same accuracies and same

number of iterations, but the time taken to solve each problem is significantly longer, since the

NORTHWESTERN UNIVERSITY MA

16

optimization solver always has to wait for the last and slowest machine to respond with a functional

value.

Acceleration techniques often result in less total optimization time, with relatively the same

accuracies achieved. But these improvements are not guaranteed on any functions. The improvements

are not even guaranteed on different starting points of the same function, since the response surfaces

can behave very differently in various neighborhoods. Our primitive acceleration techniques also do

not take account of networking anomalies. When a model service generates mathematical errors (e.g.

divide by zero), network becomes congested, or the server that hosts the model service crashes, our

optimization process is terminated too. All these suggest further research in a better design and more

robust scheduling procedure.

3.1.5 An Approach on Robust Design of Distributed Optimization

The next sections introduce our research effort on more advanced architecture and intelligent

methods of search and acceleration. Special procedures are being developed along with optimization,

in areas of statistical learning and artificial intelligence including data mining and machine learning.

The real world challenge is how the optimization engine should simultaneously use information about

information such as rate of improvement of the objective function and the computational performance

characteristics of a set of distributed model services, to efficiently manage the evaluation of the

objective function, so that the “best” solution can be found in the “shortest” possible time.

3.1.6 Design and Architecture

Figure 3-2 shows the Virtual Prototyping Multidisciplinary Intelligent Optimization System. The

upper right part of the figure is the solver architecture. Listed are the major component modules.

Remote Central Server – This is mainly used to connect to different distributed services offered

by the Virtual Prototyping System, and maintain administrative routines.

 Simulation Engines – These contain the major Virtual Prototyping services in different

engineering domains.

 Model Constructor – This part is used to dynamically construct multidisciplinary models that

consist of services offered in the Virtual Prototyping system. It is mainly used to construct multi-

objective functions and constraints.

 Client – This is usually any engineer who wants to use the services connected through the central

server. From the client’s view, model constructor is simply another simulation model.

NORTHWESTERN UNIVERSITY MA

17

Figure 3-2: Architecture of the VP Multidisciplinary Intelligent Optimization System

Following are the modules related specifically to the solver architecture.

Solver – This module contains optimization solvers of different types, including linear

programming, nonlinearly constrained programming, integer programming, etc.

Solver Interface – This is a generic interface that is connected to the remote central server. All

solvers have to interact with this interface if they need function values from simulation services

offered through the central server. It also helps generate gradient information such as Hessian

matrices needed by the gradient-based solvers.

Statistics Data – This module keeps track of run time information through the entire

optimization process, for example, the time it takes to get a response from one of the simulation

engines.

Real Opt – This is the module that routes solver requests to real simulation engines.

Assistant Opt – This is the module that routes solver requests to a set of “intelligent”

components and surrogates for optimization acceleration and robustness.

Analyzer/Decider – This is the module that Assistant Opt uses to branch to different

optimization processes.

NORTHWESTERN UNIVERSITY MA

18

Opt Storage – This is actually an interface that provides accesses to retrieval and storage of

online optimization data, for example the variable points and objective values on the optimization

path.

Hash Table – This is basically a database that stores all the evaluated variable points in a special

way.

Surrogate – This is the module that acts as an approximate deputy for a simulation model.

Processed Data – This module is a data structure that processes the data stored in Hash Table

into a format accessible by Surrogate Learner.

Learner – This module takes the processed data from Hash Table, and learns functions that

approximate response behaviors of the simulation engines.

Estimator – This module takes the learned function from Learner and responds to the solver

with an estimated function value.

Opt Thread – The purpose of Opt Thread is that solver does not need to wait or just wait a short

time for a response from simulation engines because it is launched as a separate process from the

general optimization process. On one hand function values are still to be returned. Solver can just

carry on its iterative optimization progression. One main advantage is that when a simulation engine

returns an error, the thread can simply be aborted without affecting the solver process.

3.1.7 Service Requirements and Non-generic Solutions

In designing an intelligent multidisciplinary optimization system that involves pre-built or legacy

simulation engines never intended to be optimized and distributed all over the network, the following

major issues need to be solved for any optimization process. Due to the lack of a universal standard

and framework, many of the design issues are solved on an ad hoc base. Many of these serve as a

motivation for a general design and framework for distributed optimization.

· Initial Design Generation

This serves as the initial point for a nonlinear optimization. But not all the simulation engines

provide such information. A set of quadruples are required of each variable in the form of

(default value, mostly likely value, lower bound, upper bound), after consulting with domain

engineers. Default values can be customized for each optimization run by the client. In case when

multi-start optimizations are carried out [38], distribution functions (for example triangular

distribution based on mostly likely value, lower and upper bounds) can be used to generate

different starting points.

• Common Variable Resolution

Different simulation engines are implemented in individual domains, without exchanging

information with each other. As a result, names of parameters and variables are different even

though they refer to the same specifications. Originally, the situation is handled by constructing

interdisciplinary constraints forcing different variables to be of the same values. But the

NORTHWESTERN UNIVERSITY MA

19

optimization problem size is unnecessarily large due to redundant variable declarations. An

overhaul thus has been carried out on all the simulation engine implementations to find common

variables. To match all the different names to a standard naming, a static “paring” table has been

constructed to support the Model Constructor module in Figure 3-2, so common variables are

detected and variables are declared only once. But still other issues exist.

Clients may be unaware of the common variable situations by supplying different default

values to two differently named copies of the same variable. In cases like these, model

constructor takes the average of the two default values. Most likely values, lower and upper

bounds may also assume different values when a single domain simulation is run. When

constructing a multi-domain model, the largest lower bound, the smallest upper bound, and the

average of the mostly likely values are assumed by the model constructor.

• Objective Construction

Multidisciplinary objective function usually takes the form of a weighted sum. Different

simulation engines are chosen by the clients and corresponding weights are specified. Weights

are solely based on a subjective judgment base reflecting importance of different simulation

metrics deemed by the client. But the client has to tell whether a smaller value or a bigger value

of a metrics is better or not, so that model constructor can build a consistent maximization or

minimization objective function. Metrics of different simulation engines are of different unit,

thus the constructed multi-objective function is unitless and only useful for relative comparisons.

Meaningful reports for each simulation are constructed based optimal variable values. Metrics of

different simulations engines are of different scales. Normalization techniques such as

arctangential and sigmoidal transformation are taken to bring component metrics on to the same

scale.

• Constraint Enforcement

Constraints of the multi-disciplinary optimization are a combination of all constraints from

individual domain constraints of each simulation and all variable boundaries. All the

interdisciplinary constraints are hard coded in an assistant module that accompanies the Model

Constructor module. The Model Constructor module first detects which simulation engines and

which variables are chosen, and it then incorporates into the optimization model the

interdisciplinary constraints that contain the simulations and the variables.

• Result Interpretation

Though Motorola has a proprietary data format to standardize results from different

simulation engines, but they were never intended to be combined with each other to, say construct

a multi-objective function. Name confliction is one major issue. Efforts have to be taken in setting

distinctions between names. One way is to rename, but this causes tremendously many

unforeseeable bugs. The other way is to group results into subsections and use combination of

NORTHWESTERN UNIVERSITY MA

20

simulation names, subsection names and result names. This issue will be elegantly solved by the

introduction of XML namespaces as we will see in our general design and framework.

Another issue, though not as often, is that results can be discrete. During any hill-climbing

type of optimization, these situations can cause optimization solvers to immediately claim a local

minimum or maximum. One technique used is a smooth interpolation of the previous results.

When using a learning technique that tries to estimate the function smoothly, as introduced in

§3.1.8, this problem is naturally avoided. Another technique is on a situation by situation base. In

one circumstance [51], we added an “interdisciplinary” objective term, as a secondary objective,

to make the discrete function continuous. All the interdisciplinary objective terms are hard coded

in an assistant module that accompanies the Model Constructor module. The Model Constructor

module first detects whether the simulations that have discrete objectives are chosen, and then

incorporates into the optimization model the corresponding interdisciplinary objective terms.

• Process Coordination

Requests for results from distributed simulations are all launched in parallel, instead of

sequentially. The simplest coordination technique is to wait for all the processes to finish by

putting a barrier at the end of all the request calls. Other typical techniques are also employed

depending on situations. Any major text books on designing and building parallel programs cover

some most popular and practical algorithms, see [20]. For our purpose in Virtual Prototyping,

most of the time, the multi-objective function can only be constructed with the returns of all the

component objectives from distributed simulations, robust design with some acceleration

techniques are needed for further speed up. This will be discussed in §3.1.8.

Client may happen to choose simulation engines that do not share variables and constraints. In

situations like these, separate optimization processes are launched for each individual simulation

in parallel. And results are combined finally according to the client’s multi-objective construction.

• Queue/Sequence Arrangement

All processes cannot just be launched in a parallel version. Some simulations (e.g. [50]) may

contain variables that are results from other simulations (e.g. [51]). Flows are hard coded when

the Model Constructor encounters a combination of simulations that need to in sequence.

Processes that have to wait for results from other processes are waited in a queue to be notified

later. Some kind of standard service flow coordinating system is needed here.

• Input Parsing/Output Reporting

All input parsing and output reporting are specified in a Motorola proprietary format.

Though standardized, yet complicated enough to be understood by just a few. It was not built for

multi-disciplinary optimization constructions. Special efforts have to be taken to scale it up for

accommodations. In the case of process sequencing, where one simulation’s variable takes a

value from another simulation’s result during run time, the effort is extremely laborious. In the

NORTHWESTERN UNIVERSITY MA

21

case of generating reports of multidisciplinary results and mapping multi-dimensional space onto

two-dimensional graphs, the procedure is even more painstaking.

3.1.8 Procedure and Reasoning

Figure 3-3 shows the processes of an entire intelligent optimization system, in an effort to build a

robust distributed optimization system, with reasonable accelerations.

Normal Flow

On the left part of the figure are processes (Processes 0-10) with bold borders that represent a

normal nonlinear optimization flow: roughly starting with an optimization problem instance, entering

an iterative process of finding directions and step lengths, updating variables and terminate and return

results based upon certain conditions. The major characteristic in this flow is that processes 2 and 5,

when requesting a function value to determine directions and step lengths do not get them locally.

Instead they have to go through process 11, the solver interface, which when no intelligence is needed

in Process 12, always goes through the central server (process 13) and asks its connected simulation

engines (process 14) to return function results F(x).

Processes on the right part of the figure (Processes 15-25), with dotted borders represent the

intelligent components. Notice the total separation between the solver and the intelligent part. None of

the intelligent components are built within the solver, that is, the optimization algorithm remains

untouched. The idea is that any Virtual Prototyping solver can leverage on the intelligent system with

no alteration and also any intelligent system that is compatible with the solver interface can be

plugged with no extra effort. Solver interfacing will be unified in our general design and framework

introduced in §5, so under the framework, any supporting tool suite can be integrated with solvers

seamlessly.

Processes 2 and 3 are intended to find moving directions. A large number of requests are made to

obtain information on function values and gradients in all variable dimensions. Thus arrows leading

out of process 2 and leading into process 3 are in bold. Processes 5 and 6 are intended to find step

lengths along the decided moving direction. Relatively much smaller number of function requests is

needed. Functional evaluations are computationally expensive in our distributed optimization

scenario. Thus the specific solver that we favor has a loop back mechanism from process 6 to process

4, intended to do a very accurate linear search on step length. In practice, all the loops combined to

find a step size take a fraction of time of finding a direction.

The major decision branching is Process 12. If no intelligence is needed, it goes through a regular

distributed optimization process. Otherwise, it leverages on the estimation and acceleration techniques

in the intelligent part. Process 15 is used to store evaluated data in the Hash Table module. It can be

turned off when no intelligence is needed.

NORTHWESTERN UNIVERSITY MA

22

1. Start
optimization

2. Solver requests
functional values

F(x)

3. Solver identify
constraint status
and determines
search direction

dx

4. Solver carries a
1-dim step search

and finds
a

7. Solver updates
x = x + a * dx

8. Termination?
(convergent, infeasible,

etc.)

No

6. objective and/or constraint
improvement?

Yes

No

9. Finish
optimization

Yes

10. Return result
to Model

Constructor

5. Solver requests
functional values

F(x+a*dx)

11. Solver
interface

0. Model
Constructor sends

optimization
instance

12. Need
intelligence?

No

13. Central server

14. Simulation
engines

Evaluated
F(x)

Evaluated
F(x)

16. Assistant OptYes

17. Calculates
runtime statistics

data

18. Analyzer/Decider
chooses function call

types

22. Retrieved data point
from Hash Table?

Yes,
Retrieved

F(x)

Yes.
Retrieved

F(x)

23. Closest data point
good enough?

No

Yes Yes

24. Need exact
function value?

No

Yes

15. Store
data in
Hash
Table

19. Learn
functions?

No

21.
Learner
learns
locally

local

20.
Learner
learns

globally

global

25. Estimator
calculates F(x)

either from
local learner

or global
learner

No

Estimated
F(x)

Estimated
F(x)

Figure 3-3: Flowchart of intelligent optimization process

NORTHWESTERN UNIVERSITY MA

23

Intelligence Flow – Analysis

When intelligence is tuned on, the process always goes through an Assistant Opt module

(Process 16).

The first thing that an Assistant Opt module does is to analyze statistics of run time information,

including:

• those related to optimization process, for example current iteration number, variable change

rate, objective convergence rate, constraint improvement rate

• evaluated data points in database

• finishing status of a simulation

• time it takes between requests and responses of a simulation over recent iterations

• access types of recent runs – retrieved through database, estimated through an approximate

function, or evaluated by the real simulation engine

• last global and local learning time of the function learners

• accuracies of function learners through validation between estimated value and real value

Statistics are constantly updated on finishing of corresponding processes that provide such

information.

Intelligence Flow – Learning

Process 18 is a decision to learn a function based on all the collected points that have been

evaluated by real simulation engines so far. The decision to learn a function is based on one fact,

namely when there are enough new data points. The choice of the number of data points is quite

empirical. It can be further studied and on an adaptive base. All learners are launched in separate

processes, so that the flow can move on to the next three decisions (Processes 22, 23, 24).

Two types of learning are used. The global learning is intended to learn the entire function

surface, while the local learning is used to learn the function surface in the neighborhood of the

current variable point. In general learning takes various forms. Complex learning like Neural

Network, Gene Programming, though potentially more accurate, can take time comparable to the

optimization process itself. Motorola Advanced Technology Center has developed some advanced

though proprietary or patented learning tools that take a short time, which the intelligent optimization

system leverages on. But the main purpose here is not to describe the algorithms inside these tools.

The intention is to illustrate that with the help of well designed learning tools that are properly

coordinated with an intelligent optimization system, decent acceleration can be achieved. In addition

to the proprietary tools, a range of other algorithms are incorporated into our stack of learning tools.

Learning tools are grouped into global learners and local learners separately. In practice, local learners

are relatively fast.

Global learners include standard statistic regressions, neural network, gene programming, etc.

Global learners are launched when an optimization first starts. Leaning or training process is stopped

sooner at the beginning, but the allowed learning time gradually increases. The purpose is to generate

NORTHWESTERN UNIVERSITY MA

24

a big picture and roughly smooth shape (that is, not over-fitting) of a function, so optimization can

move in a generally correct direction. As data points accumulate, we increase learning time and

finally as convergence slows down, we switch to launching local learners. Global and local learners,

in our optimization system, are launched separately.

Local learners include basis expansions methods such as smoothing splines, kernel methods such

as local linear or polynomial regressions and variants of nearest-neighbor methods. By the time we

switch from global to local learner, we have accumulated more points. Many algorithms in local

learning need a large number of points to fit functions in high dimension variable space.

Just as in optimization that no solvers always perform the best and fastest on all functions, no

learners perform the best and fastest on all datasets. Not all global learners or local learners are

launched, depending on factors such as number of points and number of variables. For example

certain learners simply can not be launched with a few points and other learners are only suited to

fitting in low dimension. If a learner takes an extremely long time, it may just be dropped.

We are also developing optimization-specific learners that leverage on information from the

optimization path and runtime optimization performance. They will be illustrated after further works

at Northwestern University and Motorola Inc.

The following decisions are based on the three ways that the solver can get functional values:

retrieval, evaluation, and estimation.

Intelligence Flow – Retrieval

Function value retrieval from database happens quite often in practice. Our database is in essence

a hash table with the hash key being the x variable and the hash value being the function value f(x)

combined with an access index. Access index measures recentness of variables, useful in cases where

only recent points are needed for learning, estimation and validation. Admittedly, hash table takes up

memory. Our reasoning is that memories are abundant and inexpensive, and in practice we never have

to face memory overflow due to the accumulation of data points. The growth is only linear. Our main

concern is speed rather than space. The greatest advantage of a hash table is that row indexing is

based on a hash function value and record retrieval is of constant time. Thus every time we try to

search for a point x, we don’t have to go through the entire table, which can be time consuming with

accumulation of data points in the table. Data precision is kept to certain decimal points and digits

after that are truncated to avoid numerical ill-conditioning.

There are mainly 3 reasons that same points are being retrieved. The first is due to searching

algorithm going back to the same region. The second is due to algorithms using finite difference to

evaluate gradients. For a simple illustration, in a one variable optimization, the left point used to

estimate the gradient at the current point may be the next current point if the search decides to move

left to that point. The third reason is an implementation issue. Most of the time when a solver

implementer codes an algorithm, he assumes that function evaluation time is negligible or about the

same as retrieving from memory. So in each iteration he may just keep on requesting the same

NORTHWESTERN UNIVERSITY MA

25

function evaluation to calculate gradient, direction, step size etc, rather than store, after first

calculation, the value in a local variable for later retrieval.

A closest point (Process 23) may also be returned depending on its Euclidean distance to the

current point. Because variables are normalized to a same scale before optimization, a “closeness”

measure is set to a very small fraction of 1 multiplied by the number of variables. The closest point is

returned if the distance between the closest point and current point is (1) smaller than the “closeness”

measure, and (2) smaller than the distance between the closest point and the last evaluated point. The

first standard is an absolute measure of closeness whereas the second standard is a relative closeness

with regard to the latest movement. The second standard is also used to guard against finite difference

based gradient estimation, in which the last point is almost surely the closest point, thus generating

gradient value of 0.

Intelligence Flow – Evaluation

If no previous data point or closest data point can be retrieved, Analyzer/Decider may choose to

get the evaluation (Process 24) from the real simulation engine (Process 14) through Central Server

(Process 13). This process is always launched in a separate process, but the flow does not go on until

after a maximum wait time. The maximum wait time is adaptively set to some number of times larger

than a moving average of the previous simulation time. If the simulation result is obtained fine, it is

first stored in the database or Hash Table (Process 15). If there is error returned or the maximum wait

time expires, the flow moves on to the next process (process 24) to return an estimated function value.

This is a major step toward robust optimization design against simulation anomaly. If the process is

alive after the maximum wait time, it can still store the result in database. This stored result is of

special interest in validation and comparison of learners, because this point is both estimated by a

learner (actually returned to solver, too) and evaluated by the real simulation engine.

Intelligence Flow – Estimation

If Analyzer/Decider finally chooses to estimate a value from a learned function (Process 25), it

first needs to validate all the learners to measure learner effectiveness. Whether the estimation is local

or global depends on whether the last learning process is global or local, because as mentioned above

only one type of learner can be launched one time. Validation is based on the sum of squared residual

errors between estimated values and evaluated values. Validations are executed only on the most

recent data. If not enough recent data are both evaluated and estimated, extra time will be taken to

extract out the most recent data from the database and estimate them with each learner. The learner

that performs the best in validation is chosen to return its estimated function value to the solver.

Currently Analyzer/Decider has an ad hoc mechanism to guarantee convergence or termination.

Estimation cannot be made in a row for some number of times. After convergence rate is slow or

iteration number exceeds a certain number, Analyzer/Decider will just choose to always get

evaluation from real simulation. Due to the small convergence and the large iteration number that we

set, this mechanism is seldom used in practice.

NORTHWESTERN UNIVERSITY MA

26

3.1.9 Benchmarks

Figure 3-4 shows an initial benchmarking between the Virtual Prototyping distributed

optimization system with and without using intelligent techniques, both using exactly the same solver

and on the same set of distributed machines.

Comparisons are made only on solution accuracies and time each system takes to achieve such

accuracies. No comparisons are made between iteration numbers, because it naturally takes less

iteration for optimization without intelligence since the optimization is always carried on the exact

value retuned by real simulation. Optimization with intelligence can potentially take a detour in

searching, but the time saved from getting function values through retrieval and estimation is worth

such a detour.

Problem set includes typical nonlinear problems such as Rosenbrock, Beale, Powell, Helix,

Cube, Box etc. Testing results on other problems are not listed because comparison results are

extremely similar to those conducted on the Rosenbrock problem. Real Motorola simulation services

are used too. More will be included later. The initial benchmarking results are quite encouraging.

First of all without any intelligence, distributed optimization service will simply not be able to

finish if simulation engines crash. The Intelligent optimization system can sustain up to 50%

simulation errors, that is one out every two times a simulation engine will crash. Though the time it

takes to finish optimization (naturally) increases with errors, but most of the time it increases at a

slower rate than the errors, especially when the number of errors is small around 1%.

With simulations whose function evaluations are quick, there is no advantage of using intelligent

optimization, due to all the overhead needed to getting a simple function value. But with longer

service delay (that is, when simulations take more time), intelligent optimization system turns out to

be saving more time with about the same accuracies achieved. Usually accuracies achieved are always

about the same, because standards used for termination in the solver are not changed at all. In practice,

a client has the choice to set optimization system to using intelligence or not. Most clients have a good

idea about the behaviors of the simulation services. If the simulations are instant and robust, they are

suggested to set the intelligence off.

NORTHWESTERN UNIVERSITY MA

27

Figure 3-4: Benchmarking between distributed optimization with and without intelligence

NORTHWESTERN UNIVERSITY MA

28

3.2 AMPL and Network Enabled Optimization System (NEOS)

3.2.1 Standalone AMPL Architecture

AMPL is a modeling language for mathematical programming. For detailed description, refer to

the book in [27]. Figure 3-5 shows the standalone optimization modeling system architecture of

AMPL interacting with a locally connected solver.

Figure 3-5: Standalone AMPL-Solver Architecture

 A user begins in a command environment. After starting AMPL, the first thing the user sees is

AMPL’s prompt:

 ampl:

The user communicates with AMPL in two ways: by typing commands, and by setting options that

influence subsequent commands. In Figure 3-5, the user invokes a previously constructed model,

which usually consist of a “.mod” file and a “.dat” file. The “.mod” file is AMPL’s abstract algebraic

representation of an optimization problem. The “.dat” file contains specific values of data that define a

particular problem. AMPL then combines the “.mod” and “.dat” file and converts them into a lower

level optimization instance representation in the AMPL “.nl” format. The “.nl” instance file is then

sent to a solver for optimization through the AMPL-Solver Driver, which is basically an interface

between the AMPL modeling language and the hooked solver.

For nonlinear objectives and constraints, the AMPL-Solver Driver has at its back corresponding

expression trees for calculating function values. Throughout optimization iterations, solver asks for

function (fx) values from the expression trees by providing the current variable (x) values, all through

the AMPL-Solver Driver.

NORTHWESTERN UNIVERSITY MA

29

Finally optimization results are sent back by solvers, which again go through the AMPL-Solver

Driver interface, and get converted into the AMPL “.sol” format to be finally interpreted and

presented by the AMPL modeling environment.

3.2.2 AMPL-NEOS Architecture

The NEOS Server at Argonne National Laboratory currently provides nearly 70 optimization

solvers through some types of networking interfaces, including e-mail, World Wide Web, and socket-

based graphical user interfaces. Though the server’s location is fixed, optimization solvers can be on

any workstation on the Internet that is registered with NEOS through a standard procedure [12].

The Kestrel interface augments the interfaces currently available on NEOS by providing a

mechanism that enables remote optimization solution from within the AMPL modeling environment.

For detailed description, refer to the paper in [13]. As a result, the locally running AMPL modeling

system can have access to a wide variety of the remote NEOS solvers. Users don’t notice significant

differences between local and remote accesses to solvers. Moreover, optimization results are provided

within the AMPL modeling language so that users do not need to parse the text file to use the

generated answers. The introduction of the Kestrel interface does not require significant changes to

the NEOS server either.

Figure 3-6: AMPL-NEOS Architecture through Kestrel

 In terms of architecture, there are no major differences between the standalone AMPL and the

AMPL-NEOS system shown in Figure 3-6. They are essentially the same at the two ends of the

optimization process, that is, the command environment invocation and the solver-driver interaction.

The AMPL-NEOS system adds a Kestrel client and a Kestrel server between the AMPL modeling

environment and the NEOS server and connects the two Kestrel interfaces with a CORBA

(http://www.corba.org) interconnection. The “.nl” and “.sol” file are transmitted via the Kestrel

http://www.corba.org/

NORTHWESTERN UNIVERSITY MA

30

interfaces onto the Internet through the NEOS server to and from the registered solver in Figure 3-6

rather than locally on the same operating systems in Figure 3-5. As will be seen in §6.2, the seemingly

complex optimization system is just an example of our general design of decentralized distributed

optimization architecture.

3.2.3 AMPL-NEOS Optimization Problem Representation Issues

The large number of optimization types serves as a barrier as well as a motivation toward input

format standardization. As a matter of fact, neither AMPL nor NEOS precludes any text or binary file

format to be passed to a solver. For example, if there are N solvers on NEOS, then N different drivers

are required to be implemented by the AMPL developers for total compatibility. There several

algebraic modeling languages supported by NEOS. Suppose there are M modeling languages and N

solvers, then M × N drivers are required for complete interoperability over NEOS.

Even a cursory look at the NEOS Server’s list of solvers (Figure 3-7) reveals the babble of input

formats recognized by current optimization software. There are about 10 different low-level formats –

ones that describe problems instances – recognized by one or another solver in the NEOS lineup,

including MPS [43] formats for linear and integer programming, SMPS [2] extensions to the MPS

format for stochastic programming, SIF [10] for nonlinear programming, formats such as SDPA

specific to semidefinite programming, and DIMACS min-cost flow and other formats for network

linear programming. Other solvers recognize input programmed as functions in various languages

including FORTRAN, C, C++, and Matlab.

To the extent that there is any greater degree of standardization, it is through the use of input

written in higher-level optimization modeling languages. Although NEOS works with the GAMS

[3][6] and AMPL [26][27] languages, however, each of these supports only some of the available

solvers. An arrangement that applies AMPL solvers to GAMS models is at best a stopgap, requiring

execution of both the AMPL and GAMS compilers.

In our general and unified design and framework for distributed optimization, we propose a new

low-level format (Optimization Services Template Language – OSTL, see §7.1.1) that will be flexible

enough to represent a broad variety of the optimization problems currently handled by the NEOS

Server. Our presentation will address problems that are not application-specific, but that are as

specialized as network linear programs or as generalized as nonlinear-constrained nonlinear programs.

The adoption of such a format by solvers will make them more universally available through internet

services. The adoption of the same format by modeling languages will enable solvers to more readily

support many languages, moreover; the overall effect will be to decouple language and solver choice,

letting the user pick the best tools for any project.

NORTHWESTERN UNIVERSITY MA

31

Figure 3-7: Part of the NEOS Server’s list of solvers and problems formats

 Currently circumstances are particularly favorable for a study of this sort. It is not only that

services such as the NEOS Server demand more standardization. New principles and tools, such as

XML, described in §4.3.2, have emerged over the past few years to guide the design of standard forms

for Internet communication of all kinds. The XML Schema described in §4.3.3, for example, can be

used to enforce a standard for optimization and can grow in a well-defined way to accommodate new

NORTHWESTERN UNIVERSITY MA

32

problems types. This contrasts with the current situation, where for example parsers for the MPS

Standard [43] vary in details between implementations, interpreters of the SMPS standard [2] are even

more varied, and no proposal for nonlinear extensions (see, for instance [35]) has caught on at all. The

proposed optimized service representation consisting of Optimization Services Template Language

(OSTL, §7.1.1), Optimization Services Result Language (OSSL, §7.1.2) Optimization Services

Option Language (OSOL, §7.1.3), Optimization Services Simulation Language (OSSL, §7.1.4) and

Optimization Services Analysis Language (OSAL, §7.1.5), undertake an ambitious project to design a

standard representation that addresses all of the problems types supported through the NEOS Server,

with sufficient flexibility to be extended to new types. These Optimization Services representation

standards can provide diverse higher-level modeling languages with a standard way of reaching

solvers.

 This work is also complementary to the design of OSI, a standard procedural interface to solvers

currently being implemented under the auspices of the COIN-OR project [36]. OSI provides a way of

calling optimizers directly from applications, whereas our standard is to be a representation of the

content of optimization problem instances, which could be communicated to solvers in a variety of

ways. We intend to use COIN-OR to publicize our work on this project, to attract additional

collaborators and reviewers, and to distribute the interface library for our XML-based standard.

3.2.4 AMPL-NEOS Optimization Communication Issues

Solving large optimization problems may require computational power far beyond regular

desktop workstations can offer. Due to increasing performance of computing and networking power,

typical users now have access to more resources than ever before. When the NEOS project was begun

in 1995, the Web was just beginning to come into widespread use. At first the NEOS supported only

low-level file formats and FORTRAN programs, and input only via e-mail; successive enhancements

provided the much more powerful and convenient communication options available today. To ensure

reliability of the Server, this work used early and relatively mature standards, such as web forms,

TCP/IP sockets for the NEOS Submission Tool (see http://www-neos.mcs.anl.gov/neos/server-

submit.html) and CORBA for the Kestrel interface [13] (see also http://www-

neos.mcs.anl.gov/neos/kestrel.html). Nowadays, a user can typically submit an optimization problem

to NEOS via any of the above-mentioned interfaces. NEOS Server then locates the specified solver in

its data bank and schedules the user’s entire data on a remote computation resource that is currently

available and equipped to process jobs of the given type. Registered solver providers must provide

both software and hardware. Solver administrators have to write implementations to check data

consistency, solve optimization and return appropriate results. The NEOS Communication Package –

a Perl application, is provided to facilitate communications between NEOS Server and solver

computers.

http://www-neos.mcs.anl.gov/neos/server-submit.html
http://www-neos.mcs.anl.gov/neos/server-submit.html
http://www-neos.mcs.anl.gov/neos/kestrel.html
http://www-neos.mcs.anl.gov/neos/kestrel.html

NORTHWESTERN UNIVERSITY MA

33

Still, the current NEOS Server only begins to address the communication difficulties of large-

scale optimization with respect to the combinatorial effect of the plethora of solver types, interface

choices, scheduling, benchmarking, and connection to modeling languages and services that calculate

function values. The Server has evolved along with the Web and the Internet, moreover, it is limited

to some degrees by early design decisions and showing a so-called “second-system effect.”

We are now seeing a new generation of standards that are designed to make Web Services (see

§4.3.5) more flexible in design and easier to build and maintain. With tools like XML (see §4.3.2),

SOAP (see §4.3.5), WSDL (see §4.3.6), WSIL (see §4.3.7), UDDI (see §4.3.8) and OGSA (see

§4.3.9), we can think about a more general and flexible Optimization Services environment for

developers and researchers to make their models, solvers and simulations available and easily interact

with each other on the Internet.

NORTHWESTERN UNIVERSITY MA

34

4 SETTINGS FOR THE DISTRIBUTED OPTIMIZATION DESIGN
AND FRAMEWORK

4.1 A General Picture – The Future of Computing

Figure 4-1 shows a likely future of computing where semantic Web Services and software agents

interact with each other. A user, or maybe more appropriately a “consumer” plugs his computer into a

so-called “computing socket” or may be a wireless access point, which is presumably next to the

electrical and phone outlets. Computing then is solely viewed as part of the daily utilities that are

ubiquitously available. The corresponding utility or power company is the consumer’s application

service provider that rents computing power and resources and charges with a monthly bill. As soon

as the consumer starts his computer, a network connection is instantly established. Software agents

will help find where the consumer’s requested services are, automatically, based on the request time,

the computing socket location, and the consumer’s own needs. The software agents are themselves

software services. The consumer is not aware of the existence of these agents. “Computing power

companies” keep registries of these agents and contact them on behalf of the consumer. The consumer

does not need to know which computer or grid of computers his requested services are finally run, just

as he does not need to know where his electric power is generated or where the water flows in from.

To locate services, software agents usually coordinate with each other and/or with Universal

Description, Discovery and Integration (UDDI, §4.3.8) that are either general registries which keep

information of all kinds of Web Services or specialized registries like the NEOS Registry (see §6.4)

that only serves Optimization Services (see §5) Facilities like Condor [18][40] will also help in

finding computers to provide idle computing power.

Admittedly most of these tasks could be achieved by an arrangement of manual labor and

customized software tools using existing technologies, although it would be an enormous human

effort – think of the early Yahoo search engine for web pages with human categorization). Listed

below are the major components that are used to achieve the tasks described in the above scenario,

some mature enough to be commercialized, whereas others still in research phase:

• Peer to Peer (P2P) [44]

• Software Agents [1][19]

• Ontologies and the Semantic Web [8]

• Grid Computing [21]

• Embedded Web Services [7]

Although the argument is true that many of the technologies already existed, it is the combination

of distributed system embedded intelligence, smooth coordination of all the tasks, and effortless

human involvement in the whole integration process that makes these scenarios significant. In this

NORTHWESTERN UNIVERSITY MA

35

case, think of, as a first non-standard step, the Google search engine for web pages [5], with its

automated web crawlers and state-of-the-art file storage design with inverse indexing technologies.

Workstation
Workstation

Workstation

WorkstationWorkstation

Workstation
Workstation

Workstation

WorkstationWorkstation
Intelligent

Agent

Intelligent
Agent

Intelligent
Agent

Server

User Laptop
User

Laptop

UDDI

GRID

Web Page and Service Server

USERUSER Computing
Socket

NEOS

Computing
Socket

Future of
Computing

Soap/XML

WSDL

IDLE COMPUTER

IDLE COMPUTER

IDLE COMPUTER

Figure 4-1: A general picture – The Future of Computing

NORTHWESTERN UNIVERSITY MA

36

4.2 Our Positioning – The Hierarchy of Operations Research (OR)

Ideally, researchers in all areas that involve computing or have a need for computing, should

have a similar vision as illustrated in §4.1, thus from now on working toward or helping to achieve the

same goal ultimately. Researchers in the area of operations research especially fit in this category as

illustrated in Figure 4-2. Operations research, viewed by many as a branch of applied mathematics,

naturally lies on the foundations of mathematics and computing theory, on which basic tools like

statistics, optimization and simulation are built. We apply these tools to model many of the industrial

engineering and management sciences areas that concern design, analysis and implementation of any

system in order to improve quality and productivity. The areas can be in any sector of the economy –

manufacturing, distribution, finance, marketing etc.

The highest level in the hierarchy, which concerns modeling, is the part that mostly interfaces

with regular consumers who use models for daily analysis. Our project’s positioning is in the middle

of the Operations Research hierarchy, which is concerned with things like communication

infrastructures, modeling languages and systems. It is an interface part that bridges OR modeling with

the basic OR tools. When implemented smoothly, it is the part that does not need to be known or

noticed by modelers or “consumers” in a daily sense. When planned generally, it is the part that can

fit in the general picture of the future of computing (see §4.1), thus contributing, as well as itself

benefiting from, the largest possible synergy generated within the computing world. When designed

simply enough (without sacrifice of power), it is the part that can be quickly adopted by both the

modelers and the tool builders, thus facilitating a healthier environment for OR development as a

whole. Our general and unified design and framework for distributed optimization takes account of

these goals.

NORTHWESTERN UNIVERSITY MA

37

Figure 4-2: A rough sketch of operations research and this proposal’s positioning within this
hierarchy

NORTHWESTERN UNIVERSITY MA

38

4.3 Technologies, Terminologies, Current States of Optimization Services
Related Research

This proposal uses some knowledge that does not necessarily pertain to the field

Operations Research. This necessitates a section devoted to a general introduction to related

research, and clarifications of certain concepts and terminologies that can sometimes cause confusion.

4.3.1 Parallel/Distributed/Grid Computing

There are many definitions attempted to make distinctions between the three. In short, parallel

computing is about a process or an algorithm to parallelize a program; distributed computing is more

about building a computing architecture; whereas grid computing is to provide the underneath

environment or mechanism to facilitate parallel and distributed computing. Below are three

definitions that I think should be clear enough to set the differences:

• Parallel Computing

“Process by which a problem is solved using multiple resources working concurrently and

collaboratively.” [Class Notes on Parallel Computing, ECE Department, Northwestern University, P.

Banerjee]

• Distributed Computing

“Computing on networked computers which is deeply concerned with problems such as

reliability, security, and heterogeneity that are generally regarded as tangential in parallel computing.”

[Designing and Building Parallel Programs [20], I. Foster]

• Grid Computing

“An ambitious and exciting global effort to develop an environment in which individual users can

access computers, databases and experimental facilities simply and transparently, without having to

consider where those facilities are located.” [RealityGrid, Engineering & Physical Sciences Research

Council, UK 2001]

Our project more fits in the sphere of distributed computing, which is “deeply concerned with”

“heterogeneity”. It does, however, also leverage on the “environment” provided by Grid Computing,

as well as Web Services, which we will talk about more in the following sections.

4.3.2 XML

XML stands for eXtensible Markup Language. It is a subset of Standard Generalized

Markup Language (SGML) constituting a particular text markup language for representation

and interchange of structured data. For a quick reference, see [47]. For a complete reference,

see [56]. SGML is a standard for how to specify a document markup language or tag set.

HTML is another example of SGML.

NORTHWESTERN UNIVERSITY MA

39

 Forms based on XML, in particular, are being used for a wide variety of purposes, and we

propose to investigate their application for communicating instances of optimization problems. An

XML representation consists of data delimited by <tags>, much like an html representation of the

content of a web page. New collections of XML tags can be defined for any specialized purpose,

however, by specifying a schema (see §4.3.3). One perceived disadvantage of XML is its verbosity –

the considerable file space taken up by tags – but in fact the tags only increase file size by a constant

factor, which can be considerably reduced by use of optional alternatives to an ASCII representation.

 An example of XML is given in Figure 4-3, expressed in MathML [46][58], a dialect of XML

that is of particular interest in this paper. A dialect is basically an implementation of domain-specific

XML notation governed by a standard schema designed to support languages such as chemical

markup (CML), mathematical markup (MathML) and so forth. We will use MathML for simple

nonlinear function representation in optimization problems. We will also introduce many

Optimization Services (OS, §5) related dialects in the later sections, including most notably,

Optimization Services Template Language (OSTL, §7.1.1), Optimization Services Result Languages

(OSRL, §7.1.2) and Optimization Services Option Language (OSOL, §7.1.3).

Figure 4-3: Expression (in MathML – a dialect of XML 2
21)XX +

The example shown in Figure 4-3 expresses in XML. The root element is <math>,

which is ended with a corresponding </math> element, as should any element in an XML document.

2
21)(XX +

NORTHWESTERN UNIVERSITY MA

40

<math> has an XML namespace tagged in the front and separated with a “:”. Namespaces (see

§4.3.4) are used to qualify the elements and avoid potential naming conflicts. Any element may also

have some attributes. In the case of the <math> element, it has some xmlns attributes to declare

namespace abbreviations. Between and can be contained other elements and in this

example just one, namely the <msup> element. Under <msup> are again contained two elements:

<mfenced> to contain the base expression 21 XX + , and <mn> to contain the exponent number 2.

4.3.3 XML Schema

XML Schema is a database-inspired method for specifying constraints on XML documents, itself

using an XML-based language. There are other popular XML specification methods, including DTD,

standing for Document Type Definition. The reasons we do not choose to use DTD are:

1. It is not as expressive as XML Schema.

2. It is not expressed in XML.

3. It is not a WC3 recommendation.

4. Most importantly it is not supported in SOAP (see §4.3.5), which our Optimization Services

(OS, §5) heavily leverages on.

For a complete reference on XML Schema, see [62]. Given an XML Schema, standard tools are

available for parsing files that correspond to it, and for building libraries to display and manipulate the

contents of these files [53][66]. For each Optimization Services instance language that we introduce,

we will specify representation rules in XML Schema.

Figure 4-4: MathML Schema specifying constraints on tag <msup>

Figure 4-4 shows a section of the MathML Schema, specifying constraints on the <msup> tag.

Basically it is saying that the element <msup> has to follow a predefined “msup.type”, and any

“msup.type” should contain exactly 2 elements, one indicating a base, while the other indicating a

superscript. Both the base and superscript elements have to be a group defined in the Presentation-

NORTHWESTERN UNIVERSITY MA

41

expr.class, which is not shown here. In our MathML example in Figure 4-3, the group is

<mfenced>…</mfenced> for the base and <mn>…</mn> for the superscript. Any element can have

attributes. In our MathML example, element <msup> does not have any attributes. But if it does, it

can take any attributes specified in the attributeGroup of msup.aatlist.

4.3.4 Other XML Technologies

In this section, we give a list of other XML technologies used in this project and their

corresponding references.

• XML Authoring tools assist in editing XML documents or validating XML syntaxes. XML

documents can be XML Schemas as well as regular XML dialects.

• XML Transformation tools assist in transforming XML into something that can be displayed in

a browser or other rendering device. XSL [63], and its associated language XSLT [64], is the

main tool here. XSLT stands for Extensible Stylesheet Language Transformation, is itself an

XML based declarative (as versus imperative languages such as C/C++) programming language

to transform XML files into other HTML files, or XML files or any other plain text files. Figure

4-5 shows how the combination of XML and XSLT can serve as at least the same purpose as

HTML. XSLT can be used for example to display optimization results formatted in Optimization

Services Result Language (OSRL, §7.1.2).

• XML Parsing Models include mainly Document Object Model (DOM) [54] and Simple API

for XML (SAX) [42]. Both are language APIs that can be used to translate XML documents to

some format suitable for use by computer programs. DOM is a set of traversal interfaces that can

decompose the XML documents into a hierarchal tree of generic objects or nodes. SAX is a set of

streaming interfaces that can decompose the XML documents into a sequence of predefined

method calls. To construct an XML document, DOM has to be used. To parse an XML document,

both DOM and SAX can be used, though SAX is less memory intensive. DOM is mainly used by

algebraic modeling systems like AMPL to construct low level optimization problem instances and

by solvers to construct low level optimization results. SAX is mainly used by solvers to parse low

level optimization problem instances and by algebraic modeling systems to parse low level

optimization results.

• XPath [59] is a declarative language used to identify subsets (nodes and fragments) of an XML

document. It is used in XSLT (for pattern matching), XPointer (for addressing), XQuery (for

selection and iteration) and XML Schema (for uniqueness and scope description).

• XLink [57] and XPointer [60] are used to link and reference information within an XML. XLink

is a generalization of the HTML link concept, though it is more at a higher abstraction level

intended for general XML – not just hypertext. Thus it has more expressive power, such as

multiple destinations, special behaviors, and linkbases. XPointer is sort of an extension to XPath

NORTHWESTERN UNIVERSITY MA

42

to support linking. It specifies connections between XPath expressions and Uniform Resource

Identifiers (URIs or more plainly, globally unique addresses). XPath, XLink and XPointer are

especially when some of the function evaluations in optimization problems can only be obtained

from a remote Web Service.

• XQuery [61] is a query language for retrieving data items from an XML document. XQuery is to

XML what SQL is to relational databases. As of December 2003, it is still in progress under the

auspices of the W3C’s XML Query working group. It may turn out to be useful in designing our

Optimization Services Query Language (OSQL, §7.3.4).

Figure 4-5: An illustration of how the combination of XML and XSLT Stylesheet can serve as the
same purpose of HTML

• XML Namespace [55] provides a simple method for qualifying element and attribute names used

XML documents by associating them with namespaces identified by URI references. It is mainly

used to avoid naming potential conflict of XML tags. Important namespaces that need to be

standardized include “OSCL” and “OSDL” for qualifying the element <definition> in our

Optimization Services Client Language (OSCL §7.2.1) and Optimization Services Definition

Language (OSDL §7.2.2) and “OSIL” for qualifying the element <inspection> in our

Optimization Services Inspection Language (OSIL §7.3.1).

NORTHWESTERN UNIVERSITY MA

43

4.3.5 Web Services and Simple Object Access Protocol (SOAP)

W3C’s official definition of Web Services [65] is as follows as of August 2003:

“A Web Service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web Service in a manner prescribed by

its description using SOAP-messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.”

More plainly Web Services are platform and implementation independent components that can

be described using a service description language, published to a registry of services, discovered

through a standard mechanism (at runtime or design time), invoked through a declared API, usually

over a network and composed with other services.

“Platform and implementation independent” means a client can not tell what language,

operating system, or computer type was used. It is achieved through the Simple Object Access

Protocol (SOAP, see this section below).

“Described” means that a Web Service must describe itself, mainly what requests can be made,

what the arguments are and what transport it uses. It is achieved through the protocol of Web Services

Description Language (WSDL, §4.3.6).

“Published” means that a Web Service must tell a registry service where it is located (like

"yellow pages"). It is achieved through the protocol of Web Services Inspection Language (WSIL,

§4.3.7) and Universal Description, Discovery and Integration (UDDI §4.3.8).

“Discovered” means that a potential client can find it in a registry service. It is also achieved

through the protocol of WSIL and UDDI.

“Invoked” means that the arguments and return types are known. It is achieved through the

protocol of SOAP.

“Composed” means that a service can also be a client. It is also achieved through the protocol of

SOAP.

The World Wide Web Consortium (W3C) released its first recommended version SOAP 1.2 on

June 24 2003. SOAP Version 1.2 is a relatively simple powerful XML-based protocol intended for

exchanging structured information in a decentralized, distributed environment such as the Web. A

W3C Recommendation is the equivalent of a Web standard, indicating that this W3C-developed

specification is stable, contributes to Web interoperability, and has been reviewed by the W3C

Membership, who favor its adoption by industry.

SOAP allows calls to remote objects’ methods and access to remote objects’ data using standard

Web Services, the standard HTTP protocol for those services, and XML to describe the call. SOAP is

intended to serve as a more general and flexible successor to DCOM and CORBA. Figure 4-6 gives

NORTHWESTERN UNIVERSITY MA

44

an illustration from architecture view, protocol view, SOAP envelope structure view and

HTTP/SOAP message view.

In the architecture view, a user constructs an application in any language (e.g. Visual Basic). The

purpose of the application is to call, as a client, a remote application or Web Service on the network,

again written in any language (e.g. Java). The client’s VB structure is serialized (that is transformed

from binary to ASCII) through a SOAP client and into a SOAP message. SOAP message is then

transmitted via network to the remote application service. At the remote end, the SOAP message is

deserialized from its ASCII XML form into a binary Java structure, before the application service

executes the request call. Response is returned in a same way.

Figure 4-6: SOAP illustration from high to low level

In the network view protocol, all the information needed for the client call is stored in a SOAP

envelope. SOAP envelope is usually packed inside an HTTP protocol. From that point on, the HTTP

packet is transmitted over a TCP/IP transport the same way that an HTTP request for a web page is

transmitted. The only difference is that a request for a web page usually contains HTTP content such

as GET or POST methods for an HTML document, whereas a request for a Web Service always

contains a SOAP envelope.

NORTHWESTERN UNIVERSITY MA

45

A SOAP envelope contains two sections: SOAP Header and SOAP Body. SOAP Header mainly

has some administrative information to complete a call. SOAP body contains the major request and

response information, for example call methods and arguments. SOAP Body also contains a

subsection of SOAP Fault, which contains exception error returned by the called Web Service. As

shown in the actual message part of Figure 4-6, the realization of SOAP Envelope, Header, Body and

Fault is purely through XML representation. This is one major difference between SOAP and all other

major networking protocols and may start a standard for newly developed network protocols.

All our Optimization Services networking mechanism is based on SOAP.

4.3.6 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) [65] is another XML document type that defines

the XML tags to be used in accessing a Web Service. But, for example, in case where a user knows

exactly where an Optimization Service is and how the Optimization Service should be invoked,

WSDL is optional. WSDL helps significantly in registering, discovering and automation of Web

Services. Links to WSDL descriptions can be given through Universal Discovery and Integration

(UDDI §4.3.8) listings.

 Two types of information in WSDL are specified. One is that about interface semantics and the

other administrative details of a call to a Web Service. Interface semantics includes elements of

portType (equivalent to a program interface), operation (equivalent to a method signature/prototype),

message (equivalent to input and output) and types (equivalent to data types). Administrative details

includes elements of binding (specifies transport and encoding protocols), port (specifies network

addresses), service (specifies a collection of ports), and definitions (root element of WSDL that

contains all the above elements). In our Optimization Services Description Language (§7.2.2), we will

enforce a standard on call interface and arguments, fix certain values by default and suggest

recommendations that are most suitable for Optimization Services, thus simplifying the entire

mechanism.

Figure 4-7 shows an abbreviated WSDL definition. Illustrated elements about method, interface,

protocol and address are of most relevance to our design of an Optimization Services framework. The

entire program, called “SimpleSolver” in this example contains (in <portType>) only one operation

(or function, method, etc.): “favoriteSolver”, which takes a “favoriteSolverRequest” as an input and

“favoriteSolverResponse” as an output. Both “favoriteSolverRequest” and

“favoriteSolverResponse” are defined in their corresponding <message> element. For example

“favoriteSolverRequest” has only one part (or argument) in it, which has a name “question” and is

of type “string.” The <protocol> element specifies that the SOAP call is to be a remote procedure

call (rpc, a request and response model) and is to be transported over HTTP. The <Service> element

specifies an address (in <port>) which tells where the actual Web Service is.

NORTHWESTERN UNIVERSITY MA

46

Figure 4-7: An abbreviated WSDL document

4.3.7 Web Services Inspection Language (WSIL)

After a Web Service is deployed, potential users must have a way to find and use that service

For web pages/sites, search engines like Google and Yahoo do this function, though search

information is of non-standard form. Web Services Inspection Language (WSIL), as well as Universal

Description, Discovery, and Inspection (UDDI) in the next section handle the situations for Web

Services.

UDDI is a specification for an online registry of Web Services. WSIL is similar in scope to

UDDI, but intended to be complementary rather than competitive. WSIL can be used to point to

UDDI repositories. Service description information can be distributed to any location using a simple

extensible XML document format. Compared with UDDI, it is more decentralized, more lightweight

and of lower functionality. WSIL works under the assumption that you are already familiar with the

service provider. Both WSIL and UDDI rely on other service description mechanisms such as WSDL

and they are located using existing Web infrastructure. WSIL avoids one of the current difficulties

with UDDI: entries in UDDI registries are not moderated and a user can not be sure that a service

NORTHWESTERN UNIVERSITY MA

47

actually belongs to the service provider who advertises it within the UDDI registry. Figure 4-8 shows

an abbreviated example of a WSIL document. Most information is self-explanatory in this example. It

contains an abstract about the Web Service, a service section detailing the description of the service,

and a link to other related Web Services. Our Optimization Services Inspection Language (OSIL

§7.3.1) is essentially a WSIL document.

Figure 4-8: An abbreviated WSIL document

4.3.8 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration (UDDI) [52] is a specification for an online

registry of Web Services. Providers can list their services in this registry, and users can seek out

services by searching the registry in a standard way.

Compared with WSIL, it is more heavyweight, and is intended to be maintained by centralized

registries. Unlike WSIL, it also concerns itself with business entity information. If WSIL is

comparable to business cards, then UDDI is more like yellow pages, under which multiple

"businesses” are grouped, listed along with goods or services offered and business contact

information. UDDI usually requires infrastructure to be deployed with substantial overhead and costs.

Two main parts of functions are provided. Vendors register data via SOAP. Users discover the

services via SOAP query requests. NEOS or other designated Optimization Services will, in the long

run, evolve into a registry based on the UDDI model containing many OSIL documents.

4.3.9 Open Grid Services Architecture (OGSA)

NORTHWESTERN UNIVERSITY MA

48

The Globus Alliance [22] is building fundamental grid computing technologies. By its definition,

“grids are persistent environments that enable software applications to integrate instruments, displays,

computational and information resources that are managed by diverse organizations in widespread

locations.” A major research effort of Globus Alliance is its Globus Project on developing the Globus

Toolkit, which is an open source software toolkit to build grids. A growing number of projects and

companies are using the Globus Toolkit which has become a de facto standard for major protocols &

services, although at the present time its popularity is overshadowed by the recent success of Web

Services championed by major research institutes and companies.

Globus Alliance’s Open Grid Services Architecture (OGSA) [23] represents an evolution

towards a Grid system architecture based on Web Services concepts, to take advantage of Web

Services’ standard interface definition mechanisms, multiple protocol bindings, multiple

implementations, local/remote transparency, etc. All services also have to adhere to specified Grid

Service interfaces and behaviors. At this point, OGSA is evolving quickly, currently at its first

version, but far from complete or perfect.

Compared with Web Services, OGSA is (potentially) strong in the following areas

• Authentication and authorization

• Global naming and references

• Lifetime management

• Resource registration and discovery

• Resource monitoring, upgradeability, concurrency, and manageability

• Reliable remote service invocation and notification

• High-performance remote data access

OGSA’s major disadvantages lie in its protocol deficiencies; it is currently implemented on a

heterogeneous basis of HTTP, LDAP, FTP, etc. It also lacks (though actively intends to fix) standard

means of invocation, notification, error propagation, authorization, termination and other

functionalities. Little work has been done on total system properties including dependability, end-to-

end Quality of Service (QoS), and reasoning about system properties.

 One major difference between Web Services and Grid Services is that Web Services

addresses discovery and invocation of persistent services while Grid Services also supports

transient service instances.

 Web Services with Grid is a good idea. It is becoming a topic in the major super

computing conferences. It should not be a question of who wins. Both technologies will

provide things that are valuable toward our development of Optimization Services. As a

matter of fact, many of the design issues in our Optimization Services are based on the fact

that components from both technologies can be leveraged upon their maturities. We hope that

the two technologies will eventually converge with no distinction.

NORTHWESTERN UNIVERSITY MA

49

5 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR
DISTRIBUTED OPTIMIZATION (PART I – PROPOSING
OPTIMIZATION SERVICES)

Optimization Services (temporary definition, abbreviated as OS) are SOAP based Web Services

(potentially also leveraging on grid computing technologies) with specified interfaces and behaviors

under the general framework of distributed optimization, including the following OSXL’s:

for representing optimization instances

• Optimization Services Template Language (OSTL, §7.1.1): used to construct optimization

problems

• Optimization Services Result Language (OSRL, §7.1.2): used to construct optimization

results returned from solvers

• Optimization Services Option Language (OSOL, §7.1.3): used to construct simulation inputs

and outputs for function evaluations

• Optimization Services Simulation Language (OSSL, §7.1.4): used to set solver options

• Optimization Services Analysis Language (OSAL, §7.1.5): used to provide meta-knowledge

of optimization problems though optimization analyzers

for controlling optimization accesses, flows and operations

• Optimization Services Client Language (OSCL, §7.2.1): used for solvers to call simulation

services

• Optimization Services Description Language (OSDL, §7.2.2): used for modelers to invoke

solvers

• Optimization Services Flow Language (OSFL, §7.2.3): used to coordinate Optimization

Services components

• Optimization Services Endpoint Language (OSEL, §7.2.4): used to manage non-functional

characteristics of Optimization Services

and for discovering and inspecting Optimization Services

• Optimization Services Inspection Language (OSIL, §7.3.1): used to describe any

Optimization Services components, but mainly solvers

• Optimization Services Process Language (OSPL, §7.3.2): used to describe run time

information of solvers

• Optimization Services Benchmark Language (OSBL, §7.3.3): used for an authoritative

benchmarker to evaluate existing solvers

• Optimization Services Query Language (OSQL, §7.3.4) :used to construct queries to

discover Optimization Services

.

NORTHWESTERN UNIVERSITY MA

50

 Such an arrangement in the Optimization Services definition has the potential to substantially

decentralize the registry of solver characteristics currently maintained by the NEOS Server at

Argonne National Laboratory. The remaining work of the centralized NEOS Server would be focused

on activities not specific to individual solvers, such as analyzing problems and recommending solvers

and on providing multi-solver services such as benchmarking and translation (as with the current

GAMS-to-AMPL modeling language translator).

 This vision of a next-generation NEOS Server leaves open the question of how optimization

“jobs” will be scheduled to run on available workstations. The current centralized scheme maintains

one queue for each solver/format combination, along with a list of the workstations on which each

solver can run. We will want to maintain this scheduling control, while at the same time making the

scheduling decisions more distributed. We will also investigate extending the power of the NEOS

scheduling schemes to take advantage of Grid Computing [21], both in making use of idle use of

computing power (as provided, for instance, by Condor [18][40]) and in supporting the use of multi-

processor optimization methods. In the case of the latter our work has especially great potential to

stimulate new applications, by saving potential users the considerable difficulty of setting up the

required hardware and networking software. Figure 5-1 shows a tree view of Optimization Services.

Figure 5-1: A tree view of Optimization Services

NORTHWESTERN UNIVERSITY MA

51

6 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR
DISTRIBUTED OPTIMIZATION (PART II – ARCHITECTURE
DESIGNS)

From our experiences in designing and developing optimization systems, we realized that in

general most optimization systems can be decomposed into five distinct optimization components –

Client, Model, Solver, Simulation and Server/Registry, whether they are distributed on a network

or “distributed” on the same operating system. The latter can be regarded as a special case in the

general distributed architecture. There are, however, two types of general design – the centralized

version and the decentralized version, as we will respectively investigate in §6.1, and §6.2. In the

centralized version, the central component is a server, whereas in the decentralized version, the central

component is more of a registry. The decentralized architecture is envisioned as the trend of the

future, while the centralized architecture is more suitable in a corporate environment, in which

companies want to take control through this central server. We will revisit Motorola’s VP Intelligent

Optimization System and Argonne’s AMPL-NEOS System under the two general architectures in

§6.1, and §6.2. The decentralized design serves as the basis for deciding the necessary pieces for our

general and unified framework for distributed optimization introduced in the following sections. The

main guiding principles for our design and framework are:

• When implemented smoothly, it does not need to be known or noticed by modelers.

• When planned generally, it fits in the general picture of the future of computing (see §4.1), thus

contributing, as well as itself benefiting from, the largest possible synergy generated within the

computing world.

• When designed simply enough (without sacrifice of power), it can be quickly adopted by both the

model builders and the algorithmic tool builders, thus facilitating a healthier environment for

operations research development as a whole.

NORTHWESTERN UNIVERSITY MA

52

6.1 The Centralized Architecture

Figure 6-1 shows the five components in our general design of centralized distributed

optimization architecture and their interactions. Dotted arrows indicate data flow. Circles indicate

components: optimization Client, optimization Model, optimization Solver, Simulation for

optimization and in the center optimization Server (in this example NEOS).

Figure 6-1: General design of centralized distributed optimization architecture

Data Flow (All Through the Central Server)

Numbers below correspond numbers in Figure 6-1.

1. Client invokes optimization Model.

2. Model establishes an optimization session with Solver. It can first set solver options and then

invoke optimization.

3. Solver, as a client, asks Simulation for function values by providing current variable and

parameter values. This is potentially a highly iterative process, thus the data flow arrow in

bold.

4. Solver sends back optimization results.

5. Model forwards back optimization results to Client.

NORTHWESTERN UNIVERSITY MA

53

Comments

Communication and representation specifications introduced later in the general and unified

framework can be used as references in this centralized design, but do not have to be enforced.

Optimization Client and Model are usually together, that is, a client locally constructs a model

and sends the model instance to a remote solver. Between optimization Model and Solver,

session should be maintained. This is because there is typically a sequence of calls between the

two. Calls made previously (e.g. setting solver options) may affect calls that follow (e.g. solving

an optimization problem). Simulation can be thought of as a set of function value calculators, be

them objective function or constraint function calculators. Simulation can return more than one

value in its result. No distinctions are set between deterministic and stochastic simulations. For

example, both values of the expected mean and variance of the mean can be returned as metrics.

Simulation may be provided within the Model sent to the Solver, like an expression tree that is

hooked to the AMPL-Solver Driver situated locally with the Solver.

NORTHWESTERN UNIVERSITY MA

54

6.2 The Decentralized Architecture

Figure 6-2 shows the five components in our general design of decentralized distributed

optimization architecture and their interactions. All the components remain the same except that the

central Server is replaced by a central Registry. This is the architecture we envision for the future. It

serves as the basis for the design and analysis of our general and unified framework for distributed

optimization.

Figure 6-2: General design of decentralized distributed optimization architecture

Data Flow (All Peer to Peer)

Numbers below correspond numbers in Figure 6-2.

1. Client discovers Optimization Services through NEOS Registry, through the protocols of

Optimization Services Inspection Language (OSIL, §7.3.1). Query can be constructed in the

format of Optimization Services Query Language (OSQL, §7.3.4). Run time information

may be obtained from Optimization Services Process Language (OSPL, §7.3.2).

NORTHWESTERN UNIVERSITY MA

55

2. Client invokes optimization Model. This invocation can be in any form or it can take

references from the protocol of Optimization Services Client Language (OSCL §7.2.1) and

provide input similar to the Optimization Services Simulation Language (OSSL §7.1.4).

3. Model establishes an optimization session with Solver, through the protocol of Optimization

Services Description Language (OSDL §7.2.2). It can first set solver options following the

format specified in the Optimization Services Option Language (OSOL, §7.1.3) and then

invoke optimization by providing an optimization problem instance following the format

specified in the Optimization Services Template Language (OSTL, §7.1.1).

4. Solver, as a client, asks Simulation for function values by providing current variable and

parameter values, through the protocol of Optimization Services Client Language (OSCL

§7.2.1). This is potentially a highly iterative process, thus the data flow arrow in bold. Both

input (variables and parameters) and output (function values or metrics) are to follow the

format specified in the Optimization Services Simulation Language (OSSL, §7.1.4).

5. Solver sends back to Model the optimization results following the format specified in the

Optimization Services Result Language (OSRL, §7.1.2).

6. Model returns optimization results to Client depending on the nature of the initial client call.

If the client call is based on a “request and response” model, then the optimization results is

sent back though the “response” part of the model. Like in 2, no restriction is specified on the

return mechanism.

7. Different components can send individual information to registry through some feedback

mechanism. For example Client can register an optimization Solver, through the protocol of

Optimization Services Inspection Language (OSIL, §7.3.1). Queries can be constructed in

the format specified in the Optimization Services Query Language (OSQL, §7.3.4). Solver

can report its current status through the protocol of Optimization Services Process Language

(OSPL, §7.3.2). {This part needs to be further investigated.}

Comments

All components are not controlled by NEOS Registry. Optimization Client and Model are

usually on the same machine. Whether there should be an optimization specific protocol

governing the communication between Client and Model is not or may never be considered.

Between optimization Model and Solver, an active session should be maintained. Session

maintenance and other generic resource management functionalities that are not optimization

specific should be leveraged upon either Web Services or Grid Services protocols. For example a

“stop” call, intended to end an optimization session, should be handled by the notification

functionality provided in the Grid Services protocol. Simulation can be thought of as a set of

function value calculators, whether they are objective function or constraint function calculators.

NORTHWESTERN UNIVERSITY MA

56

Simulation can return more than one value in its result. No distinctions are set between

deterministic and stochastic simulations. For example, both values of expected mean and

variance of the mean can be sent back from a stochastic simulation in the output section of

Optimization Services Simulation Language (OSSL, §7.1.4). Simulation may be provided

within the Model sent to the Solver, like an expression tree that is hooked to the AMPL-Solver

Driver situated locally with the Solver. The exact mechanism of invoking Simulation, is specified

in the Optimization Services Template Language (OSTL, §7.1.1).

NORTHWESTERN UNIVERSITY MA

57

6.3 Motorola VP Optimization System Revisited (Centralized
Architecture)

Figure 6-3 shows how the Motorola VP Intelligent Optimization System fits in the general design

of the centralized distributed optimization architecture.

Figure 6-3: Motorola VP Optimization system mapped under the centralized architecture

1. The remote central server maps to Server. All the information has to go through the

central server to control logins and keep track of usage statistics.

2. The client maps to Client. All clients are within the Motorola Intranet.

3. The model constructor maps to Model. In the Motorola’s VP optimization system, the

client is separate from the model constructor. Client provides necessary information to the

model constructor and the model constructor creates a model during run time.

NORTHWESTERN UNIVERSITY MA

58

4. The solver interface maps to Solver. All the other auxiliary pieces in facilitating

“intelligence” are behind the solver interface. They are system specific.

5. All the simulation engines maps to Simulation. They are not Web Services, but the VP

optimization system has its own proprietary standard in coordinating these simulations on

the network and parsing inputs and outputs.

Data flow follows exactly the process described in §6.1.

NORTHWESTERN UNIVERSITY MA

59

6.4 AMPL-NEOS Revisited (Decentralized Architecture)

Figure 6-1 shows how the AMPL-NEOS System fits in the general design of the decentralized

distributed optimization architecture.

Figure 6-1: AMPL-NEOS system mapped under the decentralized architecture

1. The NEOS Server will become the NEOS Registry, or will be replaced by other

Optimization Service Registries. It contains records of Optimization Services Inspection

Language (OSIL, §7.3.1) documents. It provides discovery and registration mechanisms.

2. The AMPL command environment maps to Client. Client can be any user on the Internet, be

it a human user or a piece of modeling software.

NORTHWESTERN UNIVERSITY MA

60

3. The AMPL model maps to Model. In the AMPL-NEOS System, Client is together with

Model in the same AMPL modeling environment. Client constructs a model and AMPL

converts it into an optimization instance and sends the instance to a remote solver.

4. The solver maps to Solver.

5. The AMPL-constructed expression trees maps to Simulation. In this case, Simulation is

located on the same machine with Solver, connected with the AMPL-Solver Driver interface.

AMPL assumes that expressions have explicit functional forms. AMPL may need to extend

its syntax functionalities to allow, for example, Simulation Web Services that do not have

closed forms.

Data flow follows exactly the process described in §6.2. One significant achievement of the

general decentralized design is that it gets rid of the AMPL Solver Driver. There is no longer a need

for such a one-to-one modeling language-solver interface, because all the components talk in

standardized languages. The AMPL “.nl” file will be replaced by Optimization Services Template

Language (OSTL, §7.1.1) and the “.sol” file will be replaced by Optimization Services Result

Language (OSRL, §7.1.2). The Kestrel interface may still exist, but its communication with remote

objects needs to follow the Optimization Services protocol, rather than CORBA.

NORTHWESTERN UNIVERSITY MA

61

7 A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR
DISTRIBUTED OPTIMIZATION (PART III – OPTIMIZATION
SERVICES FRAMEWORK)

The Optimization Services framework is based on the general design of decentralized distributed

optimization architecture discussed in §6.2. It addresses issues in communications between pairs of

the five components in the decentralized architecture. Major aspects include representing with new

XML standard forms for optimization problem instances, scheduling with new Optimization Services

standards and their use in distributed, intelligent assignment of optimization requests to resources,

categorizing with standard procedures for guiding prospective users in their choice of solvers, and

incorporation of analyzing and benchmarking information from a suite of optimization related

supporting tools into the general framework. For the sake of standardization and uniformity, the

whole framework is intentionally specified in standard 4-letter acronyms of the form OSXL, standing

for Optimization Services X Language, where “X” is to be replaced by any other defined alphabetical

letter. For a quick reference, refer to Figure 8-1. OSXL’s are grouped into 3 main categories:

Optimization Services Representation, Optimization Services Communication and Optimization

Services Inspection and Discovery.

NORTHWESTERN UNIVERSITY MA

62

7.1 Optimization Services Representation

In this section we introduce a set of low level formats for transmission between different

Optimization Services component, including Optimization Services Template Language (OSTL,

§7.1.1) for representing optimization problems, Optimization Services Result Language (OSRL

§7.1.2) for representing optimization results, Optimization Option Language (OSOL, §7.1.3) for

representing solver options, Optimization Services Simulation Language (OSSL, §7.1.4) for

representing input/output between simulation and optimization and Optimization Services Analysis

Language (OSAL, §7.1.5) for representing analysis results of an optimization problem. They can all

be regarded as dialects of XML (see §4.3.2 for definition of “XML dialect”).

Before we move on to the proposed optimization services representation languages we should

explain more about high level and low-level optimization representations. High-level optimization

representation refers to representing an optimization model, whereas low-level optimization

representation refers to representing an optimization instance. The distinction between model and

instance should be clarified. By model we mean an abstract algebraic representation of a problem. It

can be represented in a modeling language such as AMPL, GAMS, LINGO, ILOG OPL, etc., all of

which separate model from data. An optimization problem instance is generated by filling a model

with corresponding data. Examples of instance representations include MPS standard [43] for linear

programming, SMPS standard [2] for stochastic programming, the “.nl” format [32] used in AMPL,

and numerous other proprietary formats used in commercial solvers. The Motorola VP Intelligent

Optimization System also uses its own proprietary formats.

Low-level optimization representations, that is, optimization instance representations are to be

transmitted in our distributed optimization network system and our framework for this research will

be concerned only with low-level representations.

7.1.1 Optimization Services Template Language (OSTL)

Background and Purposes

Optimization Services Template Language (OSTL) is the first ambitious step toward a general

framework of optimization services representation that addresses all of the problem types supported

through the NEOS Server, with sufficient flexibility to be extended to new types. This is an

undertaking of a breadth and difficulty not undertaken previously in the area of optimization, and as a

result, OSTL may be viewed as one of the most significant parts of our research.

It’s worth mentioning the choice of the letter “T” in OSTL. Initially we used “M” for

“Modeling.” This causes misunderstanding that “OSML” is a high level optimization representation,

though it is not. Also “ML” is widely used to indicate “Markup Language” as in “XML.” Possible

NORTHWESTERN UNIVERSITY MA

63

naming conflicts with other areas can be avoided if we just take away the temptation to use the letter

“M” by forbidding it in any OSXL’s.

On the other hand, the word “Template” better indicates a unified approach toward representing

low level optimization instances. The goal of OSTL is not to introduce another totally new instance

representation format and replace all the others. Rather it is to combine and leverage on the best

practices of current instance representations, while at the same time phase out the less popular, less

powerful and nonstandard formats. For example for linear programming instances, OSTL is

potentially leveraging more on the XML based format such as FMLLP [31] than plain text based

format such as MPS [43]. One advantage of XML based formats is that additional schemas can be

included to provide optional extensions. Thus a standard for optimization can be enforced and can

grow in a well-defined way to accommodate new problem types. This contrasts with the current

situation, where for example parsers for the MPS standard vary in details between implementations,

and interpreters of the SMPS standard for stochastic programming are even more varied.

The construction of OSTL also takes into account that functions may not have a closed form.

They may be provided in a binary code or from a remote Web Service. {This part needs to be further

investigated.}

Specification Descriptions

OSML Schema is given in A.1.

Figure 7-1 shows an OSML example in its simplest form, in which it contains just one type of

representation. Within the <singleFormat> element, any standard format can be embedded depending

on the “type” attribute of the element. For example if type = “FMLLP”, an FMLLP representation can

be included. <singleFormat> can be suitable for linear programming problems.

Figure 7-1: OSML example with a single format

Figure 7-2 shows an OSML example that contains a <mixedFormat> element. <mixedFormat>

can be suitable for general mathematical programming problems, e.g. mixed integer nonlinearly

NORTHWESTERN UNIVERSITY MA

64

constrained problems with some non-closed form functions. Following is a descriptive list for the

<mixedFormat> element:

• <mixedFormat> contains three elements: <variables>, <objective>, and <constraints>.

<objective> is of singular form. It is assumed that in each optimization problem only one

objective function can exist.

• <variables> contains a collection of <variable> elements.

• Each <variable> contains an optional initial value

• Each <variable> is required to have a name attribute, whose value should be unique. In

general a name attribute is required of any variable, objective and constraint. One of the

purposes is that names are used to match with elements in other components of the

Optimization Services. If no names are specified in high level modeling, default values should

be “padded” into the low level instance representation.

• Each <variable> can optionally have a type attribute, which can only take the value of either

“integer”, “binary”, or “continuous.” By default the value is “continuous” if the attribute is

not specified.

• Each <variable> can optionally contain a lowerBound attribute and an upperBound attribute

to indicate a minimum and a maximum value that the variable can take.

• <objective> is required to have a name attribute. It contains four elements : <direction>,

<function>, <lowerBound> and <upperBound>.

• <objective> can optionally have a type attribute. The purpose is for OSML to leverage on

existing formats for expressing coefficients of linear objective function. For example, the

format can take the objective section of a full linear programming format of MPS. {This part

needs further investigation.}

• <direction> can only contain one of the two values, namely “minimize” or “maximize.”

• <function> is of functionType to be discussed below.

• <lowerBound> and <upperBound> are optional elements to specify lower value and upper

bound for the objective function.

• <constraints> can contain both a collection of <constraint> elements and <constraintSet>

elements.

• Each <constraint> is required to have a name attribute. It contains three elements:

<function>, <lowerBound> and <upperBound>, which are of exactly the same types as

those contained in the <objective> element.

• <constraintSet> is intended to express a set of linear constraints, so that coefficients can be

specified in a more compact form. It is required to have a name attribute.

• <constraintSet> can optionally have a type attribute. The purpose is for OSML to leverage

on existing formats for expressing coefficients of linear constraints. For example, the format

NORTHWESTERN UNIVERSITY MA

65

can take the constraint section of a full linear programming format of MPS. {This part needs

further investigation.}

• <function> can contain any one of the elements: <webService>, <MathML> and <binary>.

{This part needs further investigation}

• <webService> is intended for simulation or function evaluation on a remote network. It has

to have two elements, <URI> for specifying where the service is and <OSSL> for specifying

input variables and parameters for the Web Service. Specifications such as call operations and

input/output arguments are already standardized in the Optimization Services Description

Language (OSDL, §7.2.2) and therefore necessary information is kept to a minimum.

• <binary> is intended for locally attached binary executable codes. Each <binary> has to

have a language attribute to indicate what programming language the binary code is generated

from. Each <binary> also has to have a platform to indicate what computer system the binary

code is generated on. Like <webService>, it has to have two elements <URI> for specifying

where the binary code is and <OSSL> for specifying input variables and parameters for the

Web Service. Solvers don’t need to support this. Users can initially discover through the

Optimization Services Registry which solvers support the binary code they provide before

invoking the solvers. {This part needs further investigation.}

• <MathML> is to follow the MathML Schema. Only that its terms can be of any function

types described above, besides simple values and defined variables. Constructing

multidisciplinary objective function with metrics calculated from remote simulations may

become easy. Usually a multi-objective functions are of simple forms such as weighted sum

or ratio of metrics, which can be easily expressed in MathML. Metrics can be in the form of

<webService> elements, which are easy to invoke.

<OSML> can contain an optional element <OSAL> at its end. <OSAL> element contains meta-

information on the analysis of the optimization problem. It is constrained by the Optimization

Services Analysis Language (OSAL, §7.1.5) Schema.

NORTHWESTERN UNIVERSITY MA

66

Figure 7-2: OSML example with a mixed format

7.1.2 Optimization Services Result Language (OSRL)

Background and Purposes

NORTHWESTERN UNIVERSITY MA

67

Optimization Services Result Language (OSRL) is intended to represent results generated by

optimization solvers. It is a counterpart to OSTL. OSTL will be used as an input format in the “solve”

function specified in Optimization Services Description Language (OSDL, §7.2.2) whereas OSRL

will be used as an output format returned by the “solve” function. Compared with OSTL, OSRL is

more straightforward. The separation of OSRL from OSTL helps in reducing network traffics and

enhancing flexibility, among many other benefits. The standardization of OSRL may be most valuable

to the modelers for the purpose of presentation. It can also help in facilitating benchmarking as

discussed in §7.3.3.

Specification Descriptions

Figure 7-3 shows an OSRL example. Following is a descriptive list for the <OSRL> element:

• <OSRL> contains four elements: <status>, <variables>, <objective>, and <constraints>.

• <status> is to contain general information on the optimization solution, such as “unbounded”,

“solution found”, “infeasible”, etc. Types of status are to be exhausted. Naming is to be

standardized. Possible numeric coding standard for representation of status can also be

introduced. This is comparable to the standardization of the status code definitions of the

HTTP protocol. For example, in HTTP, code “404” indicates “Not Found”, meaning “The

web server has not found anything matching the Request-URI.”

• <variables> contains a collection of <variable> elements.

• <constraints> contains a collection of <constraint> elements.

• All <variable>, <objective> and <constraint> elements are required to have a name

attribute, which value is to be unique.

• All <variable>, <objective> and <constraint> elements can have two elements: <standard>

and <specific>.

• Both <standard> and <specific> contain a collection of <R> elements to contain individual

results.

• <R> elements under <standard> are standardized across solvers in terms of naming and

usage.

• Individual solvers can have solver specific <R> elements under <specific>.

• Each <R> element is required to have a name attribute and a value.

• Each <R> element can have an optional <description> element.

• <R> elements under <specific> are suggested to have a <description> element.

• Exactly what other elements are to be contained in the <R> element depends on the meaning

of each result. But it should be kept as simple as possible. {This part needs further

investigations.}

NORTHWESTERN UNIVERSITY MA

68

Figure 7-3: OSRL example

7.1.3 Optimization Services Option Language (OSOL)

Background and Purposes

Before invoking the “solve” function specified in Optimization Services Description Language

(OSDL, §7.2.2), certain solver options can be set through the “set” function also specified in OSDL.

OSOL is separate from OSTL for the simple reasoning that OSOL is solver specific whereas OSTL is

NORTHWESTERN UNIVERSITY MA

69

not. Options, especially the standard ones in OSOL can be included in Optimization Services

Inspection Language, so that user can choose solver based on the availability of options provided by

solvers. A standard set of options need to be regulated among all solvers regarding naming and usage.

Solvers can choose not to support some options. But as long as they do, they should use the standard

names with the same intended uses. There may also be possible naming conflicts between different

types of solvers. For example “maxIter” in Figure 7-4 can mean differently in linear programming

solvers and nonlinear programming solvers. But this issue may be solved with a standard XML

Namespace (see §4.3.4) introduction in Optimization Services world.

Specification Descriptions

Figure 7-4 shows an OSOL example. Following is a descriptive list for the <OSOL> element:

• <OSOL> contains two elements: <standard> and <specific>.

• Both <standard> and <specific> contain a collection of <O> elements to contain individual

options.

• <O> elements under <standard> are standardized across solvers in terms of naming and

usage.

• Individual solvers can have solver specific <O> elements under <specific>.

• Each <O> element is required to have a name attribute and a value.

• Each <O> element can have an optional <description> element.

• <O> elements under <specific> are suggested to have a <description> element.

• Exactly what other elements are to be contained in the <O> element depends on the meaning

of each option. But it should be kept as simple as possible. {This part needs further

investigations.}

NORTHWESTERN UNIVERSITY MA

70

Figure 7-4: OSOL example

7.1.4 Optimization Services Simulation Language (OSSL)

Background and Purposes

Optimization Services Simulation Language (OSSL) is used as an input/output format for a client

to call a simulation. Each simulation can be thought of as a function, be it an objective or constraint

function. It will return some values given a set of input values. No distinctions are made between

deterministic and stochastic simulations. OSSL contains an input and/or an output section. Input

section contains two types of elements: variables and parameters. From perspective of simulations,

they are both input arguments. The reasons to distinguish between two types are that parameters are

fixed, whereas variables change. Through the iterative process of optimization, parameters may only

need to be sent on the first call to the simulation, thus reducing networking traffic. Also different

simulation may choose to treat variables and parameters differently. For example, variable may be

represented more accurately for calculating derivatives. Variable names in OSSL should match

variable names in the optimization problem specified in OSTL. By separating variable and parameter

types, the variable section in OSSL may just keep a simple reference to the corresponding variable

section in the OSTL.

NORTHWESTERN UNIVERSITY MA

71

Specification Descriptions

Figure 7-5 shows an OSSL example. Following is a descriptive list for the <OSSL> element:

• <OSSL> contains two elements: <input> and <output>.

• <input> contains a collection of <param> and <var> elements indicating parameter inputs

and variable inputs.

• <output> contains a collection of <metrics> elements indicating individual simulation

results.

• All <param>, <var> and <metrics> elements are typeless.

• All <param>, <var> and <metrics> elements are required to have a name attribute and a

value.

• Usually under <Output>, there is just one <metrics> element indicating a functional

value. But a simulation can return more than one metrics. In this case, when a functional

value is requested by client and the metrics name is not specified, the first metrics is assumed

by default.

Figure 7-5: OSSL example

7.1.5 Optimization Services Analysis Language (OSAL)

Background and Purposes

Optimization Services Analysis Language (OSAL) is used to describe meta-knowledge

or extracted characteristics of an optimization problem. As shown in §7.1.1, it may be

included as a section in OSTL. OSAL is separate from OSTL, because OSAL is analyzer

specific, as well as problem specific.

NORTHWESTERN UNIVERSITY MA

72

Currently, a NEOS Server user typically begins at the website index screen, which presents a list

of 13 problem types in Figure 7-6.

 Figure 7-6: Optimization Problem Types at NEOS

 Each type links into a list of solvers and input formats (Figure 3-7). The choice among solvers is

then up to the user. To provide some assistance in the choice, each solver has a main page with links

to the NEOS Guide and to solver-specific documentation (Figure 7-7).

Although this arrangement has proved adequate for many purposes, unavoidably it burdens users

with the job of determining a problem type and choosing a solver. Requests to the NEOS help line

(neos-comments@mcs.anl.gov) suggest, in particular, that many potential users are analysts who have

the training to build a model using a high-level modeling language, but who do not have the expertise

to determine what category of model they have produced and what solvers are appropriate for it. The

previously remarked leveling off of NEOS Solver requests (Figure 2-2) may reflect the difficulty of

broadening the user base to include modeling and application domain experts who are not also

algorithm and solver experts.

A description of an optimization problem instance already contains, at least implicitly, all of the

information needed to properly categorize the problem. This principle underlies the design of

interactive problem analyzers such as ANALYZE [33] for linear problems and MProbe [9] for

nonlinear problems. Interactive analyzers rely on fairly sophisticated users, however, who are looking

to better understand their problems with the aim of making their own determination of how best to

solve them. In the context of the NEOS Server, we cannot be sure of as high a level of sophistication

on the user’s part, nor can we assume that the user is available to interact with the system online. We

want to make an automated determination of problem characteristics, and of solver choice based on

those characteristics.

mailto:neos-comments@mcs.anl.gov

NORTHWESTERN UNIVERSITY MA

73

Our general framework for distributed optimization is not intended to analyze the optimization

problems. Rather it relies on analysis work done by other researchers, and provides a framework

specified under the Optimization Services Analysis Language (OSAL) that enforces a standard XML

output format of analysis results, thus an automated discovery process can be carried under the

Optimization Services inspection and discovery framework.

Figure 7-7: An example of a NEOS Server web page for a particular solver, with links to the
NEOS Guide and to solver-specific documentation. The box at the top right provides links to the
web interface and to instructions for other interfaces.

NORTHWESTERN UNIVERSITY MA

74

 The collaborative research in this area will initially concentrate on design of a problem analyzer

for the NEOS Server and then concerns the determination of appropriate solvers given a list of

problem properties from the analyzer. At the beginning, the analyzers will likely be based on the “.nl”

format of AMPL [32], which is already recognized by two dozen varied NEOS solvers. Later as the

Optimization Services representation framework becomes finalized, the analyzers will switch to the

format specified under this framework, taking OSTL as input format and outputting in OSAL format.

Analyzers on the network are to be called under the Optimization Services communication

framework, specified by Optimization Services Client Language (OSCL §7.2.1), and possibly also

Optimization Services Flow Language (OSFL) and Optimization Services Endpoint Language

(OSEL).

Analyzers are in a special ways, solvers. Both types take OSTL as an input parameter, only that

analyzers return information in an OSAL format while solvers return information in an OSRL format.

Analyzers may also have a set of options to be set before carrying out analysis. Thus it is possible for

analyzers to leverage on the access framework specified by Optimization Services Description

Language (OSDL §7.2.2) rather than OSCL.

 Determination of appropriate solvers based on the meta-knowledge generated by analyzers, is to

be carried out under the Optimization Services inspection and discover framework specified by

Optimization Services Inspection Language (OSIL §7.3.1).

Specification Descriptions

Figure 7-8 shows an OSAL example. Following is a descriptive list for the <OSAL> element:

• <OSAL> contains two elements: <standard> and <specific>.

• Both <standard> and <specific> contain a collection of <A> elements to contain individual

analyses.

• <A> elements under <standard> are standardized across analyzers in terms of naming and

usage.

• Individual analyzers can have analyzer specific <A> elements under <specific>.

• Each <A> element is required to have a name attribute and a value.

• Each <A> element can have an optional <description> element.

• <A> elements under <specific> are suggested to have a <description> element.

• Exactly what other elements are to be contained in the <A> element depends on the meaning

of each analysis. But it should be kept as simple as possible. {This part needs further

investigations.}

NORTHWESTERN UNIVERSITY MA

75

Figure 7-8: OSAL example

NORTHWESTERN UNIVERSITY MA

76

7.2 Optimization Services Communication

As mentioned in the introduction, the primary difficulty now facing large-scale optimization has

now shifted to communication. Increasing number of optimization algorithms are implemented

increasingly well. But every algorithm has its own way of naming interfaces, operations, methods,

arguments, data types etc. These algorithms, when implemented in software, are programmed in

different languages and compiled on different platforms. Furthermore, when the software is put on the

network, thy can be located in various places, and numerous mechanisms are employed to invoke

them. Due to such an enormous heterogeneity, users become unaware of these “solvers” or do not see

the potential benefit that would justify using them. Even if the users do realize the benefit, they may

have a hard time obtaining, installing and interfacing with the solvers.

Moreover, only certain combinations of solvers and modeling systems work with each other and

modeling language support is slow to keep up with solver extensions to new problem types due to the

combination effect of interacting component.

Internet is now providing an increasingly practical way of addressing communication problems

in large-scale optimization, especially with the advent of Web Services technologies and the

establishment of the recommended SOAP 1.2. The Optimization Services Communication

Framework is motivated by the vision that the next-generation Network Enabled Optimization System

will be able to address and simplify all the above-mentioned design and implementation issues.

Unlike the Optimization Services Representation framework, languages specified under the

Optimization Services Communication framework, are not XML dialects. Rather they are a set of

specifications written in XML format based on Web Services Definition Languages (WSDL, §4.3.6).

The main purpose of these languages is to further constrain and simplify certain functionalities in a

Web Service invocation to tailor to our Optimization Services world. Communication between Model

and Solver is to follow Optimization Services Description Language (OSDL, §7.2.2). Communication

between Solver and Simulation is to follow Optimization Services Client Language (OSCL, §7.2.1).

Theoretically, there can also be communication between Client and Simulation, for example for

testing purposes. This is in essence a typical Web Services SOAP call – a user calls a service to get a

functional value. If it is to happen, it follows exactly the same communication mechanism as that

between Solver and Simulation. Communication between Client and Model is left open.

Heterogeneous invocation mechanisms will not affect the distributed optimization process as a whole.

Client and Model are usually together. Flexible ways should exist to allow customized modeling

environments to meet diverse customer needs. Distributed Client and Model communication can take

references from Optimization Services Client Language and specify input/output according to

Optimization Services Simulation Language (OSSL, §7.1.4). Communications between all

components and the central NEOS Registry are left open for now. Likely the two communications

to be specified are the one between Solver and Registry for reporting solver runtime status

NORTHWESTERN UNIVERSITY MA

77

and the one between Client and Registry for registering and querying Optimization Services. Likely

both can leverage on other specifications that are already defined, for example Optimization Services

Client Language (OSCL).

7.2.1 Optimization Services Client Language (OSCL)

Background and Purposes

Optimization Services Client Language (OSCL) is mainly intended to call a standard Web

Service used as a simulation for optimization. Put a different way, any simulation that will be called

by an optimization solver to get functional values should be interfaced as a Web Service specified by

OSCL. When a solver needs a function from a simulation, the solver is considered as a client.

Specification Descriptions

OSCL is in essence a WSDL document. It has a root element <definitions> prefixed with an

“OSCL” namespace. OSCL stipulates only one operation for client interface:

string call (string input)

Both return value and input value should be of the XML format specified in Optimization

Services Simulation Language (OSSL, §7.1.4). Default binding should be SOAP to HTTP. Other

needs of transport bindings are not seen as of immediate necessities in Optimization Services. It

should by default be a remote procedure call (rpc) based on the request and response synchronous

model. To mimic an asynchronous call, the rpc can just be launched in a separate process or thread

other than the general optimization process. Port addresses (locations of simulations) should be

specified by modelers when constructing OSTL. Figure 7-9 shows an OSCL example. As mentioned

earlier, the simple OSCL may be leveraged upon and tailored toward communications between other

components in our general decentralized design. For example, when a client queries an optimization

service from NEOS Registry, the same call can be made, only that the input and output have to be of

the format specified in Optimization Services Query Language (OSQL, §7.3.4). When a solver reports

its current run time status to NEOS Registry, the same call can still be made, only that the input and

output have to be of the format specified in Optimization Services Process Language (OSPL, §7.3.2).

But in general, between any two components, the “call” can only assume one type of pair of input and

output formats.

NORTHWESTERN UNIVERSITY MA

78

Figure 7-9: OSCL example

7.2.2 Optimization Services Description Language (OSDL)

Background and Purposes

Optimization Services Definition Language (OSDL) is used by modelers to call solvers,

including initiating the solver, setting options and solving the optimization. It is the communication

between Model and Solver in our general decentralized design of distributed optimization. Other

OSDL functionalities are possible but should only be optimization specific. Between optimization

Model and Solver, session should be maintained so that options set through a previous call should

remain in effect when a later call is initiated for optimization. Session maintenance and other generic

resource management functionalities that are not optimization specific should be leveraged upon

either Web Services or Grid Services protocols. For example a “stop” call, intended to end an

NORTHWESTERN UNIVERSITY MA

79

optimization session, should be handled by the notification functionality provided by the Grid

Services protocol.

Specification Descriptions

Like OSCL, OSDL is in essence a WSDL document. OSCL has a root element <definitions>

prefixed with an “OSDL” namespace. OSDL stipulates the following client interface:

int solver (binary bSolve) – for initiating the solver

string set (string optionInput) – for setting solver options

string solve (string problemInput) – for solving the optimization

In the “solver” operation, input value specifies whether a caller just wants to check status

(“false”) or finally needs to solve optimization (“true”). Output reports solver status. For example “-1”

can indicate solver not ready and a positive integer can indicate optimization job number for later

retrieval. Integer encodings need to be standardized. It is similar the standardization of the status code

definitions of the HTTP protocol. In practice, the “solver” operation can be used by NEOS registry to

check status of the solver.

In the “set” operation, both input and output values should be of the XML form specified in

OSOL (see 7.1.3). Option values in OSOL are set to empty or some equivalent but descriptive

encodings indicating input request cannot be resolved. Again encodings here should be standardized.

Based on the retuned status of option settings, modelers can chose to further initiate the “solve”

operation or not.

In the “solve” operation, input should be of the XML format specified in OSTL (see §7.1.1) and

output should be of the XML format specified in OSRL (see §7.1.2). Figure 7-10 shows an OSDL

example.

NORTHWESTERN UNIVERSITY MA

80

NORTHWESTERN UNIVERSITY MA

81

Figure 7-10: OSDL example

7.2.3 Optimization Services Flow Language (OSFL)

Background and Purposes

The term Optimization Services Flow Language (OSFL) is reserved for now. The exact purpose

is not clear and may well be covered with the future development of Web Services and Grid Services

technologies. It is not of an immediate design issue. Our informal intention is to organize analyzers,

solvers, optimization simulations and other Optimization Services components, orchestrate

information (e.g. input and output), sequence optimization process, resolve common variables etc.

OSFL may prove to be useful in multi-objective optimization, multi-start optimization, multi-level

optimization, multi-disciplinary optimization, Multi-task optimization, Multi-processor optimization

and Pareto-set optimization. It is likely that OSFL will highly leverage on the interfaces specified in

OSDL (see §7.2.2). It may also need to collaborate with OSPL (see §7.3.2). OSFL will probably wait

to see the success and popularity of other OSXL’s.

Specification Descriptions

At this point the term OSFL remains as a concept and is not investigated in detail.

7.2.4 Optimization Services Endpoint Language (OSEL)

Background and Purposes

NORTHWESTERN UNIVERSITY MA

82

The term Optimization Services Endpoint Language (OSEL) is reserved for now. The exact

purpose is not clear and may well be covered with the future development of Web Services and Grid

Services technologies. It is not of an immediate design issue. Our informal intention is to be

compatible with certain grid computing features. OSEL may be used to describe non-functional

characteristics of an Optimization Service, including quality of service, privacy policy, auditing

policy. The design of OSEL should not affect the core syntax of OSDL (see §7.2.2). OSEL may affect

whether the solver requestor chooses to collaborate with a particular solver provider. It can be

important for asynchronous message flows (that is not request and response model), expected

optimization time, possible duration estimates for interaction or number of acceptable retires, basis on

which solver requestor could establish time-out behavior and execute rollback or other

interaction/compensation mechanism. OSEL should mainly deal with run time information and it may

need to collaborate with OSPL (see §7.3.2).

Specification Descriptions

At this point the term OSEL remains as a concept and is not investigated in detail.

NORTHWESTERN UNIVERSITY MA

83

7.3 Optimization Services Inspection and Discovery

Traditionally, distributed optimization systems use a straightforward scheme that relies on a

database that pairs solvers with problem types they can handle. Characteristics of a problem instance,

determined from either a manual search or an analysis phase, will be used to automatically generate a

query on the database that will return a list of appropriate solvers. More advanced scheme will

consider extensions to generate lists ranked by degree of appropriateness. In a subsequent stage of

research, a more sophisticated mechanism can be developed to take account of additional that would

be used by a solver expert.

The special features of optimization serve to distinguish our research in this area from the routine

design of new Web Services. Optimization runs are characterized by their huge and hard-to-predict

consumption of processor time and memory space; only a modest increase in the instance size

generated from an integer programming model, for example, can cause the solution time to increase

from minutes to days, with a corresponding increase in the maximum size of the branch-and-bound

tree. Predictions of resource requirements must take account of problem characteristics, since for

instance a continuous linear program in hundreds of thousands of variables is generally much more

tractable than an integer or nonlinear program of the same size.

Collaborated research, as well as our research outlined in §3.1 can be used to study how

categorization of optimization problem instances together with statistics from previous run can be

used to improve upon the current scheduling decision of the NEOS server. As just one example, an

intelligent scheduler should not assign two large jobs to a single-processor machine, since they will

only become bogged down contending for resources; but a machine assigned one large job could also

take care of a series of very small jobs without noticeable degradation to performance on either kind

of job. Both the kind of size of optimization instances must be assessed in order to determine which

should be considered “large” and which “very small” for purposes of this scheduling approach. Some

of the above information can be retrieved off-line, meaning available before solving of a problem.

Offline information on solvers is mostly specified in Optimization Services Inspection Language and

Optimization Services Benchmark Language (OSBL). Offline information on optimization instances

are mostly specified in Optimization Services Analysis Language (OSAL). Other information can

only be retrieved on-line, meaning available when a solver is solving an optimization problems.

Online information is specified in Optimization Services Process Language (OSPL) and can be

conveyed in a feedback system to a registry though mechanisms like Optimization Services Client

Language (OSCL). Query formats are specified by Optimization Services Query Language (OSQL).

Again the Optimization Services inspection and discovery framework is not intended to find

good schemes to pair solvers and problems. Rather it relies on appropriate schemes found already and

provides a mechanism to facilitate the automation of inspection and discovery process of

Optimization Services through OSIL, OSPL, OSBL and OSQL.

NORTHWESTERN UNIVERSITY MA

84

7.3.1 Optimization Services Inspection Language (OSIL)

Background and Purposes

Optimization Services Inspection Language (OSIL) is mainly used to find and register

optimization solvers. It certainly includes categorization information illustrated in the NEOS

Optimization Tree (Figure 7-11). OSIL is to be treated like a “database record” in the Optimization

Services Registries, only that the record is in XML format rather than a row, and it is to be queried by

OSQL (see §7.3.4). OSIL can contain optimization information in the form of keywords, abstracts and

descriptions. It can publish functionalities including supported solver options specified in OSOL (see

§7.1.3), NEOS authoritative benchmarking (e.g. NEOS solver rankings) specified in OSBL (see

§7.3.3), OSPL (see §7.3.2) and accepted function types that it supports (see §7.1.1). OSIL can even

contain links to other valuable information, like a pointer to a compatible solver. OSIL is the part that

heavily needs authorities’ involvements, for example INFORMS, OTC/NEOS, and W3C.

Figure 7-11: NEOS Optimization Tree

Specification Descriptions

Figure 7-12 shows an OSIL example. Following is a descriptive list for the <OSAL> element:

NORTHWESTERN UNIVERSITY MA

85

Figure 7-12: OSIL example

• <OSIL:inspection> contains at least three elements including, <abstract>, <service> and

<link>.

• <abstract> is to provide a brief description and key words about the optimization solver.

• <link> contains a set of locations that the that can be linked from the current OSIL. It also

contains a set of <abstract> to describe briefly what the links are.

• <service> can contain many elements including <name>, <abstract>, <description>,

<solverCategory>, <OSOL>, <OSBL>, <OSPL>, <FunctionTypesAccepted>.

• <OSOL>, <OSBL>, <OSPL> elements are to follow the formats specified respectively in

Optimization Services Option Language, Optimization Services Benchmark Language and

Optimization Services Process Language.

NORTHWESTERN UNIVERSITY MA

86

• The exact inclusion of all elements can only be finalized on the satisfactory development of

the other OSXL’s.

7.3.2 Optimization Services Process Language (OSPL)

Background and Purposes

Optimization Services Process Language (OSPL) is mainly used to keep runtime or dynamic

online information about solvers, such as whether is solver is busy or not, and the number of

optimization jobs waiting in the solver queue. To this end, it can be regarded as a counterpart to

OSBL (see §7.3.1), which mainly keeps static solver information. It is possible, as discussed in §7.3.1,

that OSPL can be embedded in OSIL. On the other hand it may not be feasible, due to the constantly

changing nature of OSPL. Further details need to be investigated.

Specification Descriptions

Figure 7-13 shows an OSPL example. Following is a descriptive list for the <OSPL> element:

Figure 7-13: OSPL example

• <OSPL> contains two elements: <standard> and <specific>.

• Both <standard> and <specific> contain a collection of <P> elements to contain individual

online process information.

• <P> elements under <standard> are standardized across solvers in terms of naming and

usage.

NORTHWESTERN UNIVERSITY MA

87

• Individual solvers can have solver specific <P> elements under <specific>.

• Each <P> element is required to have a name attribute and a value.

• Each <P> element can have an optional <description> element.

• <P> elements under <specific> are suggested to have a <description> element.

• Exactly what other elements are to be contained in the <P> element depends on the meaning

of each process information. But it should be kept as simple as possible. {This part needs

further investigations.}

7.3.3 Optimization Services Benchmark Language (OSBL)

Background and Purposes

The availability of more than one solver for many classes of problems makes the NEOS Server

an obvious choice as a benchmarking tool. In fact the Server is potentially useful both in choosing a

solver for a particular application and in comparing solvers generally. There are significant barriers to

achieving these potentials, however, which motivate this part of the proposed research.

Someone who has developed a new model, but who is not sure which of the several applicable

solver packages to apply, is often advised that the only way to be sure is to carry out some test runs on

typical problems instances. The straightforward way to do this is to send each test instance to each

candidate solver. But as NEOS makes no guarantee that separate runs will be done on comparable

machines under comparable conditions, the results may say little about the relative efficiency of the

solvers. The results may say more about the reliability of the solvers, but even so they may be

distorted by differences in the memory available on the workstations devoted to different solvers, or

by differences in time limits imposed by the owners of different workstations on which NEOS Server

jobs run. There is not necessarily any obvious way to compensate for the differences between runs,

moreover, because in general each solver is available on any of a number of dissimilar workstations,

among which one is selected by the Server according to the load at the time a job is submitted.

As a first step in addressing these difficulties, NEOS has added a kind of “benchmarking solver.”

A user tells this benchmarker which solvers are to be compared (Figure 7-14) and which problem (in

AMPL or GAMS) they are to be compared on. The benchmarker then applies all the requested solvers

– on the same computer – and returns concatenated listing of their results, along with a summary of

problem statistics. For the case of smooth nonlinear problems, the benchmarker also optionally

assesses the quality of each solver’s solution with respect to complementarity, feasibility and

optimality tolerances (which may be adjusted by the user) [16]. This innovative approach to solution

verification is independent of any correctness claims or statistics made by individual solvers.

Benchmarking on only one problem can be misleading, so a number of sample problems from an

application are often tested at the time. Benchmark tests on large sets of problems from diverse

applications are also common, for purposes of comparing the overall quality of different solvers. For

NORTHWESTERN UNIVERSITY MA

88

this purpose, a concept of a performance profile [15], has been developed, which clearly shows the

tradeoffs between speed and reliability of alternative solvers applied to a test problems set (Figure

7-15). This device has been favorably received and is being increasingly adopted by researchers for

their computational comparisons of new algorithmic ideas. We will investigate the incorporation of

this approach into the NEOS Server environment, or more generally the Optimization Services

framework, with the aim of producing a benchmarker that takes a set of problems as input and

produces statistics and performance profiles for appropriate solvers. The benchmarking tools are

intended to accept but not require guidance form the user, so that it is appropriate for us by

practitioners as well as researchers. The measures of reliability reflected in the resulting performance

profiles will make use of our verification approach to ensure that consistent standards are applied in

comparing of solvers. The NEOS Server might then be able to automatically maintain benchmark

results on available solvers for public test problem sets, re-running the benchmarker periodically to

take account of updates or newly available solvers.

Like analysis on optimization instances (see §7.1.5), our general framework for distributed

optimization is not intended to benchmark the optimization solvers. Rather it relies on analysis work

done by other researchers, and provides a framework specified under the Optimization Services

Benchmark Language (OSBL) that enforces a standard XML output format of benchmark result, thus

an automated discovery process can be carried under the Optimization Services inspection and

discovery framework. Benchmark information is likely to be imbedded in Optimization Services

Inspection Language (OSIL, §7.3.1).

NORTHWESTERN UNIVERSITY MA

89

Figure 7-14: Part of the web interface for the special benchmarking solver of the NEOS Server

The collaborative research in this area will initially investigate connecting the analyzer described

in §7.1.5 to the current benchmarker, so that the user is asked to choose only among solvers that are

appropriate for the problem to be solved. Concurrently, the collaborative research will further test and

refine the verification methods in [16] and will extend them to handle a broader variety of problems

and situations.

NORTHWESTERN UNIVERSITY MA

90

Figure 7-15: A performance profile [15] summarizing benchmark results from four solvers on a
variety of test problems. Toward the left the curves emphasize speed of the solvers, while toward
the right they place greater emphasis on reliability.

Specification Descriptions

Figure 7-16 shows an OSBL example. Following is a descriptive list for the <OSBL> element:

• <OSBL> probably does not need to contain two elements: <standard> and <specific>, since

benchmarking is supposed to be carried out against one single authoritative benchmarker.

• Contents in <OSBL> are to be designed by researchers who do benchmarking analysis.

NORTHWESTERN UNIVERSITY MA

91

Figure 7-16: OSBL example

7.3.4 Optimization Services Query Language (OSQL)

Background and Purposes

Optimization Services Query Language (OSQL) is intended as an optimization query language to

search for OSIL (see §7.3.1) documents in Optimization Services registries. It may not be needed

depending on the final draft of XMLQuery from W3C.

Specification Descriptions

OSQL is in essence an XMLQuery. As of December 2003, it is still in progress under the

auspices of the W3C’s XML Query working group. Specifications on OSQL need to wait after the

W3C’s final recommendation.

NORTHWESTERN UNIVERSITY MA

92

8 CONCLUSIONS AND FUTURE WORK
The research that we proposed is motivated by our vision of a next-generation distributed

optimization, which we call “Optimization Services”, characterized by a set of four-letter acronyms of

the form OSXL, where X is a defined alphabetical letter in our framework (Figure 8-1). Our

Optimization Services design and framework is intended to deal with outstanding challenges of

communication in large-scale optimization. This work addresses design as well as implementation

issues by providing a general and unified framework for standardizing problem representation,

automating problem analysis and solver choice, working with new web-service standards, scheduling

computational resources, benchmarking solvers, and verification of results – all in the context of the

special requirements of large-scale computational optimization. Our research in these areas is timely,

being motivated by new standards for Web Services, grid-computing technologies, and the recent

success of both the Virtual Prototyping Optimization System at Motorola and the NEOS Server at

Argonne National Laboratory.

Figure 8-1: Optimization Services X Languages, where X is to be replaced by any of the other 25
letters that have been defined. OSXL’s are used to specify the general and unified framework for
distributed optimization proposed in this paper.

We still need further improvement on Motorola Virtual Prototyping group’s intelligent

optimization system, to be carried out in the summer of 2004. Optimization Services framework

discussed in this paper may possibly follow a process similar to W3C’s model: starting from working

group notes, through working drafts, candidate recommendations, proposed edited recommendations,

NORTHWESTERN UNIVERSITY MA

93

proposed recommendations and finalized with recommendations. But before there is such a possible

process, we need to be more thoughtful and have to further elaborate on certain details. Our design

and framework need be more general, systematic and prepared for scalability. More formal and tighter

collaborations, under the proposed framework, with researchers in mentioned areas need to be

established.

NORTHWESTERN UNIVERSITY MA

94

APPENDIX
A.1 Optimization Services Template Language (OSTL) Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:include schemaLocation="./OSAL.xsd"/>
 <xs:element name="OSML">
 <xs:annotation>
 <xs:documentation>Opitimization Service Modeling Language schema
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:group ref="mixedFormat" minOccurs="0"/>
 <xs:element ref="singleFormat" minOccurs="0"/>
 </xs:choice>
 <xs:element name="OSAL"/>
 </xs:sequence>
 <xs:attribute name="format" type="OSMLFormatType" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="OSMLFormatType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="MIXED"/>
 <xs:enumeration value="FMLLP"/>
 <xs:enumeration value="MPS"/>
 <xs:enumeration value="SMPS"/>
 <xs:enumeration value="AMPL.nl"/>
 <xs:enumeration value="other"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:group name="mixedFormat">
 <xs:all>
 <xs:element ref="variables"/>
 <xs:element ref="objective" minOccurs="0"/>
 <xs:element ref="constraints"/>
 </xs:all>
 </xs:group>
 <xs:element name="variables">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="variable" type="variableType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="variableType">
 <xs:all>
 <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 </xs:all>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" default="continuous">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="interger"/>
 <xs:enumeration value="binary"/>
 <xs:enumeration value="continuous"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="objective">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="direction" minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">

NORTHWESTERN UNIVERSITY MA

95

 <xs:enumeration value="minimize"/>
 <xs:enumeration value="maximize"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="function" type="functionType"/>
 <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="constraints">
 <xs:complexType>
 <xs:all minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="constraint" type="constraintType"/>
 <xs:element ref="constraintSet" type="constraintSetType"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="functionType">
 <xs:choice>
 <xs:element name="webservice" type="WSType"/>
 <xs:element name="binary" type="binaryType"/>
 <xs:element name="MathML"/>
 </xs:choice>
 </xs:complexType>
 <xs:complexType name="WSType">
 <xs:sequence>
 <xs:element name="URI"/>
 <xs:element name="OSSL"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="binaryType">
 <xs:sequence>
 <xs:element name="URI"/>
 <xs:element name="OSSL"/>
 </xs:sequence>
 <xs:attribute name="language" type="xs:string" use="required"/>
 <xs:attribute name="platform" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="constraintType">
 <xs:sequence>
 <xs:element name="function" type="functionType"/>
 <xs:element name="lowerBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 <xs:element name="upperBound" type="xs:decimal" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="constraintSetType">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="singleFormat" type="xs:string">
 </xs:element>
</xs:schema>

NORTHWESTERN UNIVERSITY MA

96

A.1.1 OSTL Example 1
A.1.2 OSTL Example 2

A.2 Optimization Services Result Language (OSRL) Schema
A.2.1 OSRL Example 1
A.2.2 OSRL Example 2

A.3 Optimization Services Option Language (OSOL) Schema
A.3.1 OSOL Example 1
A.3.2 OSOL Example 2

A.4 Optimization Services Simulation Language (OSSL) Schema
A.4.1 OSSL Example 1
A.4.2 OSSL Example 2

A.5 Optimization Services Definition Language (OSDL) Example
A.6 Optimization Services Client Language (OSCL) Example
A.7 Optimization Services Flow Language (OSFL) Example
A.8 Optimization Services Endpoint Language (OSEL) Example
A.9 Optimization Services Inspection Language (OSIL) Schema
A.9.1 OSIL Example 1
A.9.2 OSIL Example 2

A.10 Optimization Services Process Language (OSPL) Schema
A.10.1 OSPL Example 1
A.10.2 OSPL Example 2

A.11 Optimization Services Benchmark Language (OSBL) Schema
A.11.1 OSBL Example 1
A.11.2 OSBL Example 2

A.12 Optimization Services Query Language (OSQL) Schema
A.12.1 OSQL Example 1
A.12.2 OSQL Example 2

NORTHWESTERN UNIVERSITY MA

97

BIBLIOGRAPHY

[0]
[1] J. Bigus and J. Bigus, Constructing Intelligent Agents with Java, John Wiley & Sons (1997).

[2] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, A Standard

Input Format for Multiperiod Stochastic Linear Programs. COAL Newsletter 17 (1987) 1-19.

[3] J.J. Bisschop and A. Meeraus, On the Development of a General Algebraic Modeling System in a

Strategic Planning Environment. Mathematical Programming Study 20 (1982) 1-29.

[4] R.E. Bixby, Solving Real-World Linear Programs: A Decade and More of Progress. Operations

Research 50 (2002) 3-15.

[5] S. Brin, L. Page, Anatomy of a Large-Scale Hypertextual Web Search Engine, Proceeding 7th

International World Wide Web Conference (1998).

[6] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User’s Guide, Release 2.25. Scientific

Press/Duxbury Press (1992). See also http://www.gams.com.

[7]T. Berners-Lee, etc., W3C, http://www.w3c.org (2003).

[8] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American (05 2001). See also

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-

84A9809EC588EF21&catID=2.

[9] J.W. Chinneck, Analyzing Mathematical Programs Using MProbe. Annals of Operations Research

104 (2001) 33-48.

[10] A. R. Conn, N. I. M. Could and Ph. L. Toint, LANCELOT: A FORTRAN Package for Large-Scale

Nonlinear Optimization. Springer Verlag (1992)

[11] J. Czyzyk, M.P. Mesnier and J.J. Moré, The NEOS Server. IEEE Journal on Computational Science

and Engineering 5 (1998) 68-75.

[12] E.D. Dolan, NEOS Server 4.0 Administrative Guide. Technical Memorandum ANL/MCS-TM-250,

Argonne National Laboratory, Argonne, IL (2001).

[13] E.D. Dolan, R. Fourer, J.-P. Goux and T.S. Munson, “Kestrel: An Interface from Modeling

Systems to the NEOS Server. “ Technical report, Mathematics and Computer Science Division,

Argonne National Laboratory (September 2002).

[14] E.D. Dolan, R. Fourer, J.J. Moré and T.S. Munson, “Optimization on the NEOS Server.” SIAM

News 35, 6 (2002) 4, 8-9.

[15] E.D. Dolan and J.J. Moré, Benchmarking Optimization Software with Performance Profiles.

Mathematical Programming 91 (2002) 201-213.

[16]E.D. Dolan, J.J. Moré and T.S. Munson, Measures of Optimality for Constrained Optimization.

Technical report, Mathematics and Computer Science Division, Argonne National Laboratory

(April 2002).

http://www.gams.com/
http://www.w3c.org/
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&catID=2

NORTHWESTERN UNIVERSITY MA

98

[17] B. Dominguez-Ballesteros, G. Mitra, C. Lucas and N.-S. Koutsoukis, Modeling and Solving

Environments for Mathematical Programming (MP): A Status Review and New Direction. Journal

of Operational Research Society 53 (2002) 1072-1092.

[18] M.D. Ferris, M. Mesnier and J.J. Moré, NEOS and Condor: Solving Optimization Problems over

the Internet. ACM Transactions on Mathematical Software 26 (2000) 1-18.

[19] T. Finin and Y. Labrou, eds., UMBC agentWeb, http://agents.umbc.edu (2003).

[20] I. Foster, Designing and Building Parallel programs, Addison Wesley (1994).

[21] I.Foster and C. Kesselman, eds., Open Grid Services Architecture (OGSA),

http://www.globus.org/ogsa/ (2003).

[22] I.Foster and C. Kesselman, eds., The Globus Alliance, http://www.globus.org (2003).

[23] I.Foster and C. Kesselman, eds., Open Grid Services Architecture (OGSA),

http://www.globus.org/ogsa/ (2003).

[24] R. Fourer, Modeling Languages Versus Matrix Generators for Linear Programming. ACM

Transactions on Mathematical Software 9 (1983) 143-183.

[25] R. Fourer, Optimization Frequently Asked Questions. Optimization Technology Center of

Northwestern University and Argonne National Laboratory, www-unix.mcs.anl.gov/otc/ Guide/faq/

(2003).

[26] R. Fourer, D.M. Gay and B.W. Kernighan, A Modeling Language for Mathematical Programming.

Management Science 36 (1990) 519-554.

[27] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical

Programming, 2nd edition. Duxbury Press, Pacific Grove, CA (2002). See also www.ampl.com.

[28] R. Fourer and J.-P. Goux, “Optimization as an Internet Resource.” Interfaces 31, 2 (2001) 130-150.

[29] R. Fourer and L. Lopes, A management System for Decompositions in Stochastic Programming.

Under revision for Annals of Operations Research (2002).

[30] R. Fourer and L. Lopes, A filtration-Oriented System for Modeling Stochastic Programming. Draft

Paper, Department of Industrial Engineering and Management Sciences, Northwestern University

(2003).

[31] R. Fourer, L. Lopez, K. Martin, FMLLP: A W3C XML Schema for Linear Programming. Draft

Paper, Department of Industrial Engineering and Management Sciences, Northwestern University

(2003).

[32] D.M. Gay, Hooking Your Solver to AMPL. Technical report, Bell Laboratories, Murray Hill, NJ

(1997); http://www.ampl.com/REFS/abstracts.html#hooking2.

[33] H.J. Greenberg, A functional Description of ANALYZE: A Computer-Assisted Analysis System

for linear programming Models. ACM Transations on Mathematical Software 9 (1983) 18-56.

[34] W. Gropp and J.J. Moré, Optimization Environments and the NEOS Server. In Approximation

Theory and Optimization, M.D. Buhmann and A. Iserles, eds., Cambridge University Press (1997)

167-182.

http://agents.umbc.edu/
http://www.globus.org/ogsa/
http://www.globus.org/
http://www.globus.org/ogsa/
http://www.ampl.com/REFS/abstracts.html

NORTHWESTERN UNIVERSITY MA

99

[35] B.V. Halldórsson, E.S. Thorsteinsson and B. Kristjánsson, A modeling Interface to Nonlinear

Programming Solvers – An Instance: xMPS, the Extended MPS Format. Technical report,

Department of Mathematical Sciences and Graduate School of Industrial Administration, Carnegie

Mellon University (2000).

[36] IBM, COmputational INfrastructure for Operations Research (COIN-OR), http://www-

124.ibm.com/developerworks/opensource/coin (2003).

[37] C.A.C. Kuip, Algebraic Languages for Mathematical Programming. European Journal of

Operational Research 67 (1993) 25-51.

[38] L. Lach, J. Lopez, J. Ma, T. Tiprak, W. Xiao, A Method for Automated Concept Exploration,

http://www.motorola.com/content/0,1037,299,00.html (2003).

[39] D. Lange and M.Oshima, Programming and Deploying Java Mobie Agents with Aglets, Addison-

Wesley (1998).

[40]M. Litzkow, M. Livny, and M.W. Mutka, Condor – A Hunter of Idle Workstations. Proceedings of

the 8th International Conference of Distributed Computing Systems (1998) 104-111.

[41] J. Ma, L. Lach, T. Tirpak, A, W. Xiao, A Method for Large Scale Mixed Integer Nonlinear

Optimization for Virtual Prototyping, Motorola Inc.,

http://www.motorola.com/content/0,1037,299,00.html (2001).

[42] David Megginson, Simple API for XML (SAX), http://www.saxproject.org (2003).

[43] B.A. Murtagh, Advanced Linear Programming: Computation and Practice, McGraw-Hill (1981).

[44] Napster.com, P2P Technology, http://www.napster.com.

[45] M.J.D. Powell, An efficient method for finding the minimum of a function of several variables

without calculating derivatives, Computer J. 7 (1964) 155-162.

[46] P. Sandhu, The MathML Handbook, Charles River Media, MA (2003).

[47] Aaron Skonnard and Martin Gudgin, Essential XML Quick Reference, Pearson Education (2002).

[48] T. Tirpak, L. Lach,, J. Lopez, J. Ma, W. Xiao, Virtual Prototyping, Motorola Inc.,

http://www.motorola.com/content/0,3306,263,00.html (2003).

[49]T. Tirpak, J. Ma, J. Savic, R. Crosswell, Cost-Efficient Selection of Devices and Resistive Inks for

Embedded Passive Board Designs, Motorola Inc.

http://www.motorola.com/content/0,3306,359,00.html,

http://www.motorola.com/content/0,3306,283,00.html (2001).

[50] T. Tirpak, J. Ma, J. Savic, R. Crosswell, Device Selection Method for Embedded Passive Design,

Motorola Inc. http://www.motorola.com/content/0,3306,359,00.html,

http://www.motorola.com/content/0,3306,283,00.html (2002).

[51] T. Tirpak, J. Ma, J. Savic, R. Crosswell, Optimization of Array and Panel Area Utilization,

Motorola Inc., http://www.motorola.com/content/0,3306,299,00.html (2001).

[52] UDDI.org, Universal Description, Discovery, and Integration (UDDI), http://www.uddi.org (2003).

[53] E. Van der Vlist, XML Schema. O’Reilly & Associates (2002).

http://www-124.ibm.com/developerworks/opensource/coin/
http://www-124.ibm.com/developerworks/opensource/coin/
http://www.motorola.com/content/0,1037,299,00.html
http://www.motorola.com/content/0,1037,299,00.html
http://www.saxproject.org/
http://www.napster.com/
http://www.motorola.com/content/0,3306,263,00.html
http://www.motorola.com/content/0,3306,359,00.html
http://www.motorola.com/content/0,3306,283,00.html
http://www.motorola.com/content/0,3306,359,00.html
http://www.motorola.com/content/0,3306,283,00.html
http://www.motorola.com/content/0,3306,299,00.html
http://www.uddi.org/

NORTHWESTERN UNIVERSITY MA

100

[54] W3C, Document Object Model (DOM), http://www.w3.org/DOM (2003).

[55] W3C, Namespaces in XML, http://www.w3.org/TR/REC-xml-names (1999).

[56] W3C, XML, http://www.w3.org/XML (2003).

[57] W3C, XML Link Language (XLink) http://www.w3.org/TR/xlink (2001).

[58] W3C, Mathematical Markup Language (MathML) http://www.w3.org/TR/REC-MathML (1999).

[59] W3C, XML Path Language (XPath) http://www.w3.org/TR/xpath (1999).

[60] W3C, XML Pointer Language (XPointer) http://www.w3.org/TR/xptr (2003).

[61] W3C, XML Query Language (XQuery) http://www.w3.org/TR/xquery (2003).

[62] W3C, XML Schema, http://www.w3.org/XML/Schema.html (2003).

[63] W3C, XSL, http://www.w3.org/TR/xsl (2001).

[64] W3C, XSLT, http://www.w3.org/TR/xslt (1999).

[65]W3C, Web Services, http://www.w3.org/2002/ws/ (2002).

[66] P.Walmsley, Definitive XML Schema. Prentice-Hall (2001).

http://www.w3.org/DOM
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/XML
http://www.w3.org/TR/xlink
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xquery
http://www.w3.org/XML/Schema.html
http://www.w3.org/TR/xsl
http://www.w3.org/TR/xslt
http://www.w3.org/2002/ws/

	ABSTRACT
	BACKGROUND AND INTRODUCTION
	A Real World Example (Motorola)
	Another Real World Example (Argonne)

	TWO DISTRIBUTED OPTIMIZATION SYSTEMS
	Motorola VP Multidisciplinary Intelligent Optimization System
	General Background
	Knowledge Flow
	Properties of the Model Services
	Initial Modeling of Computational Complication
	An Approach on Robust Design of Distributed Optimization
	Design and Architecture
	Service Requirements and Non-generic Solutions
	Procedure and Reasoning
	Benchmarks

	AMPL and Network Enabled Optimization System (NEOS)
	Standalone AMPL Architecture
	AMPL-NEOS Architecture
	AMPL-NEOS Optimization Problem Representation Issues
	AMPL-NEOS Optimization CommunicationIssues

	SETTINGS FOR THE DISTRIBUTED OPTIMIZATION DESIGN AND FRAMEWORK
	A General Picture – The Future of Computing
	Our Positioning – The Hierarchy of Operations Res
	Technologies, Terminologies, Current States of Optimization Services Related Research
	Parallel/Distributed/Grid Computing
	XML
	XML Schema
	Other XML Technologies
	Web Services and Simple Object Access Protocol (SOAP)
	Web Services Description Language (WSDL)
	Web Services Inspection Language (WSIL)
	Universal Description, Discovery and Integration (UDDI)
	Open Grid Services Architecture (OGSA)

	A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DI
	A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DI
	The Centralized Architecture
	The Decentralized Architecture
	Motorola VP Optimization System Revisited (Centralized Architecture)
	AMPL-NEOS Revisited (Decentralized Architecture)

	A GENERAL AND UNIFIED DESIGN AND FRAMEWORK FOR DI
	Optimization Services Representation
	Optimization Services Template Language (OSTL)
	Optimization Services Result Language (OSRL)
	Optimization Services Option Language (OSOL)
	Optimization Services Simulation Language (OSSL)
	Optimization Services Analysis Language (OSAL)

	Optimization Services Communication
	Optimization Services Client Language (OSCL)
	Optimization Services Description Language (OSDL)
	Optimization Services Flow Language (OSFL)
	Optimization Services Endpoint Language (OSEL)

	Optimization Services Inspection and Discovery
	Optimization Services Inspection Language (OSIL)
	Optimization Services Process Language (OSPL)
	Optimization Services Benchmark Language (OSBL)
	Optimization Services Query Language (OSQL)

	CONCLUSIONS AND FUTURE WORK
	APPENDIX
	Optimization Services Template Language (OSTL) Schema
	OSTL Example 1
	OSTL Example 2

	Optimization Services Result Language (OSRL) Schema
	OSRL Example 1
	OSRL Example 2

	Optimization Services Option Language (OSOL) Schema
	OSOL Example 1
	OSOL Example 2

	Optimization Services Simulation Language (OSSL) Schema
	OSSL Example 1
	OSSL Example 2

	Optimization Services Definition Language (OSDL) Example
	Optimization Services Client Language (OSCL) Example
	Optimization Services Flow Language (OSFL) Example
	Optimization Services Endpoint Language (OSEL) Example
	Optimization Services Inspection Language (OSIL) Schema
	OSIL Example 1
	OSIL Example 2

	Optimization Services Process Language (OSPL) Schema
	OSPL Example 1
	OSPL Example 2

	Optimization Services Benchmark Language (OSBL) Schema
	OSBL Example 1
	OSBL Example 2

	Optimization Services Query Language (OSQL) Schema
	OSQL Example 1
	OSQL Example 2

	BIBLIOGRAPHY

