Communication protocols for options
and results in a distributed optimization
environment

Horand Gassmann, Jun Ma & Kipp
Martin

Mathematical Programming Volt

Computation

e Mathematica

ISSN 1867-2949 Program ming
Math. Prog. Comp. ComPUtatlon

DOI'10.1007/512532-015-0091-5 A Publication of the Mathematical Optimization Society

‘2 Springer

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag Berlin Heidelberg and The Mathematical
Programming Society. This e-offprint is for
personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Math. Prog. Comp. @ CrossMark
DOI 10.1007/s12532-015-0091-5

FULL LENGTH PAPER

Communication protocols for options and results
in a distributed optimization environment

Horand Gassmann! - Jun Ma? . Kipp Martin3

Received: 14 June 2013 / Accepted: 14 August 2015
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2015

Abstract Much has been written about optimization instance formats. The MPS stan-
dard for linear mixed-integer programs is well known and has been around for many
years. Other extensible formats are available for other optimization categories such
as stochastic and nonlinear programming. However, the problem instance is not the
only piece of information shared between the instance generator and the solver. Solver
options and solver results must also be communicated. To our knowledge there is no
commonly accepted format for representing either solver options or solver results. In
this paper we propose a framework and theory for solver option and solver result repre-
sentation in a modern distributed computing environment. A software implementation
of the framework is available as an open-source COIN-OR project.

Keywords Optimization - Framework - Design pattern - System - Software - Solver
options - Solver communication - Result representation - Optimization Services

Mathematics Subject Classification 90C99 - 65K05 - 49N99 - 68NO1

B Horand Gassmann
Horand.Gassmann@dal.ca

Jun Ma
majxuh@hotmail.com

Kipp Martin

kmartin @chicagobooth.edu
1 Rowe School of Business, Dalhousie University, Halifax, NS B3H 4R2, Canada
2 JTechnologies, LLC, Arlington Heights, IL, USA
3 Booth School of Business, The University of Chicago, Chicago, IL, USA

Published online: 05 October 2015 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-015-0091-5&domain=pdf

H. Gassmann et al.

1 Introduction

Instance representation for optimization models is well understood and documented.
Instance generators, particularly algebraic modeling languages (see e.g., [3,12,23,
25]), communicate with solvers using representations such as the MPS format [26],
AMPL .nl format [20], OSiL [15], etc. Considerable effort has gone into making these
instance representations sparse, comprehensive, extensible, and portable among many
different solvers.

However, the problem instance is not the only piece of information shared between
the instance generator and the solver. Solver options such as the maximum number
of iterations, convergence criteria, or a starting point for the optimization algorithm
may also have to be communicated to the solver. And once the solver has finished
execution, the results, including solution status, statistics and values of the decision
variables, must be reported back so that proper reports can be generated. Often, the
results can also serve as the starting point for subsequent phases of optimization.

Unlike problem instance representations, solver options and solver results are not
generally shared among solvers, and to our knowledge there is no commonly accepted
format for representing either solver options or solver results. The MPS System that
gave rise to the well-established and widely used description format for linear pro-
grams also featured a format for solver options (using so-called agenda cards) and
LP results—see e.g., the book by Murtagh [31]. These proposed formats were not
generally accepted, however, and are not widely used or easily extensible.

Optimization Services [14,27] is a framework in the sense of Riehle [35] (see also
Gamma et al. [16]) designed to support the solution of a wide variety of optimization
problems in a service-oriented distributed computing environment, as well as on a
single standalone computer. Optimization Services is intended to standardize from an
overall specification level how a set of components (e.g., libraries, classes, interfaces,
executables and services) should be designed and implemented cooperatively in order
to solve an optimization problem.

Along the way of designing and implementing such a framework, and especially
in a distributed environment, options and results may also be used and written by
intermediate agents. One outcome of our research is a set of guiding principles that
make it easier to develop and maintain stable, platform-independent interfaces. In this
paper we summarize our discoveries, design principles and logic behind the designs,
developed through years of practical work and wide exposure to a large set of opti-
mization systems and software. We describe a standard for communicating solver
options and a standard for communicating solver results. These standards are imple-
mented as two XML schemas; Optimization Services option Language (OSoL) for
recording and communicating solver options to the solver, and Optimization Services
result Language (OSrL) for communicating solver results back to the calling program
and ultimately to the user. The case for XML has been made elsewhere (see [13,14]).
We repeat some of the arguments in Sect. 2.5.

A proof-of-concept implementation of some of the key aspects of our framework
is hosted at COIN-OR [18]. We will make frequent reference to this implementation
throughout this paper. We shall be careful to distinguish between the framework, Opti-
mization Services, and the COIN-OR implementation, OS. In particular, we would like

@ Springer

Communication protocols for options and results in a distributed...

to point out that the framework could be implemented completely independently of
electronic computers and networks. This distinguishes our efforts from initiatives such
as the Open Grid Services Architecture (OGSA) [33,51] or the Globus Toolkit (see [46]
and other publications at toolkit .globus. org). OGSA is acommunication pro-
tocol, specifically designed to support grid requirements. In contrast Optimization
Services is concerned with standardization of domain representation, in this case opti-
mization. It can be transported or communicated using the Web service or OGSA or any
other mechanism. Indeed, the communication layer could be a paper-based “system”
that consists in passing the XML-formatted files between two people, a “modeler” and
a “solver”, sitting across a desk from each other.

Previous work on Optimization Services [14,27] laid out the theoretical basis of the
framework design (specifically abstract and conceptual components) at a high level and
described how these abstractions should work together in a collaborative way. These
documents do not talk in any detail about how the abstractions themselves should be
designed. The current paper drills down into two of these abstractions, namely options
and results, and proposes the design principles and theories behind OSoL and OSrL.
In addition, OSoL and OSrL have undergone substantial modification since the initial
proposal in these documents.

This paperis organized as follows. In Sect. 2 we present the major design recommen-
dations and principles for solver options and solver results. These include separation
of functionality; the need to specify a relationship between the internal memory rep-
resentation and the standard; the need to consider solver hierarchies when designing
a standard; the level of representation detail; and the use of XML schemas. In Sect.
3 we describe the OSoL solver option standard. We outline the design principles for
this standard and describe the XML schema that implements them. We also describe
an in-memory representation of the solver options along with an associated API and
discuss how OSoL is used to communicate with solvers and modeling languages. In
Sect. 4 we describe the OSrL solver result standard, following the same format as in
Sect. 3. We outline the design principles, describe the XML schema that implements
the principles, describe the in-memory representation and associated API, and finally
discuss the use of OSrL in solver and modeling language communication. We end
the paper in Sect. 5 with some conclusions and a brief description of the 0S COIN-
OR open-source project [18] along with information about obtaining and using the
software that implements the concepts described in this paper.

2 Theory and design principles

One of the main objectives of Optimization Services as a framework is to gener-
ate optimization design patterns [47], which are repeatable solutions that have been
extracted and formalized from best practices. Effectively generalized design patterns
have proven highly influential in various fields such as software engineering. In cer-
tain situations, they have helped revolutionize how researchers, analysts and software
designers approach solutions efficiently.

Frameworks further generalize and piece together related design patterns in a col-
laborative manner. Systems, libraries and tools have been implemented to facilitate

@ Springer

H. Gassmann et al.

the use of such proven frameworks, in which people only need to deal with some high
level business requirements as specified and concentrate on implementing their own
components, leaving the entire framework to deal with the rest of the work. The system
then is an implemented solution based on the framework that effectively reuses many
good design patterns.

In the context of this paper, a pattern means a tried and true way to deal with
an optimization process—f{rom the model context to the problem instance and to
the final solution—that appears over and over again. From the software perspective,
the optimization process almost always consists of three basic functions: instance
generation—creating a problem instance to be optimized; instance consumption—
finding an optimal or near-optimal solution (or determining unboundedness or
infeasibility); and reporting the result of instance consumption (i.e., the solution)
back to the user. Such a pattern justifies the generation of an effective and standard
means of communication between OR software components, therefore realizing one
of the goals of Optimization Services as a framework: to bring order into chaos. The
0S project implements many of the libraries and tools following the specifications of
the Optimization Services framework. Using the tools we have also set up systems
that solve real-life optimization problems.

Within this paradigm it is useful to distinguish between tightly coupled systems
and loosely coupled systems. In a tightly coupled system the first two functions,
instance generation and consumption, are performed by a single piece of software.
An instance is generated for consumption by a specific solver. A good example of
a tightly coupled system is LINGO [25]. In LINGO, a user generates an instance
with the LINGO modeling language and this model is optimized using an internal
LINDO solver. Even in such tightly coupled systems, often there is a need to export
internal problem structures into some standard formats. Loosely coupled systems are
more consistent with modern service-oriented IT architectures than are tightly coupled
systems. In a loosely coupled system the instance generation is “solver agnostic”. The
instance is generated without requiring knowledge of which solver will be used. Hence
there is a need to create a generic and portable instance representation, likewise for
solver options and solver results. AMPL, GAMS and MPL are examples of modeling
languages designed for loosely coupled systems. We focus on loosely coupled systems
in this paper.

The basic principle of a loosely coupled system is illustrated in Fig. 1. The problem
instance is created by the client and packaged into a format suitable for transmitting it
to the server or service, which typically includes a solver. This is often accompanied
by a set of solver options that control the behavior of the solver. After optimizing the
instance, the server passes back the solution to the client. At this point the solution
could be sent to an analyzer or similar software, the instance could be modified, and
the communication cycle can be repeated, as often as necessary.

Typically, the client, such as an algebraic modeling language, produces an opti-
mization instance in its own format, which then must be translated into a form
understandable by the server. Solver options, as well as solver results, must also be
communicated between the client and server, as depicted in Fig. 1. This leads to a
large number of possible translators (for every possible combination of client and
server), unless there is a common intermediate exchange format. The Optimization

@ Springer

Communication protocols for options and results in a distributed...

Client instance instance Server
Modeling language options Optimization solver
Matrix generator result Metasolver

etc. Analyzer

etc.

Exchange
standard

Fig. 1 Client and server in an optimization system

Services framework provides this common format along with other higher level stan-
dards for how information should be exchanged. Such a common intermediate format
immediately results in far fewer links by requiring just one translator for each client
and one for each server, each of which can communicate directly with the universal
intermediate format.

Having a common format for instances, options and results is even more important
in distributed computing. In a distributed environment, the translation step may involve
more than just a change of the representation of the information, as it may also involve
physical transmission over the Internet. This may require packaging the information
with suitable wrappers such as a SOAP envelope [41]. Almost all of the complexity of
this can be hidden from the user. All the user has to know is one thing: the location of the
service, for example, the URL of the computer on which the solver resides. There is an
additional option to select the final optimization solver that is to be used (e.g., Cbc [8],
Ipopt [45], Cplex [4]), but an intelligent instance-solver matching service is used to
infer a suitable default solver based on characteristics of the optimization instance.
The service may even be embedded in a compute cloud, and with appropriate registry
and discovery mechanisms (see e.g., [1,37,52,53]) it is possible to automate even the
selection of the solver location. In addition our approach allows the same options and
result standards to be used for communication with other services providing access to
different analysis tools, such as analyzers or simulation software.

A database connectivity framework such as ODBC [50] is a close analogue to Opti-
mization Services. As part of the Optimization Services framework, the OSiL language
communicates to the solver the optimization instance that needs to be solved, just as
the SQL query language communicates (via ODBC) to the database management sys-
tem (DBMS) which records need to be retrieved. In this analogy the DBMS takes the
place of an optimization solver, with a different database driver that conforms to the
ODBC standard for each DBMS. In the same fashion, the OS project also implements
drivers for many different solvers. A large DBMS would allow numerous directives as
to how the retrieval is to take place, where the database is located, etc. This is analo-
gous to the various solver options, for which Optimization Services uses the common
language OSoL. Finally, the retrieved record set plays the role of the result. Typically
only the records matching the query are presented, but many systems can include
information about the number of records searched, the time spent in the search, etc.

@ Springer

H. Gassmann et al.

In the Optimization Services framework, the results returned from the various solvers
are standardized into the OSrL format.

Languages and communication protocols have also been studied in other domains,
such as KQML [7], an instance format in the domain of Artificial Intelligence, and
ACL [10], a competing format designed by the Foundation for Intelligent Physical
Agents and endorsed by the IEEE Computer Society [11]. When designing standards
in different domains, the critical design factors differ. For instance, large optimization
problems must be able to handle sparse vectors efficiently. This is addressed in our
schema designs and is very different from languages such as PSL [21] that are designed
to describe a relatively small number of objects at a time. In this paper we try to explic-
itly and comprehensively lay out the material factors in the domain of optimization,
more specifically, solver options and results, which has never been researched in the
context of standardization.

In the remainder of this section we present the major design recommendations and
principles for representing and exchanging solver options and solver results.

2.1 Separation of functionality

Based on observations and abstractions from many different examples of implemen-
tations and optimization models, we found it important and beneficial to distinguish
among the following components in a loosely coupled optimization environment.

— Instance representation An instance representation is a complete description of
the optimization problem that is to be solved. It should not contain extraneous
information. In particular, it should not be convoluted with starting points, solver
options, solver results, etc. A model instance should be completely independent
of software, solvers, or algorithms that are used to solve the problem. This narrow
interpretation is taken from the book by Williams [54]. There often are different
equivalent representations of a problem, but we would consider these separate
instances. Unlike some medium-level languages such as Zinc and MiniZinc [6,
29,32], Optimization Services is not concerned with automatic reformulations to
allow different instances of a problem to be sent to different solvers. We freely
acknowledge that not every solver can handle every possible representation of a
problem. Our only concern is that the capabilities of the instance representation
language be broad enough to allow the user to choose a representation suitable for
their needs.

— Option representation It is often necessary to pass options to instruct the solver
how the problem should be solved; e.g., by providing a starting solution (given by
initial values for the decision variables in the problem), or by stating which pricing
mechanism to use in an LP solver. Options may also pertain to other activities that
make up the optimization suite, such as analysers and simulation software. Hence
it is advantageous to decouple the option representation from the representation
of the instance. This further serves to distinguish our approach from others such
as MiniZinc, which incorporates all options into the instance file [30].

— Result representation After a problem is solved (or terminated otherwise) results
must be passed as output back from the solver to the client. This is highly solver-

@ Springer

Communication protocols for options and results in a distributed...

dependent. There may be one or more solutions for the same input problem
instance, even from the same solver. Each solution may contain a minimal amount
of information such as optimal objective function value(s) and the optimal values
of the decision variables, or more detailed information such as range information in
the case of a linear programming solution. For instances with multiple objectives,
the solver output may contain the description of an efficient frontier, etc.

— Modification representation There are many solution procedures, such as col-
umn generation and cutting plane algorithms, that require modifying the original
problem instance. It is impractical to separately generate numerous large-scale
problem instances that only vary slightly from the initial instance or from each
other. Aside from the possibility of specifying multiple objectives and RHS in
MPS, and switching between them, there is no standard instance modification for-
mat that the authors are aware of. This is a topic for further research and will not
be treated in this paper.

Having a separate representation standard for each of these four components allows
for maximum flexibility, modularity and reusability in software choices and design.
Just as there may be multiple instances for a given problem, there may be multiple
option sets associated with a particular instance. However, there is a unique result
representation corresponding to each combination of instance and options. Indeed, as
pointed out later in the paper, the design objectives for option and result standards are
quite different from the design objectives for an instance representation standard. It
is equally important to keep in mind that the representation of instances, options and
results should be separate and completely independent of how they are communicated
between the client and server [14]. We do not deal with instance communication in
this paper.

2.2 In-memory representation and API design

Representation of instances, options, and results necessarily requires the description
of a file format, something that can be written out, reused, archived, or transmitted
over a network. However, what is convenient as a file format may not work very well
in computer memory. Hence there is a need to convert the file representation into
in-memory objects and vice versa. This process is aided greatly by formal mapping
rules that state in an abstract way how pieces of the file representation correspond to
elements of the in-memory representation. In Sect. 3.3 we describe a set of formal
mapping rules between an XML-based file representation for solver options and the
corresponding in-memory representation. In our in-memory representation we can
take advantage of everything we know about the XML and parse directly into our
data structure, because all elements and types are known at compile time. This is
much more efficient than using the generic document object model (DOM—see [48]).
Section 4.3 provides an analogous description for solver results.

In addition, there is a need for an application programming interface (API), by which
a user (or an intermediate layer of software) can build or interpret either the file or the
in-memory representation in whole or in pieces. The API should contain conventional
get () and set () methods for various parts of the format. Examples include methods

@ Springer

H. Gassmann et al.

suchas setInitialVariableValues,getNumberOfVariables,etc. Most
of these methods are pure convenience methods, however. The description of the format
should be enough to enable users with sufficient knowledge of programming to write
such methods for themselves.

2.3 Solver hierarchies

As stated in the introduction, the OS project is an implementation of a framework for
optimization in a distributed environment, i.e., over a network. In this regard it is similar
to the well-known NEOS (Network Enabled Optimization System) project [5]. From
a user’s perspective, the OS and NEOS servers act like solvers, or to be more specific,
like meta-solvers. The user submits an optimization instance and receives back a result.
However, in a distributed environment, in addition to the regular optimization solver
on the server computer, there is a communication layer. The client cannot directly
invoke a regular optimization solver and needs to communicate with a meta-solver,
or a remote solver “facade”, that acts as an intermediary or proxy. An instance and
options are sent to the remote solver proxy, which then further delegates the instance
to the real solver at its back end.

Figure 2 is a generic architecture depicting the different layers, along with the
various formats used for representing the inputs and outputs. Also indicated in Fig.
2 are examples of the software components found in the OS implementation. In Fig.
2 the proxy is the server communication agent (implemented in OS as the executable
0OSServer).

The modeling language environment (such as AMPL or GAMS) produces output in
its own output format. The local solver server translates this output into OSiL and OSoLL
format and passes this to the client communication agent, which wraps everything in
a SOAP envelope and transmits it to the communication agent on the server side. The
server communication agent (i.e., the solver proxy) unwraps the SOAP envelope and
passes the file(s) to the remote solver server. If necessary or so directed by the user, an
instance may be added from the server’s files or even retrieved from a third location.
The remote solver server then translates the OSiL. and OSoL representations into a
format that the solver understands, and invokes the solver.

There could in fact be many solvers, but the crucial point is that all of them com-
municate through the same solver proxy. In the OS project, such a proxy is technically
implemented as a Web service, whose APIs are standardized in the Optimization Ser-
vices communication protocol. Results from the optimization solver are returned first
to the remote solver proxy and then to the client. See [14] for a description of how this
works in the Optimization Services framework.

In this distributed environment, it is useful to distinguish between options meant
to control the remote solver proxy (or Web service) and options intended for the
real optimization solver. In other words, there are options that pertain strictly to the
solver proxy and there are options that pertain strictly to the optimization of a specific
instance. The solver proxy must be able to pass the latter options to the optimization
solver. There are several types of options intercepted by the solver proxy. For example,
there should be an option that tells the solver proxy which optimization solver to call.

@ Springer

Communication protocols for options and results in a distributed...

| Modeling Language Environment | e.g., AMPL

A

Optimization result
Instance and in MLE format

solver options in

MLE format J

v

| Local solver server e.g., OSAMPLClient

Optimization result
in OSrL format

. -

| Client communication agent e.g., OSAgent

Instance and
solver options
(0SiL/0SoL)

Optimization result

Instance and as OSrL/SOAP
solver options
_0SiL/0SoL/SOAP_J -
| Server communication agent e.g., OSServer
Optimization result
Instance and in OSrL format
solver options
__(0siL/0sol) _J -
v
| Remote solver server e.g., OSSolverService
Y
© Optimization result
Instance and in solver format
solver options in
__solver format__/ -
A4
| Optimization solver e.g., Ipopt

Fig. 2 The different software layers involved

There might also be other options describing the suitability of the remote system to
tackle the problem at hand, e.g., minimum disk space and CPU requirements, and to
control the environment in other ways (such as preparatory file movement and cleanup
operations).

A feature of good design in option communication is that it be easy to determine at
which level in the communication chain an option is to be deciphered and acted upon.
This is a challenge that arises frequently. For instance, a user might be interested in
setting a time limit for a job. This may be controlled by the operating system at the
job level or by a solver for a particular instance. In our system we therefore provide
two separate mechanisms for setting time limits. This is explained in more detail in
Sect. 3.2.

As with hierarchies in the solver option representation, there are results that will
be specific to a solver proxy and results that are specific to a real optimization solver.
For example, the solver proxy might report the total time the job associated with this
instance was in the system. However, an optimization solver might report the CPU
time required to optimize a specific model instance. There are system specific job

@ Springer

H. Gassmann et al.

results versus the instance optimization result, and an important design feature is to
make this delineation both clear and comprehensive. How this is done in our system
is described in Sect. 4.2.

2.4 Representation detail and standards

In Sect. 2.1 we stated that it is important to have distinct representation standards. One
reason for doing this is that the amount of detail required to specify the information
may vary considerably depending upon functionality. For example, a linear program
is a well-defined entity, but the solution of a linear program is not. One cannot have a
linear program without constraints or variables, but one can have a linear programming
solution without reduced costs or right-hand side sensitivity information. In general,
different optimization solvers may present their results in different formats, and some
may include more detail than others. The level of solution detail is up to the solver
developer and would be difficult to standardize. The same applies in the world of
options, where the meanings and formats of options vary significantly between solvers.
Thus, whereas with our instance description we have tried to be as encompassing and
complete as possible, we have taken a minimalist but highly flexible approach in our
proposed option and result descriptions. This minimalist philosophy, and the logic
behind it, is discussed further in Sect. 3.1.

2.5 Use of XML and schemas to specify a standard

In this paper we specify standards for representing solver options and solver results. By
“standard” we mean that there is a specific and unambiguous format for representing
the options for a solver or the results returned by it. Specifying a format is greatly
facilitated by using XML, a markup language that can be read by both human and
machine (for further information about XML see [42]).

One element of an XML file might look like this:

<minMemorySize unit="gigabyte">24.0</minMemorySize>

Text items enclosed in angle brackets (‘<’ and ‘>’) are markup and usually
come in pairs, a start-tag and an end-tag (there are also empty-element tags such
as < paragraph/ >).

Text contained between a start-tag and an end-tag is considered the content of
the element, here the number string ‘24.0’. Attributes (such as unit="gigabyte")
included in a start-tag can be used to record further information related to the entity
described by the tag. It is customary to use content to record the data, and to use
attributes for metadata, that is, information about the data. However, it is sometimes
expedient to deviate from this convention, for instance, when two values need to be
recorded simultaneously, such as a value for an upper bound and a lower bound.

The key benefit of XML is an XML schema that provides a rigorous and unambigu-
ous way to specify the syntax for an XML document. Indeed, the schema specification
is the standard. In Sects. 3.2 and 4.2 we describe the schemas for the option standard

@ Springer

Communication protocols for options and results in a distributed...

(OSoL) and the result standard (OSrL), respectively. Other reasons why XML is the
best way to impose a standard include:

— By using an XML schema it is possible to specify additional constraints and rules
governing the content of an XML document. This includes requiring specific data
types, specifying default values, constraining the order of elements, specifying
enumeration lists, etc.

— There are easy and natural transcription rules to convert the content of the XML
files into generic tree structures (such as the Document Object Model (DOM) [40]).
There are open source libraries for creating these internal data structures (see e.g,
Xerces [39]).

— The availability of a schema, which is also an XML document, further simplifies
the writing of parsers. In fact, there are open source libraries that take a schema as
input and automatically parse and validate the XML document (see e.g., [49]).

— XML is an open W3C standard that is nonproprietary, unencumbered by copyright,
patent, trade secret, or any other intellectual property restriction.

— The design goals of XML emphasize simplicity, generality, and usability over the
Internet—see http://www.w3.org/TR/REC-xml/#sec-origin-goals.

— XML-based Extensible Stylesheet Language (XSL) [43] offers a convenient way to
specify translations of XML documents. For example, if an optimization solution
is formatted in OSrL, XSL can be applied to the solution instance to easily produce
an HTML document that displays the solution data in a user-friendly form.

Even though XML has a reputation of being wordy, the OSiL versions of the
Netlib LP problems (http://www.netlib.org) are actually smaller than their MPS
counterparts—especially for the larger problems. For these reasons, as well as con-
sistency, XML schemas are the proper design choice for the representation of options
and results.

3 The OS option standard

In this section we describe our solver option format OSoL in more detail.

The separation between what constitutes an instance element versus a solver option
is not clear-cut and is not universally agreed upon. For example, initial values can
reasonably be argued to fall into either category. Some modeling languages like AMPL
and GAMS do indeed treat initial values as part of the optimization instance and
transmit initial values to the solver as part of the instance representation. In fact,
AMPL treats all data items indexed over the variables, constraints or objectives of
the problem in this way, including branching priorities, basis status, reduced costs
and slack values, even user-defined items. The dichotomy in AMPL is therefore not
between instance and options, but between array-valued data items and scalar options.
Only the latter are communicated to the solver in an option string, all the array-valued
items are contained in the .nl file that holds the optimization instance [20].

GAMS uses a very similar mechanism but it allows a very small number of array-
valued options to be put into the options file. In the case of the GAMS/Cplex interface
these consist of two array-valued options dealing with sensitivity ranging on objective
coefficients and right-hand side ranges, respectively [17, pp. 35, 41].

@ Springer

http://www.w3.org/TR/REC-xml/#sec-origin-goals
http://www.netlib.org

H. Gassmann et al.

After lengthy discussions and careful reflection, the authors decided to deviate from
this practice and to treat initial values, initial basis information, branching weights for
integer variables and all similar information as part of the option set. This reflects our
view on the separation of functionality described in Sect. 2.1. One advantage of this
approach is that it allows indexing of vector-valued options over arbitrary index sets
not necessarily associated with the problem instance, e.g., seeds for a random number
generator.

3.1 Philosophy of option design

Solver options are not only vast and constantly growing in number, but also vary
greatly and lack standardization even among the most common ones, such as feasibility
tolerances, maximum number of iterations or even time limits (there is even ambiguity
as to what defines a time limit: CPU time versus wall-clock time, etc.). This influences
the design of any standard for representing options. It is further useful to distinguish
between syntax (how to represent the options) and semantics (how to interpret their
meaning).

There is another aspect that influences the design of option formats: a solver is not
the only component of a mathematical programming system; options could be sent to
an optimization analyzer, simulation tool, or similar software. If a large environment
has such diverse tools, it seems advantageous to design option formats that can be
shared among all components. In order to establish the correct match of option file
and analysis tool, the intended target must be recorded in the option file. Additionally,
especially in a commercial environment, basic security features such as license infor-
mation, username and password may be needed. Finally, particularly in a distributed
environment, additional facilities are useful to verify capabilities of the computer sys-
tem on which the solver is to be run, and perhaps to perform ancillary file operations
before and after the solution process.

These considerations led us to the following basic principles that aided us in our
design of the OSoL schema. (The same principles also guided our design of result
formats—see Sect. 4.1.)

1. Unless universally accepted and commonly used, we do not try to enumerate or
hard-code options, especially those related with optimization solution and solver
algorithms, into an API or standard. There are too many solvers, each with their own
needs and functionality. Finding common options across solvers for integer, linear,
nonlinear, stochastic, semi-definite programming etc., is hopeless. In addition,
solvers may use different interpretions for the same option, such as the setting of
a print level to control solver output. At present only initial values and initial basis
information are mentioned specifically.

2. The user should be able to specify any option that a solver or analysis tool will
support at the file level and the API level, in the most natural way possible.

3. The option API can parse the options directly into generic data structures that are
used to interface with the solver API, but should not have to interpret options. The
option interface deals with the syntax only, the semantics are left to the solver.

@ Springer

Communication protocols for options and results in a distributed...

4. Solvers support a wide variety of data types, so we should be in a position to
support all of them—even special types defined by the solver developers.

5. The format and API should be extensible, so that most changes that solver devel-
opers may make to the options do not require changes to the option interface.

6. The interface should be able to handle sparsity. Option files are usually small
compared with problem instances, because they mostly contain only scalar-valued
options. But an option can be array-valued (though usually just one-dimensional,
e.g., initial variable values), and in practice, most values can be zero. Therefore, an
option format should be able to represent array-valued options in a sparse format.

7. It should be kept in mind that there are not only optimization specific options,
but also options related to the environment where the optimization solution is
carried out. If possible, options of different layers should be distinguished, as not
all options are carried all the way through a system hierarchy to be used by the
end optimization solvers.

8. By default the OSoL option file is independent of any optimization instance. How-
ever, sometimes it is desirable to link the option file with a particular instance, such
as when initial variable values are given. This feature should be supported if pos-
sible.

9. Finally, the option file should be easy and quick to parse.

This section talks about the general design philosophy, not implementation
specifics. We will turn to some of these in the next section.

3.2 Description of the OSoL schema

In the following we illustrate some schema elements using diagrams generated by the
XML editor XMLSpy [2] (see e.g., Fig. 3). The small rectangle at the left of each
figure gives the name of an XML tag and the large rectangle at the right describes the
content. Solid lines and boxes are used for required content, dotted lines and boxes
indicate optional content. Additionally, the diagrams show typing information in the
shaded rectangles. For instance, in Fig. 3 the top level element oso1 is of type OSoL.

Working in a distributed environment, one may have to send information not just
to the solver, but to the entire environment (such as solver proxy, computer system) at
the remote location. For instance, the operating system may need to be instructed to
move files around before the solution process can even begin, there may be provisions
as to how the user is notified when the job finishes, etc. Many of these items are not
seen by the solver, but we chose to include them in the same file, mostly to limit the
number of option files that need to be sent.

In order to make it easier to distinguish the level at which an option is needed, the
OSoL schema is broken down into several sections, as shown in Fig. 3. As the figure
shows, all six children of the root node osol are optional and could be omitted.

— AnoptionHeader section that can be used to document basic information about
the file itself, its creation date, its source (if appropriate), authorship information,
etc. This section is for documentation purposes only and is not used by the solver.

— general information about which solver is to be used, location of input files,
how the user is to be notified of the completion of the process, etc.

@ Springer

H. Gassmann et al.

Fig. 3 The top-level OSoL - —— — — — — — — -
elements (printed from Altova ‘ OSolL
XMLSpy®)

7777777777 J
[
since version 2.3

I
- general
since version 2.0

I
I
I
[
|
I
I
I
|
-
|

version 2.0 ‘L,} service
|
|
|

since version 2.0

|

|

|

|

|

|

|
M—L&E—{ since version 2.0 ‘
| |
|

|

|

|

|

|

|

|

| .

| 1 job
|

|

|

— system options, which are especially important in a distributed environment or
when cloud computing is involved. These options include minimum requirements
of disk space and memory availability, number of CPU cores, etc.

— service options, which allow the same option file format to be used for com-
munication not just with optimization solvers but also other software such as
analyzers, schedulers, simulation software, etc.

— job options, including preparatory and cleanup steps to be used prior to and after

the solver phase, respectively. These include files and directories that may have
to be created, moved, or destroyed. This information would be intercepted by
the operating system through appropriate system actions and does not need to be
passed to the solver. Unlike the Globus Toolkit [46] or OGSA [51], the OSoL
schema is silent on how these functions should be implemented on the server. The
options simply declare what needs to be done in order to complete the optimization
task successfully. This includes the supporting environment (external) as well as
the optimization job (internal).
From the user’s perspective, a service has a public URL by which it is accessible
over the Internet, a job does not. Each job is a solver process launched by the
service in order to solve an optimization problem. A service can launch multiple
jobs, and a job can involve multiple solver calls.

— optimization options, which are the options intended for the optimization
solver. These can further be subdivided into options acting on (a subset of) the
variables, such as initial values, basis status or the like, options acting on the
constraints or objectives, and general options (see Fig. 4).

@ Springer

Communication protocols for options and results in a distributed...

*} variables 0+ = @ | T T T T T——7 ‘ ‘

I
|
I
|
I
[
|
|
I
|
I
[
|
|
I
|
I
[
|
Lj objectives [} ‘ ,,,,,,,,,,,,, ‘

| |
| 1 intsiBasisstatus B} |
| __

| = other |
=

|
fffffffff [[Ewm]
*} solverOptions (-+—41
777777777 —==—]=}-! solverOption ‘
[y T
a

Fig. 4 The Optimization element in OSoL (printed from Altova XMLSpy®)

@ Springer

H. Gassmann et al.

attributes

B attributes

SolverOptions [

r——— . "
| description |
L
r———1
I value |
L
[type 1
e
LYPe

| solver |

r catego |
| categony |

number must agree with
numberOfltems

Fig. 5 Option element (printed from Altova XMLSpy®)

All such options can be transmitted by the communication layer without knowledge
of the underlying semantics; only syntax information is required. For instance, the
element < solverOption > expands as follows (see Fig. 5).

— The name attribute identifies this option to the solver. There is no requirement
on the parser to check the name or to match it against a list of valid names. It is
presumed that the user supplied a name in the OSoL file that is valid in the sense
that the solver will understand it once it is passed in, but error detection is left
entirely to the solver.

— The description attribute can be used for annotation about the purpose of this
option.

— The value attribute is used to communicate the option value to the solver. For
full flexibility all values are stored as strings—both in the OSoL file and in the
internal representation once the file has been parsed into memory.

— The type attribute is used to record the type of value. Since solvers are not
uniform in their language (e.g., Ipopt uses the term “numeric” to describe floating
point or “double” values), there is no assumption made about the types that can
be expected; the value of this attribute is again an ordinary string.

— The solver attribute is used to limit the option to one particular solver. If the
solver attribute is missing, the option will be passed to whichever solver is selected
at runtime. The list of supported solvers is implementation dependent and subject
to registry and discovery (a service might, for instance, publish a list of solvers
that can be searched through the Internet).

— The category attribute allows additional information to be passed to the solver
regarding the option. In LINDO [24], for instance, it is possible to set attributes
affecting either an entire interactive session (or “environment” in the parliance of

@ Springer

Communication protocols for options and results in a distributed...

LINDO), or just one individual model solved during such a session. Both use cases
are illustrated in the example below.

<solverOption name="LS_IPARAM LP_PRINTLEVEL" solver="lindo"
category="environment" type="integer" value="1"/>

<solverOption name="LS_IPARAM_LP_ PRINTLEVEL" solver="lindo"
category="model" type="integer" value="0"/>

— The optional attribute NumberOfItems and the optional sequence of <item>
elements can be used to provide values for array-valued options. These complement
other constructs in the variables, constraints and objectives elements, which pro-
vide array-valued options when the array elements are indexed over the columns,
constraint rows and objectives of the problem.

Figure 4 shows the flexibility and extensibility of the OSoL schema. Many lists,
such as the options for variables, objectives and constraints, as well as the top-level
options in Fig. 3 end with a sequence of <other> elements that can be used to
allow implementation-specific options to be added. For instance, because the user
can directly influence the amount, and to some extent the form, of the output, we have
found the following declaration to be very useful:

<job>
<otherOptions numberOfOtherOptions="1">
<other name="get_stdout" value="true"/>
</otherOptions>
</job>

This option was added to our implementation of the remote communication agent.
It instructs the solver server running on a remote system to capture all the output
generated by the solver and to return this output as part of the result file (an example
of the output generated by this option is shown in Sect. 4).

The attribute numberOfOtherOptions and similar numberOf... attributes are
used to improve the efficiency of the parser. Knowing the size of arrays beforehand
makes it possible to allocate sufficient memory in a single operation as opposed to
doing it one object at a time. It also facilitates consistency checks in the parser.

We end this section with a small file in the OSoL format (Fig. 6). This file should be
self-explanatory. It first gives the URL of a remote server, specifies that the job is to be
run only if the server resides on a computer with at least 24 Gb of memory, provides
initial values for two decision variables, and gives four solver options. Two of these
options are intended for the Ipopt solver [29], the other two are for the LINDO solver
[30]. This demonstrates that an option file can be shared between different solvers.
The two Ipopt options control the amount of output to be generated and the maximum
number of iterations; the LINDO options illustrate that the same option can be used
with different scope, as explained earlier in this section.

3.3 Internal representation: the OSOption class and its members

The OSoL schema defines an XML vocabulary to describe optimization options. The
options instance may persist on a file system, or it may temporarily be encapsulated

@ Springer

H. Gassmann et al.

<?xml version="1.0" encoding="UTF-8"7>
<osol xmlns="os.optimizationservices.org"
xmlns:xsi="http://wuw.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/2.0/0SoL.xsd">
<optionHeader>
<name>Example.osol</name>
<fileCreator>
Horand Gassmann, Jun Ma and Kipp Martin
</fileCreator>
<licence>
This file is licensed under the Eclipse Public License.
Please see the accompanying LICENSE file in root directory for terms.
</licence>
</optionHeader>
<general>
<serviceURI>
http://xx.xx.xxx.xxx:8080/08Server/services/0SSolverService
</serviceURI>
</general>
<system>
<minMemorySize unit="gigabyte">24.0</minMemorySize>
</system>
<optimization>
<variables numberOfOtherVariableOptions="0">
<initialVariableValues numberOfVar="2">
<var idx="0" value="1.5"/>
<var idx="1" value="1.5"/>
</initialVariableValues>
</variables>
<solverOptions numberOfSolverOptions="4">
<solverOption name="max_iter" solver="ipopt" type="integer" value="2000"/>
<solverOption name="print_level" solver="ipopt" type="integer" value="5"/>
<solverOption name="LS_IPARAM_LP_PRINTLEVEL" solver="lindo"
category="model" type="integer" value="0"/>
<solverOption name="LS_IPARAM_LP_PRINTLEVEL" solver="lindo"
category="environment" type="integer" value="1"/>
</solverOptions>
</optimization>
</osol>

Fig. 6 A sample OSoL file

in a SOAP envelope for use in a distributed system. However, at some point before
the instance is solved by a solver, the options must be stored as objects in memory.

Our OSOption class is the in-memory representation of an OSoL file or string.
There are multiple tools that can generate the in-memory representations automatically,
but sometimes ambiguity arises in binding certain elements from the XML schema to
the in-memory objects. Our implementation is intended as a reference implementation,
i.e., to give a guideline on how schemas should be bound into in-memory objects
explicitly and unambiguously.

The OSOption class has an API defined by a collection of get () methods for
extracting various components from problem options, and a collection of set ()
methods for modifying or generating optimization options.

Internally the option file can be represented as a C++ class exhibiting the same
tree structure as the XML file. In particular, the solver options are represented as an
array of 6-tuples, each tuple consisting of a name, solver, type, value, description and

@ Springer

Communication protocols for options and results in a distributed...

Schema complexType In-memory class
<xs:complexType name="SolverOptions"> < > class SolverOptions{
public:
SolverOptions();

<xs:sequence>
<xs:element name="solverOption" type="SolverOption"
minOccurs="0" maxOccurs= ded"/> < > SolverOption **solverOption;
</xs:sequence>
<xs:attribute name="numberOfSolverOptions" type="xs:nonNegativeInteger"

use="required"/> < > int numberOfSolverOptions;
</xs:complexType> < > }; //SolverOptions
<xs:complexType name="SolverOption"> < > class SolverOption{
public:
SolverOption();

<xs:sequence>

<xs:element name="item" type="xs:string"

minOccurs="0" maxOccurs="unl "< > std::string *item;

</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use='"required"/> <-------------- > std::string name;
<xs:attribute name="value" type="xs:string" use="optional"/> std::string value;
<xs:attribute name="solver" type="xs:string" use="optional"/> std::string solver;
<xs:attribute name="category" type="xs:string" use="optional"/> std::string category;
<xs:attribute name="type" type="xs:string" use="optional"/> <---- std::string type;
<xs:attribute name="description" type="xs:string" use="optional"/> std::string description;
<xs:attribute name="numberOfItems"

type="xs:nonlNegativeInteger" use="optional" default="0"/> <------ > int numberQOfItems;
</xs:complexType> }; //SolverOption
OSoL elements In-memory objects
<osol ...> 0SOption* osoption = new 0SOption();
<optimization> osoption->optimization = new OptimizationOption();
<solverOptions osoption->optimization->solverOptions = new SolverOptions();

number0fSolverOptions="2"> osoption->optimization->solverOptions->number0fSolverOptions = 2;
osoption->optimization->solverOptions->solverOption = new SolverOption#[2];

<solverQOption osoption->optimization->solverOptions->solverOption[0] = new SolverOption();
name="0siDoReducePrint" osoption->optimization->solverOptions->solverOption[0]->name="0siDoReducePrint";
solver="osi" osoption->optimization->solverOptions->solverOption[0]->solver = "osi"
type="0OsiHintParam" osoption->optimization->solverOptions->solverOption[0]->type = "OsiHintParam";
value="true"/> osoption->optimization->solverOptions->solverOption[0]->value = "true";

<solverOption osoption->optimization->solverOptions->solverOption[1] = new SolverOption();
name="0siHintTry" osoption->optimization->solverOptions->solverOption[1]->name = "OsiHintTry";
solver="osi" osoption->optimization->solverOptions->solverOption[1]->solver = "osi"

type="0OsiHintStrength"/> osoption->optimization->solverOptions->solverOption[1]->type = "OsiHintStrength";
</solverOptions>
</optimization>
</osol>

Fig.7 The <solverOptions> element and its representation as an in-memory object

category. No attempt is made by the parser to interpret an option in any way. Changes
by the solver developer to the solver options therefore do not require any changes to
the parser, the storage scheme, or the API.

The mapping between the OSoL schema and the OSOption class follows rules
that were described previously [15,19] and are modified here to illustrate their use
with OSoL (see Fig. 7).

— Each complexType (that is, an element in the XML schema that may contain other
elements or attributes) in an OSoL schema corresponds to a class in 0SOption.
Thus the OSoL schema’s complexType SolverOptions corresponds to the class
SolverOptions. Elements in an actual OSoL file then correspond to objects in
0SOption. Forexample, the <solverOptions> element that is of type SolverOp-
tions in an OSoL file corresponds to a solverOptions object, which is of class
SolverOptions.

— An attribute or element used in the definition of a complexType is a member of the
corresponding OSOption class, and the type of the attribute or element matches

@ Springer

H. Gassmann et al.

the type of the member. In Fig. 7, for example, name is an attribute of the OSoL
complexType named SolverOption, and name is a member of the OSOption
class SolverOption; both have type string.

— A sequence of identical schema elements corresponds to an array. For example,
in Fig. 7 the complexType SolverOptions has a sequence of <solverOption>
elements that are of type SolverOption, and the corresponding SolverOptions
class has a member solverOption that is an array of type SolverOption.

3.4 Solver communication

Eventually a framework such as Optimization Services will have to pass the informa-
tion to the solver in a form that the solver can understand. This depends on the solver
and on the API. We illustrate three available methods in increasing order of rigidity,
as they were encountered in the OS implementation.

3.4.1 Ipopt

Communication with Ipopt is very flexible, because the Ipopt API contains three meth-
ods, named SetIntegerValue, SetNumericValue and SetStringValue,
that can be used to communicate options as name/value pairs. The great advantage of
this approach is its extensibility. The solver developer is free to change the internal
options without any modifications to the OSoL parser or the solver interface. Let’s
say, for instance, that the solver developer wishes to implement a new option we will
call NewRule that affects the performance of Ipopt’s interior point algorithm, and
assume NewRule can take an optional integer parameter. This is recorded by the user
(upon receiving the pertinent information from the solver developer) as

<option name="NewRule" type="integer" solver="ipopt" value="5">

The parser reads and stores this into the data structure and passes it on to Ipopt
as a name/value pair—no interpretation of the semantics takes place, and neither the
parser nor the Ipopt interface needs to be modified. Ipopt decodes the option, checks
its validity, and acts appropriately. Another big advantage of using the API to set solver
options is that, e.g., the call

bool success = setIntegerValue("NewRule", 5);
gives instant feedback as to whether the option was declared properly. If any error
condition is detected, it is possible to stop the program gracefully.

3.4.2 Cbc

Slightly less flexible is the way in which OS communicates with Cbc. Cbc exposes
as part of its API a command line parser. This makes it possible to string together all
the options selected in an OSoL file into a long string and to pass that string to Cbc
for parsing. Again, there is no need for OS to know the meaning of the Cbc options.
However, the feedback mechanism available with Ipopt cannot be used. Cbc either

@ Springer

Communication protocols for options and results in a distributed...

terminates or continues execution with a faulty option name, and this behavior cannot
be controlled from the calling program. This is not very attractive, particularly if a
simple typing error (e.g., -maxNd instead of -maxN) causes an integer program to
run for several days on a remote computer before the error is detected.

3.4.3 Osi

The Osi interface is used by a number of open source (e.g., Clp [9], Dylp [22],
Symphony [34], Glpk [28]) and commercial (e.g., Cplex [4]) linear and integer
programming solvers. Unlike the other interfaces described above, it relies on an
enumeration of commonly available options. This limits its use, as only very common
options are supported. Options not covered by the enumeration (even very basic ones,
such as whether to use a simplex or interior point method) thus cannot be commu-
nicated. Extending the interface is also quite cumbersome, and the interface must be
aware of the options that can be passed, as well as their semantics. However, the devel-
opers of Osi are aware of these shortcomings and have announced a major overhaul
to address these issues [36].

3.4.4 Other interfaces

Other interfaces would be possible, based on exposing more or fewer methods in the
APIL In the extreme, the user could be directed to put all the solver options into a file
(with solver-specific syntax) and to supply only the location of the file to the solver.
This would again limit the knowledge needed by the OS interface concerning the
options, but it would be challenging to implement in a distributed environment.

3.5 Modeling language communication

It is important to keep in mind that the OS system is not intended to be used in stand-
alone fashion exclusively; often it is called from a modeling language such as AMPL
or GAMS. We implemented an AMPL solver interface called 0SAmplClient [19,
Sect. 5.1] which looks to AMPL like an ordinary solver and can be selected using the
AMPL command

option solver OSAmplClient;
AMPL communicates with the 0SAmp1Client intwo ways: the AMPL command
option OSAmplClient_options "...";

can be used to construct a command line for the OSAmplClient. The command
line options are intercepted and acted upon only locally, but they may include the
name and location of an OSoL file, which can be used to pass options through the
OSAmplClient to the solver.

On a subsequent

solve;

@ Springer

H. Gassmann et al.

command the optimization instance is constructed by AMPL and passed to
OSAmplClient as a string in .nl format. OSAmplClient translates this string
into OSIL and passes it on to the OSAgent or the OSSolverService (see Fig.
2). Some care must be exercised, since the .nl file may contain array-valued options
(indexed over variables, constraints and objectives) that may have to be combined with
other options found in the OSoL file.

A similar mechanism is available to call 0S from GAMS [44], and other interfaces
are forthcoming.

A new COIN-OR project, CMPL [38], is one of the first mathematical pro-
gramming languages to output OSiL and OSoL files directly. It also calls the
0SSolversService directly and reads OSrL files internally. In fact, one could con-
sider CMPL and OS to be a tightly coupled system.

4 The OS result standard

At least since the late 1950s linear programming solvers were able to send their
solutions to a printer, using a set format for the output they created. However, not even
the result format of the venerable MPS format (seee.g., [31]) was adopted as a standard.
All of today’s major optimization modeling systems have distinct nonstandard formats
in which they report the results of their computations. In a successful distributed
optimization framework, a standard for this purpose is as important as a standard for
communicating problem instances. Thus another part of our project has been to design
OSrL, an XML-based protocol that allows the efficient representation of solutions to
large-scale optimization problems of all kinds. This is complicated further by the fact
that both the solver developer and the user can influence the appearance of the solver
output.

4.1 Philosophy of solver result design

Different classes of optimization problems have different types of results. For exam-
ple, in linear programming, allowable increases and decreases are often reported for
constraint right-hand sides and objective function coefficients. This information is not
necessary for nonlinear programs since in this case these values are typically zero. In
the case of semidefinite programming, the result may be a matrix of values, rather than
just a vector, and so on. Hence, as in the case of solver options, flexibility is critical.

Moreover, since there are different layers of the software that act upon different
portions of the options selected by the user, it is possible that each layer produces
output corresponding to the actions it was directed to perform by the options. The
output from all layers should be transmitted back to the user in a common container
(e.g., a file) and should adhere to the same divisions. Another consideration is that it
should be easy to reuse the results from one optimization as options in a subsequent
run, or to pass the output to other software such as analyzers or report generators.

For instance, it is quite natural to want to use the optimal values of one optimization
as the starting point for the solution of a slightly modified problem. Common formats
for solution vectors and starting points make this process easier.

@ Springer

Communication protocols for options and results in a distributed...

In addition, it is useful to adhere to the other design principles formulated in Sect.
3.1, namely, the result format should be extensible, handle sparsity (for vector-valued
results such as variable values or dual values), respect the separation of syntax and
semantics, and be quick and easy to parse.

4.2 Description of the OSrL schema

In keeping with the previous section we consciously designed OSrL to have the same
top level structure as OSoL (see Fig. 8). This includes the following main elements:

— A resultHeader section that gives the same information as the OSoL header:
information about the file itself, its creator and creation date, licensing information,
as well as any other documentation desired;

— general information, which includes the status of the process (i.e., whether
the solver terminated normally or the process was stopped due to one of several
possible error conditions);

— system results containing information about the computer system on which the
solver is running;

— service results, which are statistics such as the time since the service was last
restarted, the number of jobs completed, the server utilization rate, etc.;

Fig. 8 The top level elements in r- - — — — — = — 7
OSrL (printed from Altova OSrL
XMLSpy®)

il .
1 servies BJ

version 2.0

is mainly the output from the
OS service.

since version 2.0

|
|
|
|
|
|
|
|
|
‘ since version 2.0. Note: this ‘
\
| |
[‘
1 Job
\
‘
‘ 7777777
— Wr optimization |
since version 2.0, except for
the osal child element, which ‘
is under proposal. Note: this
is mainly the output from the ‘
solver. ‘

@ Springer

H. Gassmann et al.

— job results, including timing information, resource usage statistics, etc., of jobs
launched by the service;

— optimization results. These are the results from the optimization, including
information about the solution or solutions (values of primal and dual variables,
range information, and whatever other information the solver developers decided
to make available to the user).

Our design goal has again been geared towards simplicity while maximizing flexi-
bility in reporting optimization results.

4.3 Internal representation: the OSResult class

The internal representation, a C++ class called OSResult, follows the same mapping
rules as the OSOption class described in Sect. 3.3. We omit an example in order to
preserve space.

4.4 Solver communication

The local solver server (see Fig. 2) must retrieve from the remote system all the results
and output that the user requested and that the solver chooses to report. Typically these
include the optimal value of the objective function along with the values assigned to the
decision variables in the optimal decision variables. Other items that may be returned
(always or on demand) include dual variable values, range information, basis status,
to name a few. These items are returned through the solver’s result API and are then
stored by the solver interface into the appropriate slots within the OSResult class.

However, solvers are often capable of generating output that is not returned in the
API. For users who want to have this output made available to them, we designed a
separate mechanism to capture the entire solver-generated output and return it as a
single item in the OSrL file (tis output cannot be captured by the solver interface and
must make use of system directives. It is therefore not reported in the <optimization>
element).

Figure 9 shows selected portions of the OSrL file generated from a call to the
COIN-OR solver Cbc. This figure also illustrates the flexibility of our design. Most of
this output is generated from the solver result API, with one exception: The <other>
result named stdout_capture inthe <job> element returns the full Cbc output as
written to the remote system’s standard output device. This element would normally
not be included in the OSrL file, but it is available at the user’s request through the
inclusion of the job option get_stdout described in Sect. 3.2.

4.5 Modeling language communication

The contents of the OSrL file may have to be communicated back to the algebraic
modeling language. This can take place via the writing and reading of solution files
or in memory, by accessing the API of either the AML or the OS system. The most
important data items are undoubtedly the values of the primal and dual variables, but

@ Springer

Communication protocols for options and results in a distributed...

<?xml version="1.0" encoding="UTF-8"7><7xml-stylesheet type="text/xsl"
href="http://www.coin-or.org/0S/stylesheets/0SrL.xslt"?>

<osrl xmlns="os.optimizationservices.org" L. >

<general>
<generalStatus type="normal"/> <-- solver terminated without error
<instanceName>P0033</instanceName>
<serviceName>

Optimization Services Solver
Main Authors: Horand Gassmann, Jun Ma and Kipp Martin
Distributed under the Eclipse Public License
0S Version: 2.4.1
Build Date: Jun 1 2012
SVN Version: 4502
</serviceName>
<solverInvoked>COIN-OR cbc</solverInvoked>
</general>
<job>
<timingInformation numberOfTimes="1">
<time type="elapsedTime" unit="second" category="total">
4.9999999999999996e-2</time>
</timingInformation>
<otherResults numberOfOtherResults="1">
<other name="stdout_capture"> <-- solver-generated output starts here

Welcome to the CBC MILP Solver

Cbc0038I Pass 1: suminf. 0.93926 (3) obj. 2896.64 iterations 6

Result - Stopped on node limit

Objective value: 3347.00000000
Lower bound: 2819.357
Gap: 0.19
</other>
</otherResults>
</job>
<optimization number0OfSolutions="1" numberOfVariables="33" numberOfConstraints="16">
<solution>
<status type="feasible" description="node limit reached"/>
<variables >
<values numberOfVar="33">
<var idx="0">1</var> <-- x[0] =1
</values>
</variables>
<objectives >
<values number0fObj="1">
<obj idx="-1">3347</obj>
</values>
</objectives>
</solution>
</optimization>
</osrl>

Fig. 9 Portions of a sample OSrL file (with annotations)

@ Springer

H. Gassmann et al.

if the solver computes other information, such as range information or basis status,
this must also be transferred.

4.5.1 AMPL

AMPL has an interactive shell that takes commands from the keyboard sequentially.
Once the user types

solve;

as in Sect. 3.5, AMPL must do several things: it instantiates the current problem from
the model and data specified by the user; writes the instance into a .nl file, along with
any array-valued information such as starting points and starting basis information;
starts a shell process and builds a command line for the solver to run inside the shell;
starts a listener that waits until the solver process has finished and has returned a file
in the AMPL .sol format; and finally reads the .sol file and transfers its contents into
the internal AMPL data structure. Once the control is returned to the user—assuming
there were no errors—the user can inspect the returned solution, make modifications
to the model, start another solve, etc. Some of these steps can even be automated using
the AMPL command language and looping constructs.

From the point of view of the OS software, the translation process from solver
output to AMPL .sol file is a two-step process. First the solver interface converts the
solver result to OSrL format, and then the AMPL interface processes the OSrL data
and writes the .sol file.

4.5.2 GAMS

A very similar mechanism is employed by GAMS. Since GAMS release 23.6, an
OSSolverService is available for remote solving of GAMS problems over the
Internet. On Unix systems only a command line interface is provided. The com-
mand line executable reads GAMS input, prepares the optimization instance, starts
the solver, and processes the output into a report file in a GAMS-specific format. If
OSSolverServices is used as the solver, an optional solution file in OSrL format
can also be retained. On Windows systems GAMS also provides an interactive devel-
opment environment (IDE), which produces the same output and in addition parses
the solution file.

5 Software implementation and availability

We have presented two XML schemas for describing solver options and solver results
in a standard way. The formats can communicate with several modeling languages as
well as a growing number of solvers. Flexibility, extensibility, scalability, portability,
conciseness and generality have all been emphasized in the design. We have shown that
our approach is practical and is especially useful in the context of remote computing.
We implemented our proof-of-concept system OS as a COIN-OR project. The system
can be called from the modeling systems AMPL, GAMS and CMPL. It links to several

@ Springer

Communication protocols for options and results in a distributed...

COIN-OR solvers (Clp, Cbc, Ipopt, Bonmin, Couenne, SYMPHONY, DyLP) and has
been successfully hooked to Glpk, Lindo, Cplex, Gurobi and Mosek. The system
supports both local and remote access. Several remote servers exist although none of
them is particularly stable at this point. We maintain a list of valid URLs in the OS
User’s Manual (https://projects.coin-or.org/svn/OS/trunk/OS/doc/osUsersManual).

Source and executables are available from the website https://projects.coin-or.org/
OS. The website also contains links to further resources, such as descriptions of the
schemas alluded to in this paper, an overview of the OS project and related items.

Work is ongoing to extend the system to incorporate other classes of problems
(second-order cone programming, matrix programming, stochastic programming).
We are also studying the use of the same or similar mechanisms to communicate
not just with optimization solvers, but with other analysis tools such as analyzers or
simulation software.

Acknowledgments The authors are grateful to the associate editor and three anonymous referees for their
handling of the paper. Their careful reading of and detailed comments on two previous versions have vastly
improved the presentation. Any remaining shortcomings are the sole responsibility of the authors.

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: WWW ’08:
Proceedings of the 17th international conference on the World Wide Web, pp. 795-804 (2008)

2. Altova: XMLSpy XML Editor. http://www.altova.com/xmlspy.html. Accessed 2 May 2014

3. Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS: a User’s Guide. GAMS Development
Corporation. Washington, DC. http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf (2011)

4. Cplex: IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/. Accessed 14 June 2013

5. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. Comput. Sci. Eng. IEEE 5, 68-75 (1998)

6. de la Banda, M.G., Marriott, K., Rafeh, R., Wallace, M.: The modelling language Zinc. In: Principles
and practice of constraint programming—CP, Lecture Notes in Computer Science, vol. 4204, pp.
700-705. Springer, New York (2006)

7. Finin, T., McKay, D., Fritzson, R., McEntire, R.: KQML: an information and knowledge exchange
protocol. In: Fuchi, K., Yokoi, T. (eds.) Knowledge building and knowledge sharing. Ohmsha and IOS
Press, Beijing (1994)

8. Forrest, J.: Cbc, a COIN-OR project. https://projects.coin-or.org/Cbc. Accessed 14 June 2013

9. Forrest, J.: Clp project wiki. https://projects.coin-or.org/Clp. Accessed 14 June 2013

10. Foundation for Intelligent Physical Agents: FIPA ACL message structure specification. http:/www.
fipa.org/specs/fipa00061/SC00061G.html (2002)

11. Foundation for Intelligent Physical Agents: Welcome to FIPA! http://www.fipa.org/ (2014)

12. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a modeling language for mathematical programming,
2nd edn. Brooks/Cole Publishing Company/Cengage Learning (2002)

13. Fourer, R., Lopes, L., Martin, K.: LPFML: A W3C XML schema for linear and integer programming.
INFORMS J. Comput. 17, 139-158 (2005)

14. Fourer, R., Ma, J., Martin, K.: Optimization services: a framework for distributed optimization. Oper.
Res. 58, 1624-1636 (2010)

15. Fourer, R., Ma, J., Martin, K.: OSiL: an instance language for optimization. Comput. Optim. Appl.
45(1), 181-203 (2010)

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable Object-Oriented
Software. Addison-Wesley, Boston (1994)

17. GAMS Development Corporation: Cplex solver manual. http://www.gams.com/dd/docs/solvers/cplex.
pdf. Accessed 14 June 2013

@ Springer

https://projects.coin-or.org/svn/OS/trunk/OS/doc/osUsersManual
https://projects.coin-or.org/OS
https://projects.coin-or.org/OS
http://www.altova.com/xmlspy.html
http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Clp
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/specs/fipa00061/SC00061G.html
http://www.fipa.org/
http://www.gams.com/dd/docs/solvers/cplex.pdf
http://www.gams.com/dd/docs/solvers/cplex.pdf

H. Gassmann et al.

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44.

45.
46.

47.
48.
49.
50.
51.

Gassmann, H., Ma, J., Martin, K.: OS project wiki. https://projects.coin-or.org/OS. Accessed 4 May
2014

Gassmann, H., Ma, J., Martin, K., Sheng, W.: Optimization Services 2.6 user’s manual. Technical
report, COIN-OR. https://projects.coin-or.org/svn/OS/releases/2.6.0/OS/doc/osUsersManual.pdf
Gay, D.M.: Hooking your solver to AMPL. Technical Report 97-4-06, Computing Sciences Research
Center, Bell Laboratories, Murray Hill. http://www.ampl.com/REFS/hooking2.pdf (1997)
Griininger, M., Menzel, C.: The process specification language (PSL): theory and applications. Al
Mag. 24, 63-74 (2003)

Hafer, L.: DyLP project wiki. https://projects.coin-or.org/DyLP. Accessed 14 June 2013
Kristjansson, B.: http://www.maximalsoftware.com/mpl/. Accessed 14 June 2013

LINDO Systems Inc. http://www.lindo.com/. Accessed 14 June 2013

LINDO Systems Inc: An overview of LINGO. http://www.lindo.com/index.php?option=com_
content&view=article&id=2&Itemid=10. Accessed 29 November 2011

Ip_solve development group: MPS file format. http://Ipsolve.sourceforge.net/5.1/mps-format.htm.
Accessed 14 June 2013

Ma, J.: Optimization Services (OS). Ph.D. thesis, Industrial Engineering and Management Sciences,
Northwestern University (2005)

Makhorin, A.: GLPK (GNU Linear Programming Kit). http://www.gnu.org/s/glpk/. Accessed 14 June
2013 (2008)

Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of
the Zinc modelling language. Constraints 13(3), 229-267 (2008)

Marriott, K., Stuckey, P.J.: A minizinc tutorial. http://www.minizinc.org/downloads/doc-latest/
minizinc-tute.pdf. Accessed 11 November 2014

Murtagh, B.A.: Advanced Linear Programming. McGraw-Hill, USA (1981)

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a standard
CP modelling language. In: Principles and Practice of Constraint Programming CP 2007, Lecture Notes
in Computer Science, vol. 4741, pp. 529-543. Springer (2007)

Open Grid Forum: https://www.ogf.org/ogf/doku.php/about. Accessed 23 May 2014

Ralphs, T.K.: SYMPHONY project wiki. https://projects.coin-or.org/SYMPHONY. Accessed 14 June
2013

Riehle, D.: Framework design: arole modeling approach. Ph.D. thesis, ETH Ziirich, Switzerland (2000)
Saltzman, M., Hafer, L.: Personal communication. Accessed 15 November 2011

SAP AG: Discovering services in the services registry. http://help.sap.com/saphelp_nwpi711/helpdata/
en/2e/8526937af346a0bc446905ea964ceb/content.htm (2014)

Steglich, M.: CMPL—COIN Mathematical Programming Language. https://projects.coin-or.org/
Cmpl. Accessed 14 June 2013

The Apache Software Foundation: The Apache Xerces Project. http://xerces.apache.org/. Accessed 14
June 2013 (2011)

The World Wide Web Consortium (W3C): Document Object Model (DOM). http://www.w3.org/
DOM/. Accessed 14 June 2013 (2005)

The World Wide Web Consortium (W3C): SOAP version 1.2 Part 1. http://www.w3.org/TR/
soapl2-partl/. Accessed 14 June 2013 (2007)

The World Wide Web Consortium (W3C): Extensible Markup Language (XML) 1.0 (Fifth edition).
http://www.w3.0org/TR/REC-xml. Accessed 14 June 2014 (2008)

The World Wide Web Consortium (W3C): The Extensible Stylesheet Language Family (XSL). http://
www.w3.org/Style/XSL/. Accessed 14 June 2013 (2011)

Vigerske, S.: GAMSlinks project wiki. https://projects.coin-or.org/GAMSlinks. Accessed 14 June
2013

Waechter, A.: Ipopt project wiki. https://projects.coin-or.org/Ipopt. Accessed 14 June 2013

Welch, V., (ed.): Globus Toolkit Version 4 Grid Security Infrastructure: a standards perspective. The
Globus Alliance (2005)

Wikipedia: Design pattern. http://en.wikipedia.org/wiki/Design_pattern. Accessed 23 May 2014
Wikipedia: Document object model. http://en.wikipedia.org/wiki/Document_Object_Model
Wikipedia: Java Architecture for XML Binding. http://en.wikipedia.org/wiki/JAXB

Wikipedia: Open database connectivity. http://en.wikipedia.org/wiki/Open_Database_Connectivity
Wikipedia: Open grid services architecture. http://en.wikipedia.org/wiki/Open_Grid_Services_
Architecture. Accessed 23 May 2014

@ Springer

https://projects.coin-or.org/OS
https://projects.coin-or.org/svn/OS/releases/2.6.0/OS/doc/osUsersManual.pdf
http://www.ampl.com/REFS/hooking2.pdf
https://projects.coin-or.org/DyLP
http://www.maximalsoftware.com/mpl/
http://www.lindo.com/
http://www.lindo.com/index.php?option=com_content&view=article&id=2&Itemid=10
http://www.lindo.com/index.php?option=com_content&view=article&id=2&Itemid=10
http://lpsolve.sourceforge.net/5.1/mps-format.htm
http://www.gnu.org/s/glpk/
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
http://www.minizinc.org/downloads/doc-latest/minizinc-tute.pdf
https://www.ogf.org/ogf/doku.php/about
https://projects.coin-or.org/SYMPHONY
http://help.sap.com/saphelp_nwpi711/helpdata/en/2e/8526937af346a0bc446905ea964ceb/content.htm
http://help.sap.com/saphelp_nwpi711/helpdata/en/2e/8526937af346a0bc446905ea964ceb/content.htm
https://projects.coin-or.org/Cmpl
https://projects.coin-or.org/Cmpl
http://xerces.apache.org/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/REC-xml
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
https://projects.coin-or.org/GAMSlinks
https://projects.coin-or.org/Ipopt
http://en.wikipedia.org/wiki/Design_pattern
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/JAXB
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Grid_Services_Architecture
http://en.wikipedia.org/wiki/Open_Grid_Services_Architecture

Communication protocols for options and results in a distributed...

52. Wikipedia: Universal description discovery and integration. http://en.wikipedia.org/wiki/Universal_
Description_Discovery_and_Integration

53. Wikipedia: Web services discovery. http://en.wikipedia.org/wiki/Web_Services_Discovery
54. Williams, H.P.: Model building in mathematical programming, 5th edn. Wiley, New York (2013)

@ Springer

http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/Web_Services_Discovery

	Communication protocols for options and results in a distributed optimization environment
	Abstract
	1 Introduction
	2 Theory and design principles
	2.1 Separation of functionality
	2.2 In-memory representation and API design
	2.3 Solver hierarchies
	2.4 Representation detail and standards
	2.5 Use of XML and schemas to specify a standard

	3 The OS option standard
	3.1 Philosophy of option design
	3.2 Description of the OSoL schema
	3.3 Internal representation: the OSOption class and its members
	3.4 Solver communication
	3.4.1 Ipopt
	3.4.2 Cbc
	3.4.3 Osi
	3.4.4 Other interfaces

	3.5 Modeling language communication

	4 The OS result standard
	4.1 Philosophy of solver result design
	4.2 Description of the OSrL schema
	4.3 Internal representation: the OSResult class
	4.4 Solver communication
	4.5 Modeling language communication
	4.5.1 AMPL
	4.5.2 GAMS

	5 Software implementation and availability
	Acknowledgments
	References

