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Distributed computing technologies such as Web Services are growing rapidly in impor-

tance in today’s computing environment. In the area of mathematical optimization, it is

becoming increasingly common to separate modeling languages from optimization solvers.

In fact, the modeling language software, solver software, and data used to generate a model

instance might reside on different machines using different operating systems. Such a dis-

tributed environment makes it critical to have an open standard for exchanging model in-

stances.

In this paper we present OSiL (Optimization Services instance Language), an XML-

based computer language for representing instances of large-scale optimization problems

including linear programs, mixed-integer programs, quadratic programs, and very general

nonlinear programs. OSiL has two key features that make it much superior to current

standard forms for optimization problem instances. First, it uses the object-oriented features

of XML schemas to efficiently represent nonlinear expressions. Second, its XML schema

maps directly into a corresponding in-memory representation of a problem instance. The in-

memory representation provides a robust application program interface for general nonlinear

programming, facilitates reading and writing postfix, prefix, and infix formats to and from

the nonlinear expression tree, and makes the expression tree readily available for function

and derivative evaluations.

Key words: linear programming; nonlinear programming; modeling languages; information

systems; web services; XML

Acknowledgment: This work was supported in part by National Science Foundation grants

CCR-0082807 and DMI-0322580 to Northwestern University.

1



1. Introduction

Web Services and other distributed computing technology standards are becoming increas-

ingly important to Internet applications. This trend has growing implications in large-scale

optimization, where modeling language software, solver software, and data used to generate

a model instance may reside on different machines using different operating systems.

Such a distributed environment makes it critical to have an open standard for exchanging

problem instances. By instance we mean a particular problem for which answers can be

sought in the form of specific values for decision variables, in contrast to a model that is

a description of a broad class of optimization problems. Typically a model is a symbolic,

general, concise, and understandable representation of an optimization problem, whereas an

instance is an explicit, specific, verbose, and convenient description of a problem’s objective

and constraints [13]. Thus a model plus data is required to generate an instance. A linear

programming model is typically described by linear algebraic expressions, for example, while

the corresponding instance is represented as a list of nonzero coefficients of variables in the

objective and constraint expressions, along with bounds on the variables and the constraint

expressions.

Current optimization software is hobbled by its reliance on a plethora of input formats,

as can be seen by even a cursory look at the list of solvers available on the NEOS Server

([5, 6] or www-neos.mcs.anl.gov/neos). The nearly 50 solvers in the NEOS lineup require

instance inputs of about a dozen different kinds, including MPS [16] and LP formats for linear

and integer programming, SMPS extensions to the MPS format for stochastic programming,

formats such as SDPA specific to semidefinite programming, DIMACS min-cost flow and

other formats for network linear programming, and proprietary formats used by two modeling

language processors. Other solvers recognize input programmed as functions in various

languages including Fortran, C, C++, and Matlab.

This paper presents OSiL, an XML-based language designed as a new standard for rep-

resenting optimization problem instances. OSiL serves as an instance-level format flexible

enough to handle linear and mixed-integer programs, quadratic programs, and very general

nonlinear programs. Its underlying principles are sufficiently powerful to allow for future ex-

tensions for such problem areas as cone, constraint, disjunctive, stochastic, and semidefinite

programming. Thus it has the potential to serve as a new standard that subsumes the many

currently used input formats.
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OSiL’s definition as an XML vocabulary makes it superior to current formats for use in

the increasingly common distributed optimization contexts that we have cited. The OSiL

standard also incorporates an application programming interface (an API) that provides

solvers with a standard way of accessing instance data. The combination of a common XML

format for instance representation and a common API for data access offers clear benefits

to the optimization community. Modeling language developers are not taxed with creating

a separate “driver” for each supported solver, and solver developers can use essentially the

same interface to connect to all modeling systems and applications.

A number of new standards have been proposed (if not widely adopted) in recent years.

Various extensions of the MPS format to nonlinear programming have been put forward,

notably the xMPS format described by Halldórsson, Thorsteinsson and Kristjánsson [15].

We are also not the first to incorporate XML into this area. Fourer, Lopes and Martin [12]

propose the LPFML XML schema for representing instances of mixed-integer linear pro-

grams; Chang [4] and Kristjánsson [17] have also proposed XML representations for linear

programming instances. Ezechukwu and Maros [8] describe an Algebraic Markup Language

that uses XML to describe the model rather than the instance, and Bradley [3] introduces

an XML markup grammar for networks. See also [2] for a good overview of the uses of XML

technologies in operations research.

New API proposals have also been a subject of recent activity. The extensive COIN-

OR (COmputational INfrastructure for Operations Research) project (Lougee-Heimer [19]

or www.coin-or.org) includes the OSI (Open Solver Interface) library, an API for linear

programming solvers, and NLPAPI, a subroutine library with routines for building nonlinear

programming problems. Another nonlinear interface, MOI (Modeler-Optimizer Interface),

is proposed along with xMPS in [15]; it specifies the format for a callable library based

on representing the nonlinear part of each constraint and the objective function in postfix

(reverse Polish) notation [1] and then assigning integers to operators, characters to operands,

and integer indices to variables so that the data structure corresponds to the implementation

of a stack machine. A similar interface is used in the LINDO API [18].

In comparison to other proposals, our OSiL instance representation is notable for its

broader range of representational options, very flexible API based on an expression-tree rep-

resentation, and open source libraries founded on modern XML technology. After providing

the requisite background for XML in the next section, we present the OSiL language in detail

in Section 3. We first explain the aspects of the language that are common to all optimiza-
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tion instances, and then describe the OSiL representations of linear programs, quadratic

programs, and general nonlinear programs. A key aspect of our approach to representing

nonlinear terms in an optimization instance is to use XML elements that all derive from one

base type of element. This idea is developed in Section 3.4.

The OSiL schema defines an XML vocabulary for storing an optimization instance. This

instance may persist in a repository of test problems, or it may be encapsulated in a SOAP

(Simple Object Access Protocol — a high-level networking protocol for encapsulating XML

data) envelope for use in a distributed computing environment. However, an optimization

instance represented in OSiL must, at some point, have an in-memory representation in or-

der to be useful to solvers. In Section 4 we describe the OSInstance class for this purpose.

The OSInstance class has an API consisting of get() and set() methods that are used

for extracting various components of the optimization instance, or for creating and modi-

fying instances in memory. A key aspect of the in-memory instance representation is the

OSExpressionTree class, which is used for the internal representation of the nonlinear part

of an optimization instance. As explained in Section 4.2, OSExpressionTree is designed

for ease of parsing in order to generate instances in varied postfix, prefix, and infix formats

amenable to solvers, and also for ease of function and derivative evaluation when required

by solvers.

In the concluding remarks of Section 5, we discuss extensions of OSiL to other problem

types, which are to be described in subsequent papers. OSiL is moreover a part of a much

broader Optimization Services research agenda, described by Ma [20], which provides a host

of similarly-named XML languages for use in optimization over the Internet. In addition

to OSiL (for Optimization Services instance Language), these include OSrL (Optimization

Services result Language) for representing problem solutions and results, and OSoL (Opti-

mization Services option Language) for communicating options to solvers.

2. XML Background

The logic and advantages of using XML as a markup language to represent optimization

instances are set forth by Fourer, Lopes and Martin [12]. See also the excellent general

overview of XML by Skonnard and Gudgin [23]. This section introduces aspects of XML

relevant to this paper, including the basics of XML files, parsing, and schemas.
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2.1. XML Files

In this paper we propose storing optimization problem instances as XML files. Consider the

following problem instance that is a modification of an example of Rosenbrock [21]. The

corresponding OSiL representation of this problem is given in the Appendix.

Minimize (1 − x0)
2 + 100(x1 − x2

0)
2 + 9x1 (1)

Subject to x0 + 10x2
0 + 11x2

1 + 3x0x1 ≤ 25 (2)

ln(x0x1) + 7x0 + 5x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of

0. For our XML-based standard format, OSiL, we propose to represent this information in

an XML-formatted file as shown in Figure 1.

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 1: The <variables> element for the example (1)–(4).

An XML file is a text file that contains both markup and data. In the Figure 1 XML file

there are two types of markup, elements (or tags) and attributes that describe the elements.

Specifically, there are a <variables> element and two <var> elements. Each <var> element

has attributes lb, name, and type that describe properties of a decision variable: its lower

bound, “name”, and domain type. The actual values of the attributes, such as "0" (zero) for

lb and "C" (denoting a continuous domain) for type, are the data in the file. An attribute

may also assume a default value when it does not appear; for example, the <var> element

has a ub attribute that is absent in Figure 1 and that consequently takes the default value

INF (denoting ∞).

2.2. XML Schemas

To be useful for communication between solvers and modeling languages, the XML instance

files must conform to a standard. Parsing optimization instance files in a meaningful way
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is impossible otherwise. A representation standard is imposed through the use of a W3C

XML Schema. The W3C, or World Wide Web Consortium (http://www.w3.org), promotes

standards for the evolution of the web and for interoperability between web products. XML

Schema (http://www.w3.org/XML/Schema) is one such standard. A schema specifies the

elements and attributes that define a specific XML vocabulary. The W3C XML Schema is a

schema for schemas; it specifies the elements and attributes for a schema that in turn specifies

elements and attributes for an XML vocabulary such as OSiL. By analogy to object oriented

programming, a schema is akin to a header file in C++ that defines the members and methods

in a class. An XML file that conforms to the schema is called valid. Just as a class in an

object oriented programming language very explicitly describes member and method names

and properties, a schema explicitly describes element and attribute names and properties.

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables" type="xs:positiveInteger" use="required"/>

</xs:complexType>

Figure 2: The Variables complexType in the OSiL schema.

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 3: The Variable complexType in the OSiL schema.
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Figure 2 is a piece of our schema for OSiL. In W3C XML Schema jargon, Figure 2 defines

what is known as a complexType. A complexType specifies elements and attributes that are

allowed to appear in a valid XML instance file such as the one illustrated in Figure 1. In

particular, Figure 2 defines the complexType named Variables, which comprises an element

named <var> and an attribute named numberOfVariables. The numberOfVariables at-

tribute is of a standard type positiveInteger, whereas the <var> element is a user-defined

complexType named Variable. Thus the complexType Variables contains a sequence of

<var> elements that are of complexType Variable. OSiL’s schema must also provide a

specification for the Variable complexType, which is shown in Figure 3.

We follow the convention that elements and attributes in the XML instance file begin

with lowercase letters, whereas the user-defined complexTypes begin with uppercase letters.

A complexType is the XML schema analogue of a class in an object-oriented programming

language, while an element (such as <var>) in the XML instance file corresponds to an in-

stantiated object of a class (such as Variable). Thus we will often refer to complexTypes

as classes and to elements as objects. This object-oriented analogy is continued in Sec-

tion 4 where we define an OSInstance class that is the in-memory representation of an OSiL

instance file.

Our definition of the Variable complexType allows only the attributes listed in Figure 3

to be present in a <var> element. All of these attributes are specified as optional. Properties

of the attributes are explicitly defined: the lb attribute must be a double precision number,

for example, and the type must be a string value that is either C, B, I, or S. (These designate

continuous, binary, integer, and string-valued variables, respectively.) We discuss the OSiL

schema in further detail in Section 3.

The key benefit of defining the OSiL schema is to impose a problem instance standard

that can be applied by parsers to validate instance files. If a problem instance is valid then

the parser knows, for example, exactly where in the instance file to locate information on

the constraint upper bounds or to determine if there are integer variables present in the

model. However, as useful as validation is, the concept of validation is about syntax rather

than semantics. For example, a problem instance file may be valid for the OSiL schema even

though it contains a value for the attribute numberOfVariables in the <variables> element

that is not consistent with the number of <var> elements in the <variables> section; to

catch this error requires an additional check in the parser.
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3. The OSiL Schema

Our approach is to write a nonlinear optimization problem as a linear program plus a collec-

tion of quadratic and more general nonlinear terms. We begin by describing the aspects of

OSiL that are the same for all problem instances. Then we describe how linear, quadratic,

and general nonlinear problems are represented.

3.1. OSiL Basics

We illustrate the OSiL schema using the example given by equations (1)–(4). The actual

schema file resembles the XML excerpts in Figures 2 and 3, except that it is much longer and

harder to read; it may be found at www.optimizationservices.org/schemas/OSiL.xsd.

Instead we depict the schema and its parts by means of tree diagrams, with schema elements

as the nodes. Specialized schema development software lets people work directly with these

graphical representations.

Figure 4 depicts the top two levels of the OSiL schema in tree-diagram form. It shows

that the <osil> root element has two child elements. The first element, <instanceHeader>,

and its child elements are depicted in Figure 4, and the corresponding part of the OSiL

file for the instance (1)–(4) is shown in Figure 5. The child elements <name>, <source>

and <description>, of the parent <instanceHeader>, describe general properties of the

problem and require no further explanation.

In Figure 4 the solid rectangles denote elements. The “ellipsoid” icon containing four

Figure 4: The OSiL schema.
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<instanceHeader>
<name>Modified Rosenbrock</name>
<source>Computing Journal3:175-184, 1960</source>
<description>Rosenbrock problem with constraints</description>

</instanceHeader>

Figure 5: The instanceHeader element for instance (1)–(4).

small rectangles denotes a sequence of elements. Thus the <instanceHeader> element con-

sists of a sequence of at most three elements, <name>, <source>, and <description>. The

0..1 icon below a rectangle indicates that the corresponding element is optional, but that

if present it may appear only once. For example, the <name> element is optional and may

appear at most once. If no icon appears below the rectangle, then that element must appear

exactly once. For example, there must be exactly one <instanceHeader> element in a valid

OSiL file.

The second child element of the OSiL root element is the <instanceData> element,

illustrated in Figure 6. This element holds all problem data, and so has a more complicated

structure.

The first child element of <instanceData> is a <variables> element that consists of

a sequence of <var> elements, one for each variable in the problem instance. Attributes

of these elements provide standard information such as domain type, bounds, and optional

names, as illustrated for our example in Figure 7.

The second child element of <instanceData> is an <objectives> element that consists

of a sequence of <obj> elements, one for each potential objective function in the problem

instance. Each <obj> has a set of attributes that include name, maxOrMin, constant, and

weight. If the objective function has linear terms, these are stored in the <coef> child

elements of each <obj> element. See for example, how in Figure 7 the linear term 9x1 in the

objective function in Equation 1 is represented.

The third child element of <instanceData> is a <constraints> element that consists of

a sequence of <con> elements, one for each constraint in the problem instance. The most

important attributes of these elements are the constraint lower and upper bounds, as also

illustrated in Figure 7. A constraint is an equality when its bounds are equal, and is a

one-sided inequality when one or the other bound is absent. Hence the bound attributes

provide the “right-hand side” values for the constraints.
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Figure 6: Detail of the instanceData element.
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<variables number="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>
<objectives number="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
<coef idx="1">9</coef>

</obj>
</objectives>
<constraints number="2">

<con ub="25.0"/>
<con lb="10.0"/>

</constraints>

Figure 7: The <variables>, <objectives>, and <constraints> elements for (1)–(4).

The <variables> element is required and must contain at least one <var> element. The

<constraints> element is optional because OSiL allows for unconstrained problems, which

are of interest when nonlinear terms are specified in the objective as explained in Section 3.4.

3.2. Representing Linear Programs

Almost invariably, most of the linear constraint coefficients in a large optimization problem

are zero. Thus OSiL adopts the usual approach of recording only the nonzeros. This is

done by use of Figure 6’s <linearConstraintCoefficients> element, which follows the

sparse coefficient matrix storage scheme of the earlier LPFML schema [12]. The coefficient

matrix is stored using three arrays. Each one of these arrays is represented by a child

element of <linearConstraintCoefficients>: an array of nonzero coefficients <value>, a

corresponding array of row indices <rowIdx>, and a pointer array <start> that indicates

where each row begins in the previous two arrays. Individual array entries are specified by

<el> children (not shown in Figure 6).

Figure 8 depicts the <linearConstraintCoefficients> element for the two constraints

of the instance (1)–(4). There are three linear coefficients, one from the linear first constraint

x0 + 3x0x1 ≤ 25, and two from the linear part of the second constraint ln(x0x1) + 7x0 +

5x1 ≥ 10.

The <linearConstraintCoefficients> element uses <rowIdx>when storing the matrix

column-wise (and <colIdx> when storing the matrix row-wise). (Note in Figure 6 the
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<linearConstraintCoefficients numberOfValues="3">
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.0</el><el>7.0</el><el>5.0</el>
</value>

</linearConstraintCoefficients>

Figure 8: The <linearConstraintCoefficients> element for constraints (2)–(4).

“switch” icon immediately preceding the <rowIdx> and <colIdx> element icons. This icon

denotes a choice element group.) With modern implementations offering options to set

up the dual problem or to speed up calculations by using both row-wise and column-wise

lists, it makes sense to provide for row-wise specification of coefficients in any new standard

form.

3.3. Quadratic Programming

Any quadratic expression is easily represented as a general nonlinear expression using the

format described in Section 3.4. Nevertheless there are good reasons for including a special

quadratic expression representation in OSiL. First, each quadratic term admits a particularly

compact representation as a list of index-index-value triples. Moreover there are numerous

specialized solvers for the case in which the objective and all constraints are restricted to be

linear or quadratic. These solvers look for the quadratic as well as the linear terms to be

passed to them in full at invocation, rather than being evaluated at particular iterates as

would be required by solvers that take more general smooth nonlinear functions. A special

representation of quadratic terms in a problem instance facilitates passing the full list of

quadratic terms to the solver.

In OSiL, a <qTerm> element is used to represent each quadratic term. It has two required

integer attributes that specify the variable indices in the quadratic term. The coefficient of

the quadratic term is specified using either a third optional real attribute or by a single child

element. An added advantage of using the <qTerm> elements is that if an analyzer applied

to the problem instance discovers that the only nonlinear terms are <qTerm> terms, it can
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<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3"/>

</quadraticCoefficients>

Figure 9: The <quadraticCoefficients> element for constraint (2).

classify the problem as a quadratic program. Figure 9 illustrates a representation of the

quadratic term for constraint (2) of our example.

3.4. Nonlinear Terms and the OSnL Schema

The parts of OSiL shown so far are sufficient to describe a linear objective and constraints,

with any combination of continuous and integer variables, and quadratic terms. General

nonlinear terms are handled separately, by defining an OSnL schema that is imported by

the OSiL schema. It is not necessary to have a separate schema for representing nonlinear

terms; we do so for convenience. Our design goal for OSnL is to represent a comprehensive

collection of optimization problems while keeping parsing relatively simple.

+

^

2-

1

x
0

*

100
^

-
2

x
1

^

x
0

2

OSnLNodePlus

<plus>

OSnLNodePower
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<minus>

OSnLNodeNumber
<number value=”2"/> 

OSnLNodeNumber

<number value=”1"/> 

OSnLNodeNumber
<number value=”100”/> 

OSnLNodeNumber
<number value=”2"/>

OSnLNodeNumber
<number value=”2"/> 

OSnLNodeTimes

<times>

OSnLNodePower
<power>

OSnLNodePower
<power>

OSnLNodeMinus
<minus>

OSnLNodeVar

<variable coef=”1.0”  idx=”0"/> 

OSnLNodeVar
<variable coef=”1" idx=”1"/> 

OSnLNodeVar
<variable coef=”1” idx=”0"/> 

Figure 10: Conceptual form of an expression tree for the nonlinear part of (1).
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<nl idx="-1">
<plus>

<power>
<minus>

<number value="1.0"/>
<variable coef="1.0" idx="0"/>

</minus>
<number value="2.0"/>

</power>
<times>

<power>
<minus>

<variable coef="1.0" idx="0"/>
<power>

<variable coef="1.0" idx="1"/>
<number value="2.0"/>

</power>
</minus>
<number value="2.0"/>

</power>
<number value="100"/>

</times>
</plus>

</nl>

Figure 11: The <nl> element for the nonlinear part of the objective function (1).

Developing a schema for representing a general nonlinear program in an XML format

that is easily validated against the schema is a difficult problem. Clearly some type of

expression tree is required for representing a nonlinear problem instance. As an example,

Figure 10 shows how the nonlinear part of the objective function (1) is represented as an

expression tree. The corresponding representation in OSiL is given in Figure 11. The root

of the expression tree is a <plus> element. For purposes of validation, any schema needs an

explicit description of the children allowed in a <plus> element, but it is clearly inefficient

to list every possible nonlinear operator or nonlinear function allowed as a child element.

Indeed, in our OSiL Schema we define over two hundred nonlinear elements. In general, if

there are n allowable nonlinear elements (functions and operators), listing every potential

child element, of every potential nonlinear element, leads to O(n2) possible combinations.

This approach is obviously inefficient as the number of operators grows. However, in order

to validate the problem instance a schema must know, for example, that the <plus> element
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requires exactly two children and that each child element is an allowed operator or function.

Fortunately, the W3C XML Schema standard addresses this situation, by providing a

construct very similar to that of an abstract class in an object oriented programming language

such as C++ or Java. The use of this construct, called a substitutionGroup, is illustrated

in Figures 12–14.

In Figure 12 we define an OSnLNode as an abstract class. Think of the OSnLNode as a

“template” for a generic nonlinear element. In Java an analogous statement is

public abstract class OSnLNode{ ...
}

Next, in Figure 13 the class OSnLNodePlus is defined. The OSnLNodePlus class “extends”

the OSnLNode abstract class. The OSnLNodePlus requires exactly two children, and each

child must be an OSnLNode. Thus, we avoid the problem of explicitly listing every type of

nonlinear operator and function. In Java an analogous statement is

public class OSnLNodePlus extends OSnLNode{ ...
}

<xs:element name="OSnLNode" type="OSnLNode" abstract="true">

Figure 12: The OSnLNode Abstract Class

<xs:complexType name="OSnLNodePlus">
<xs:complexContent>

<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">

<xs:element ref="OSnLNode"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Figure 13: Extending to the OSnLNode class to the OSnLNodePlus class

<xs:element name="plus" type="OSnLNodePlus" substitutionGroup="OSnLNode"/>

Figure 14: Declaring a plus Object
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Finally, in Figure 14 the actual object (element) plus is declared. It is in class OSnLNodePlus

that extends OSnLNode. Like an object that is instantiated in an object oriented program-

ming language, the plus element is what actually appears in the XML file. An analogous

statement in Java is OSnLNodePlus plus = new OSnLNodePlus().

Armed with the OSnLNode concept, we can represent the parse tree for nonlinear expres-

sions in an optimization instance as an XML file that is easily validated against a schema.

As shown in Figure 6, the <instanceData> element in the OSiL schema has a child element

<nonlinearExpressions> consisting of a sequence of <nl> children, one for each constraint

and objective that has nonlinear terms. The idx attribute of each <nl> child refers to its

corresponding objective function or constraint; the constraints are indexed by nonnegative

integers starting from 0 and the objectives are indexed by the negative integers starting from

−1. Each <nl> element has a single child element of type OSnLNode, that specifies the re-

quired nonlinear expression. For example, Figures 11 and 15 illustrate the <nl> elements for

the objective function (1) (not including the linear term 9x1) and constraint (3), respectively.

The OSiL XML representation in Figure 11 corresponds exactly to the structure of the

parse tree for the expression in Figure 10. There is an <nl> node with an index of −1,

which indicates the first objective function. The single child of the <nl> element is a <plus>

element which is the root of the expression tree illustrated in Figure 10. The root element

has two children, representing the two sub-expressions, 100(x1 − x2
0)

2 and (1 − x0)
2, that

are added to form the nonlinear part of the objective function; the <power> child has also

two children, representing the sub-sub-expressions, (1 − x0) and 2 that are the base and

the exponent of an exponentiation operator; and so forth. Similarly, in Figure 15, the <nl>

element with index 1 has a single child element <ln> representing the expression whose

natural logarithm is to be taken. In both cases the <nl> node does not represent the entire

<nl idx="1">
<ln>

<times>
<variable idx="0"/>
<variable idx="1"/>

</times>
</ln>

</nl>

Figure 15: The <nl> element for the constraint (3).
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constraint expression, but only the part of it that is nonlinear.

Terminal tree elements have special attributes. The <number> element represents the

literal numerical value given by its value attribute, which must be a real number. The

<variable> element represents a variable whose index is given by the idx attribute, which

must be a nonnegative integer.

OSiL is intended to accommodate not only the mathematical operators and functions of

classical continuous optimization, but other “not linear” functions that can be meaningful

in formulations of optimization problems. Over 200 elements are supported in the OSnL

schema. The operator and function elements that we selected were drawn from the supported

operators and functions in Microsoft Excel, in Content MathML (see, for example, Sandhu

[22]), and in standard solvers such as LINDO [18]. Our naming conventions are consistent

with MathML and Excel. The OSnL elements fall into the following broad categories:

� Arithmetic operator elements: The standard arithmetic operators such as

plus, minus, times, power, and divide. These operator elements are

OSnLNode elements that take exactly two children. We also define sum and

product operators that allow an arbitrary number of children. This avoids

unnecessary nesting if there is a summation or product with many terms.

� Elementary function elements: Standard elementary functions such as abs,

ln, and exp. These are examples of OSnLNode elements that have exactly

one child that is another OSnLNode.

� Statistical and probability function elements: A large variety of statistical

and probability functions, especially those relevant to financial, stochastic

programming, or operations management applications such as mean, vari-

ance, uniform, normal, lognormal, etc.

� Operand (terminal) elements: these include a number element and the con-

stant elements PI, E, INF, TRUE, FALSE, EULERGAMMA, NAN, and EPS.Terminal

elements have no child elements.

� Variable element: an element to represent a variable in an optimization

instance. A variable element is usually terminal node but not always. See

Figure 16 and the ensuing discussion.

� Logic and relational operator elements: Operators to represent numerical

relations such as leq, geq, and logical relations such as if, and, or.
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� Trigonometric elements: All the standard trigonometric functions.

� Special elements: Representations for user-defined functions, real time data,

and XPath data references. These are to be explained in a later paper.

<xs:complexType name="OSnLNodeVar">
<xs:complexContent>

<xs:extension base="OSnLNode">
<xs:sequence minOccurs="0" maxOccurs="1">

<xs:element ref="OSnLNode"/>
</xs:sequence>
<xs:attribute name="idx" type="xs:int" use="optional"/>
<xs:attribute name="coef" type="xs:double" use="optional" default="1"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:element name="variable" type="OSnLNodeVar" substitutionGroup="OSnLNode"/>

Figure 16: Schema for the <variable> element.

The OSnL <variable> element, defined by the schema in Figure 16, has an attribute idx

that defines the variable’s index and an attribute coef that specifies the variable’s coefficient.

If the <variable> element is specified using these attributes then it has no children, and

describes a terminal node that behaves like an operand. However, we allow the alternative

of specifying the variable’s index through an OSnLNode child element that evaluates to a

positive integer value. This feature is important, for example, in constraint programming

where variables may be indexed (“subscripted”) by expressions involving variables.

4. The OSInstance Class

The OSiL schema defines an XML vocabulary for storing an optimization instance. This

instance may persist in a repository of test problems, or it may temporarily be encapsulated

in a SOAP envelope for use in a distributed computing environment. However, at some point

before the instance is optimized by a solver, it must be stored in memory. Our OSInstance

class is the in-memory representation of the optimization instance. This class has an API

defined by a collection of get()methods for extracting various components from the problem

instance — such as variables’ upper bounds or the coefficients of the linear terms — and a
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collection of set() methods for modifying or generating an optimization instance. We now

describe the close relationship between the OSiL schema and the OSInstance class.

4.1. Mapping Rules

As shown in Figure 17, OSInstancehas member classes InstanceHeader and InstanceData.

These correspond to the complexTypes instanceHeader (Figure 4) and instanceData (Fig-

ure 6), and to the XML elements <instanceHeader> (Figure 5) and <instanceData> (listed

in full in the Appendix).

Moving down one level, Figure 17 also shows that the InstanceData class has in turn the

member classes Variables, Objectives, Constraints, LinearConstraintCoefficients,

QuadraticCoefficients, and NonlinearExpressions, corresponding to the complexTypes

in Figure 6 and the elements in Figures 7–9.

class InstanceData{
public:

InstanceData();
Variables variables;
Objectives objectives;
Constraints constraints;
LinearConstraintCoefficients linearConstraintCoefficients;
QuadraticCoefficients quadraticCoefficients;
NonlinearExpressions nonlinearExpressions;

}; // class InstanceData
class OSInstance{
public:

OSInstance();
InstanceHeader instanceHeader;
InstanceData instanceData;

}; //class OSInstance

Figure 17: The OSInstance class

Figure 18 uses the Variables class to provide a closer look at the correspondence between

schema and class. On the right, the Variables class contains a number data member and a

sequence of var objects of class Variable. The Variable class has lb (double), ub (double),

name (string), init (double), and type (char) data members. On the left the corresponding

XML complexTypes are shown, with arrows indicating the correspondences. The following
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rules describe the mapping between the OSiL schema and the OSInstance class.

1. Each XML schema complexType corresponds to a class in OSInstance. Thus the

OSiL schema’s complexType Variable corresponds exactly to the Variable class

in OSInstance. Elements in the actual XML file then correspond to objects in the

OSInstance class. For example, the <var> element that is of type Variable in a file

that validates against the OSiL schema corresponds to a var object in class Variable.

2. An attribute or element used in the definition of a complexType is a member of the

corresponding in-memory class; moreover the type of the attribute or element matches

Schema complexType In-memory class

<xs:complexType name="Variables"> <----------------------------------------------> class Variables{

public;

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-------------> Variable *var;

</xs:sequence>

<xs:attribute name="number" type="xs:positiveInteger" use="required"/> <------> int number;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <-----------------------------------------------> class Variable{

public;

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <------------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <------------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <------------> string initString;

<xs:attribute name="type" use="optional" default="C"> <------------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <--------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <------> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables number="2"> OSInstance osintance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.number=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Var[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

Figure 18: The <variables> element as an OSInstance object
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the type of the member. In Figure 18, for example, lb is an attribute of the OSiL

complexType named Variable, and lb is a member of the OSInstance class Variable;

both have type double. Similarly, var is an element used in the definition of the

OSiL complexType named Variables, and var is a member of the OSInstance class

Variables; the var element has type Variable and the var member is a Variable

object.

3. A schema sequence corresponds to an array. For example, in the excerpt from the

OSiL schema shown on the left side of Figure 18, the complexType Variables has a

sequence of <var> elements that are of type Variable. In the OSInstance class shown

on the right side of the figure, the corresponding Variables class has a member that

is an array of type Variable.

General nonlinear terms are stored in-memory as OSExpressionTree objects, which are the

subject of the next section.

The OSInstance class has a set of get() and set() methods that act as an API for the

optimization instance. The get() methods are used by other classes to access data in an

existing object. For example, an OSiL instance is parsed by the OSiLReaderClass and a

corresponding osinstance is returned by the method getOSInstance(). Then the nonzero

coefficient values in the linear terms of each constraint are retrieved in column major form by

osinstance->getLinearConstraintCoefficientsInColumnMajor()->values

and in other forms by analogous calls. Similarly, the set() method provides an API for

creating or modifying an OSInstance.

4.2. Nonlinear Expressions

A key part of the OSInstance class is the OSExpressionTree class which is the in-memory

representation of the nonlinear terms. Our OSExpressionTree is designed to allow for the

efficient parsing of an OSiL instance and to provide an API for a solver interface through

get() methods. These get() methods allow the solver to extract the nonlinear expressions

in postfix, infix, or prefix formats, or to request function and gradient evaluations at specific

iterates via callbacks.

Consider again our example. Conceptually, an expression tree for the nonlinear part

of the objective function (1) has the form illustrated in Figure 10. The choice of a data
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structure to store the expression tree — for use by the API methods — is a key aspect in

the design of the OSInstance class.

One approach uses a C-style structure for each node in the expression tree. The ASL

data structure [14] of the AMPL modeling language [10, 11] has this form. The structure

stores information as to operator or operand type, along with pointers to child nodes, and a

tree-walking method is used to perform operations on the expression tree such as function

or derivative evaluations. Figure 19 illustrates the essential idea (from [9]); expr is a C-

structure, *e a pointer to the root node of the expression tree, and opnum is an integer

value denoting the node type. A fundamental problem with this approach is that every

method that operates on the expression tree requires a whole series of switch statement

case clauses, making for a very large function. Updating the code to reflect new operators

requires modifying every such function, and hence risking the introduction of errors.

double evaluate_function (expr *e, double x[]){
...
opnum = e->op
switch(opnum){

case PLUS_opno: ...
case MINU_opno: ...
...

}
}

Figure 19: Sample Code for Parsing an OSiL Instance Without Polymorphism

A second approach is to use an object-oriented language such as C++ or Java and to

define a class for each type of node in the expression tree: a “plus” node class, a “minus”

node class, an “exponential function” class, and so forth. So that switches and complicated

logic can be avoided as much as possible, this is implemented by having each node class

extend a single fundamental node class, OSnlNode, using the object-oriented concept of

polymorphism.

4.2.1. The OSnlNode Class

All of an instance file’s operator and operand elements used in defining a nonlinear term are

extensions of the base element type OSnLNode. There is an element class OSnLNodePlus, for
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example, that extends OSnLNode; then in an OSiL instance file, there are <plus> elements

that are of type OSnLNodePlus.

The Java libraries that support the OSInstance API follow an identical design and are

based on the Java abstract class OSnlNode. Every element in an OSiL instance corresponds to

a Java class that derives from the OSnlNode class. Thus we can construct an expression tree

of homogenous nodes, and methods that operate on the expression tree to calculate function

values, derivatives, postfix notation, and the like do not require switches or complicated logic.

protected double calculateFunction(double[] x){
m_dFunctionValue =

m_mChildren[0].calculateFunction(x) +
m_mChildren[1].calculateFunction(x);

return m_dFunctionValue;
} //calculateFunction

Figure 20: The function calculation method for the “plus” node class

As an example, the abstract class OSnlNode has an abstract method calculateFunction

that takes an array of double values corresponding to decision variables, and evaluates the

expression tree for those values. Every class that extends OSnlNode must implement this

method. For instance the calculateFunction method for the OSnlNodePlus class is shown

in Figure 20. Because the OSiL instance file must be validated against its schema, and in the

schema each <OSnlNodePlus> element is specified to have exactly two child elements, this

calculateFunctionmethod can assume that there are exactly two children of the node that

it is operating on. Thus through the use of polymorphism and recursion the need for switches

like those in Figure 19 is eliminated. This design makes adding new operator elements easy;

it is simply a matter of adding a new class and implementing the calculateFunction()

method for it.

4.2.2. The OSExpressionTree Class

It is necessary to parse an OSiL instance file or string in order to create the corresponding

in-memory OSExpressionTree object that consists of OSnLNode objects. In the Java library

implementation we use the Apache Xerces XML parser, which creates an instance of the

W3C Document Object Model (DOM) data structure. The DOM data structure is tree-like

and consists of Element nodes, Attribute nodes, and Text nodes. Unfortunately, this data
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structure is not conducive for use by optimization solver programming interfaces. Reading

a DOM tree to make function evaluations, calculate derivatives, convert an instance into

its postfix representation, and perform similar tasks requires complicated logic and is not

computationally efficient. Therefore, after reading the OSiL instance into the DOM tree, the

OSInstance API converts the DOM tree into an object in the OSExpressionTree class that

is designed specifically for optimization applications. (For the C++ libraries we are writing

our own parser, which will write OSExpressionTree objects directly.)

Each Element node in a DOM tree is an object in the DOM Element class. Each DOM

Element is converted into an OSnlNode of an OSExpressionTree. By design, each OSnLNode

type defined in the OSnL schema corresponds to an OSnLNode class in the API library. That

is, there is a one-to-one mapping between elements in the DOM that define nonlinear terms

in the problem instance, and the OSnlNode objects in the OSExpressionTree. For example,

a <plus> element tag in the OSiL instance is instantiated as an OSnlNodePlus object in an

OSExpressionTree.

There are several approaches to convert the DOM nodes into OSExpressionTree nodes.

One approach is to loop over the appropriate DOM nodes, get the name of the element,

and through a series of switches, create the appropriate OSnLNode class. A second, easier

approach, is to use RTTI (Run-Time Type-Identification) [7]. Using RTTI is very easy in

Java. There is a static method forName in the Java Class object that returns a Class

reference at run time. For example, executing the statement

Class nlNodeClass = Class.forName("OSnLNodeTimes");

returns a Class reference. An actual object in the OSnLNodeTimes class is created by exe-

cuting the statement OSnLNode nlNode = (OSnLNode)nlNodeClass.newInstance().

The conversion of every DOM element node into an OS Expression Tree objects is ac-

complished using the method convertElementToNlNode, whose code is shown in Figure 21.

In the first line of the code in Figure 21, a generic object nlNode in the abstract class

OSnLNode is created. The string sNodeName is given the name of the concrete class corre-

sponding to the appropriate element in the line sNodeName = ele.getLocalName(). The

string sNlNodeClass contains the fully qualified class name (that is, the package name is

included). Then the line Class nlNodeClass = Class.forName(sNlNodeClass) gets a ref-

erence for the class sNlNodeClass. Next the line
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OSnLNode nlNode = null;
String sNodeName = "";
try{ sNodeName = ele.getLocalName();

String sNlNodeClass = m_sPackageName + "." + m_sNlNodeStartString +
sNodeName.substring(0, 1).toUpperCase() + sNodeName.substring(1);

Class nlNodeClass = Class.forName(sNlNodeClass);
nlNode = (OSnLNode)nlNodeClass.newInstance();

} // now process attributes

Figure 21. Code from the convertElementToNlNode() method
for converting a DOM element into an OSnLNode object.

if(sNodeName.equalsIgnoreCase("number")){
String sType = ele.getAttribute("type");
if(sType != null && sType.length() > 0){

((OSnLNodeNumber)nlNode).setNumberType(sType);
}
else{

((OSnLNodeNumber)nlNode).setNumberType("real");
}
String sValue = ele.getAttribute("value");
if(sValue != null || sType.length() > 0){

((OSnLNodeNumber)nlNode).setNumberValue(Double.parseDouble(sValue));
}
else{

((OSnLNodeNumber)nlNode).setNumberValue(0);
}

}

Figure 22: Logic for Processing Attributes of a Number element

nlNode = (OSnLNode)nlNodeClass.newInstance();

creates at runtime an actual object in one of the concrete classes that extend OSnLNode. It

is important that the sNlNodeClass string be the name of a concrete class as this is the

class that gets created. Note the lack of switches or any complicated logic in the code.

Unfortunately there are more than just Element nodes in the DOM tree. There are

also Attribute nodes with associated Text nodes. These Attribute nodes do require

additional logic switches. For example, the processing of the attributes type and value

for the number element is illustrated in Figure 22. The logic in this figure is part of the
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code for the convertElementToNlNode() method in Figure 21. The key aspect of this

logic is to extract the actual double value for this number from the attribute real, and

to use the setNumberValue method of the OSnLNodeNumber class to set the value in the

OSExpressionTree object so that it can be used for further evaluation.

Thus there is an OSnLNode object created for each OSnLNode element in the DOM tree.

For each <nl> element in an OSiL instance, an OSExpressionTree object is created. This

object’s root element is an OSnLNode with an array OSnLNode[] of child nodes.

5. Future Work

The research described in this paper is continuing in three directions.

First, we are extending the OSiL schema to include other classes of optimization prob-

lems, such as optimization under uncertainty, semidefinite and cone programming, constraint

programming, disjunctive programming, and optimization using simulation. Each class has

its own special features that pose new kinds of challenges.

A second direction is the ongoing work to design and build open-source libraries in pop-

ular programming languages that implement classes for parsing and writing optimization in-

stances in the OSiL format. These libraries derive from the OSInstance object and methods

described in the preceding section. Examples in this paper are based on a full implementation

in Java and an implementation in C++ lacking only the nonlinear features.

Finally, OSiL is only one schema in a much larger OS — Optimization Services — frame-

work. Of most immediate concern, the OS framework is planned to incorporate a language

OSoL for passing algorithmic options to solvers, and a language OSrL for passing results

back to modelers and modeling systems. These languages are an initial part of a complete

system that allows for platform-independent synchronous and asynchronous communication

between client modeling systems and optimization solvers in a distributed environment.
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6. Appendix

This is the complete OSiL representation for the optimization problem given in (1)–(4).

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org">

<instanceHeader>

<name>Modified Rosenbrock</name>

<source>Computing Journal 3:175-184, 1960</source>

<description>Rosenbrock problem with constraints</description>

</instanceHeader>

<instanceData>

<variables number="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

<objectives number=" 1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints number="2">

<con ub="25.0"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues=" 3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.0</el><el>7.0</el><el>5.0</el>

</value>

</linearConstraintCoefficients>

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10"/>

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3"/>

</quadraticCoefficients>
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<nonlinearExpressions number="2">

<nl idx="-1">

<plus>

<power>

<minus>

<number type="real" value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number type="real" value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number type="real" value="2.0"/>

</power>

</minus>

<number type="real" value="2.0"/>

</power>

<number type="real" value="100"/>

</times>

</plus>

</nl>

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>

<variable coef="1.0" idx="1"/>

</times>

</ln>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>
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