
AN XML-BASED SCHEMA FOR STOCHASTIC
PROGRAMS

R. Fourer∗, H.I. Gassmann†, J. Ma‡and R.K. Martin§

Revision of November 15, 2006

Abstract

This paper describes a proposed format to record instances of stochastic programs. It forms
part of a larger XML-based schema that is designed to allow the expression of essentially
any type of mathematical program within a unifying framework. A wide variety of different
linear and nonlinear stochastic programs can be handled, and the paper describes in detail
how this is done. Screen captures and sample problems illustrate the use of the schema.

1 Introduction

Standard problem descriptions are necessary whenever there is a possibility that a
given problem instance is passed to more than one solver. They also allow bench-
marking of algorithms, archiving of test problems, and sharing of problems. Partic-
ularly the benchmarking of algorithms relies heavily on being able to test a common
set of problems on a variety of different programs or solvers.

It seems quite likely that the development of linear programming, especially the
emergence of interior point algorithms and the subsequent resurgence of development
in the simplex algorithm (notably the dual steepest edge algorithm) would not have
happened in the same way it did, had not David Gay made available a set of test
problems following the 1985 Mathematical Programming Symposium [16, 27]. What
contributed decisively to the success of this netlib collection was an agreed-upon
de facto standard for the representation of linear programs, the MPS format (see,
e.g., [18, 20]).

∗Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, Illinois

†School of Business Administration, Dalhousie University, Halifax, Canada, e-mail:
hgassman@mgmt.dal.ca (corresponding author)

‡Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, Illinois

§Graduate School of Business, The University of Chicago, Chicago, Illinois

1

1 Introduction 2

This should be contrasted with the situation in network optimization, where
Klingman et al. lamented that “this nonstandardization of problem specification
[. . .] is most frustrating and has hampered benchmarking” [20]. Clearly, in their
view, a commonly accepted way to describe instances of network problems would
have been highly desirable.

Stochastic programming has had a common problem description, the SMPS
format, since around 1984 [1, 8]. The format has been updated several times over
the years [12, 15]. Although it has been adopted by many software developers, the
SMPS format does not share the same universal acceptance enjoyed by the MPS
format upon which it is based.

Nonlinear programming does not have a common format to represent instances.
A file format based on the MPS record structure was put forward by Conn et al. [5],
but it did not gain wide-spread acceptance. There is also a competing proposal
called xMPS [17, 35].

Two general ways of solver communication are practised today: Users can com-
municate their problems by supplying subroutines that compute function values and
occasionally gradients as well as higher-order derivatives. Solvers employ a variety
of calling sequences; some use Fortran, others C or C++, and the user is expected
to tailor the code to the needs of the solver every time (see, e.g., [18, 25, 33, 34]).

The other general approach consists in defining the problem inside a modelling
environment such as AMPL [9] or GAMS [3] and to connect this modelling environ-
ment directly into the solver [28, 37, 39]. One disadvantage of this approach lies in
the fact that it ties the problem instance to a particular piece of software; anyone
intending to solve the problem must have access to this program. Another disad-
vantage is illustrated in the left panel of figure 1: If there are n different modelling
environments and m solvers, n∗m different interfaces will have to be developed. An
intermediate format such as MPS greatly simplifies the approach, as only n + m in-
terfaces will have to be written, n of them to capture the output from the modelling
environments, and m others to read the resulting file into a solver (see figure 1, right
panel).

It is true that communication by file is slower than communication in memory.
However, in modern systems the solution process often takes place in a distributed
environment: one computer prepares the model (often with input from distributed
databases), while another computer (or group of computers) is responsible for the
solution. This creates considerable traffic over a network, and whether the com-
munications takes place using standardized files or some other format is largely
immaterial.

The MPS format, as the SMPS format based upon it, uses very old technology.
(For a more detailed explanation of the MPS format, see [24].) It was developed
forty years ago for IBM’s Mathematical Programming System and has subsequently
been adopted by all commercial LP solvers. The record format is very strict, and the
name space is limited to eight characters for each row and column. In addition, only

1 Introduction 3

.

.

. .
.
.

Modelling systems Solvers

.

.

. .
.
.

Modelling systems Solvers

Fig. 1: Interfaces between modelling system and solver without common problem
description (left) and with (right).

twelve characters are available to represent the constraint and objective coefficients
— including signs and exponents. Hence there is limited accuracy in the input
data. Furthermore, there is no way to record whether a problem is intended to
be maximized or minimized. Finally, the original format was intended to deal with
linear problems only, although in the interim extensions have been added to allow the
solution of (mixed) integer linear problems and optimization of quadratic objective
functions subject to linear constraints. However, these extensions to the MPS format
are not universally agreed upon, and several “flavours” of the format are now in use
(see, e.g., [6, 21, 24]). Ironically it must be added that of late many algebraic
modelling systems have abandoned the MPS format and reverted to proprietary
data formats in order to communicate with the solver directly in memory.

A unifying format to express a wide variety of mathematical programming prob-
lems would provide a major service to the optimization community. The OSxL
initiative by Optimization Services [22, 23] constitutes just such an effort. It is writ-
ten in XML (eXtensible Markup Language). Similar to other markup languages
such as HTML, XML uses tags to separate data items from one another. Tags are
nested in a tree structure, but the definition, position and order of tags is left to
the user and can be described in a schema file (which is itself an XML document).
(For more information on XML, see, e.g., [30].) One of the advantages of working
in XML is the existence of tools such as parsers, visualization tools, development
environments, etc.

The instance language OSiL makes up a part of the OSxL project; additional
components deal with the solutions returned by the solver, options passed to the
solver, etc. (For an overview over the system, see the developers’ web site [11].)
The original work by Fourer et al. [10] covers deterministic linear and nonlinear

1 Introduction 4

programs; the current work extends these ideas to the representation of stochastic
programs. In addition to the file-based schema, a parallel effort called OSInstance
is underway to define in-memory objects to mirror all of the constructs of the OSiL
format described below.

The paper is organized as follows: Section 2 sets up the most general stochastic
program that the format is prepared to support. This problem is much too general
to be of use in this exposition, so a small multistage investment problem is also pre-
sented, which will be used as a running example throughout the paper. In Section 3
we quickly review the format for deterministic problems, and in Section 4 we will
show how information about the time stages of the problem can be captured.

The next two sections deal with describing the event tree. There are three pos-
sibilities. A tree can be given explicitly scenario by scenario, or node by node. The
latter allows for the modelling of problems with stochastic dimensions; both options
are described in Section 5. It is also possible to define an event tree implicitly, by
specifying the distributions of a number of random variables and how these random
variables impact on the problem parameters. This option appears in Section 6.

Section 7 shows different ways to express “soft constraints” (that may be vio-
lated under extreme circumstances) within the OSiL format. There are two general
ways for dealing with soft constraints: adding penalties for constraint violation into
the objective, or requiring limits on the risk resulting out of the violation of a con-
straint. Both are available within OSiL. Section 8 finally draws some conclusions
and describes future plans for the system.

2 Stochastic programming problems 5

2 Stochastic programming problems

The most general problem that can be described in the proposed format takes the
following mathematical form:

opt
x0

[
f0(x0) + Eξ1

{
opt
x1

[
f1(x0, ξ1, x1) + Eξ2|ξ1{opt

x2

f2(x0, x1, ξ1, ξ2, x2) + . . .

+ EξT |ξ1...ξT−1
[opt

xT

fT (x0, . . . , xT−1, ξ1, . . . , ξT , xT)]}
]}]

s.t. G0(x0) ∼ 0∫
H1(x0, ξ1)P (dξ1) ∼ 0

G1(x0, ξ1, x1) ∼ 0 a.s.∫
H2(x0, x1, ξ1, ξ2)P (d(ξ1, ξ2)) ∼ 0 a.s.

...∫
HT (x0, . . . , xT−1, ξ1, . . . , ξT)P (d(ξ1, . . . , ξT)) ∼ 0 a.s.

GT (x0, . . . , xT−1, ξ1, . . . , ξT , xT) ∼ 0 a.s.

x0 ∈ X0, x1 ∈ X1(x0, ξ1), . . . , xT ∈ XT (x0, . . . , xT−1, ξ1, . . . , ξT),
(1)

where Xt(.) is a multidimensional box [lt(.), ut(.)] of (possibly random) dimen-
sion Dt(.). Some components of xt may further be restricted to integer values only.

The random variables ξt and the induced decisions xt (for t > 0) must be adapted
to a filtration {∅, Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FT ⊆ F of some probability space
(Ω,F , P), and constraints involving induced decisions x1, x2, etc. need hold only
almost surely (a.s.), that is, they may be violated on a set of probability measure 0.
The dependence of xt and ξt+1 on the history ηt := (ξ1, . . . , ξt) of the data process
has been suppressed in order not to overload an already cumbersome notation. For
further information on stochastic programs, see, for instance, the texts by Birge and
Louveaux [2] and Prékopa [29].

In this formulation the dimension of xt is allowed to depend on the history ηt,
but it is assumed to be bounded. That is, there exists some integer N > 0 such
that the dimension Dt(.) ≤ N for every possible realization of the data process
(ξ1, . . . , ξT).

The integral constraints
∫

Ht(x0, . . . , xt−1, η
t)P (d(ηt)) ∼ 0 represent so-called

chance constraints [4], integrated chance constraints [19, 32] or higher moment con-
straints (such as the second-order dominance constraints described in [7]). The
symbol ∼ is used to allow a mixture of equality and inequality constraints.

This general form of the problem is perhaps not very useful, but it admits a
number of special cases that are encountered frequently. We will mention two of

2 Stochastic programming problems 6

them next.

A. If there are no integral constraints and all the distributions are finite, the
problem is known as a (nonlinear) recourse problem. In this case all the ex-
pectations in the objective can be restated as finite sums, and it is possible to
reformulate (1) as a large-scale deterministic problem, the so-called determin-
istic equivalent. The linear version of the recourse problem has seen extensive
treatment in the literature (see, e.g., [2, 13]).

B. The problem
opt
x0

f0(x0)

s.t. G0(x0) ∼ 0∫
H1(x0, ξ1)P (dξ1) ∼ 0

l0 ≤ x0 ≤ u0, x0 ∈ Rn0 × Zn′0

(2)

is a nonlinear chance-constraint problem (see, e.g., Charnes and Cooper [4]).

We next give a special example of a linear recourse problem taken from the
book by Birge and Louveaux [2]. This problem will be used to illustrate most of
the stochastic constructs in the OSiL schema. The problem concerns a decision
maker who, having available a fixed sum of money B, must choose among several
investment opportunities in an attempt to increase his wealth to a target R by the
end of the planning horizon. The performance of each investment is random, but
the distribution is assumed to be available, based on historic performance. The final
wealth is to be maximized, and a penalty is charged whenever the final wealth falls
short of the target. At prespecified times the decision maker is allowed to observe the
performance of the portfolio and to re-balance it by buying and selling investment
instruments. (There are no transaction costs.) Mathematically this problem can be
written as follows.

max
S∑

s=0

ps(ws − βys)

s.t.
I∑

i=1

x0i = B

I∑

i=1

α1isx0i −
I∑

i=1

x1is = 0, s ∈ S1

I∑

i=1

αt,i,sxt−1,i,a(s) −
I∑

i=1

xtis = 0, s ∈ St, t = 2, . . . , T − 1

I∑

i=1

αT,i,sxT−1,i,a(s) + ys − ws = R, s ∈ ST

x0i, xtis ≥ 0, i = 1, . . . , I, t = 2, . . . , T − 1, s ∈ St−1, ws, ys ≥ 0, s ∈ ST

(3)

2 Stochastic programming problems 7

S0 S2S1 S3

0
1
2
3

4
5
6
7

Fig. 2: Event tree for four-stage investment problem.

where xtis is the amount of money invested in investment i during period t under
scenario s, B is the original budget, R is the target wealth at the horizon, αtis repre-
sents the random return of investment i in stage t under scenario s, β is the penalty
(per dollar) of falling short of the target, ps is the probability of scenario s, ys and
ws are the amount below and above the target, respectively, under scenario s, and St

is the set of scenarios that are active in period t, with ST = {0, 1, 2, . . . , S}. When
there are multiple scenarios that share the same event history (such as scenarios
0 and 1 in S2 in figure 2), we represent the corresponding scenario bundle [31] by
a single scenario (see below). The notation a(s) is used to designate the ancestor
scenario of s in the preceding period (see figure 2).

In the book by Birge and Louveaux, I = 2, T = 3, B = 55, R = 80, β = 4, and
the returns αtis can take two possible values in each period, depending on whether
the economy is good or bad. In a good economy, the returns are {1.25, 1.14} for the
two investments, and in a bad economy the returns are {1.06, 1.12}. This leads to a
problem with eight equi-probable scenarios (ps = 0.125 for all s) and an event tree
that has the form given in figure 2. Horizontal line segments in this figure represent
a good economy, while downward sloping line segments represent a bad economy.

A quick word about event trees will round out this section. The central concept
of stochastic programming is that of nonanticipativity, which says that decisions
made today are not allowed to depend on specific realizations of random variables
tomorrow; instead all decisions must be based only on information available at the
time the decision is made. One convenient way to depict the information structure
for finite discrete distributions is through an event tree. Paths through the event
tree from the root node in stage 0 to one of the leaves are called scenarios and
represent the possible evolutions of the data process.

Where two paths are indistinguishable because they share a common history, the
corresponding decisions must also coincide. This means, for instance, that in the

3 The OSiL format for deterministic problems 8

event tree of figure 2 there are two possible sets of decisions in stage 1, depending on
whether the stock market went up or down. Each event in stage 1 can lead to four
different branches in the future, but in stage 1 they are indistinguishable from each
other. Nonanticipativity can be enforced by “bundling” the four scenarios together
and allowing only one set of decision variables — and data — that are shared by
the four scenarios. For more on scenario bundles, see [31].

Similarly there are four sets of decisions (i.e., four scenario bundles) in stage 2
and eight possible ways to calculate gains and losses at the end of the planning
horizon.

All the scenarios share problem dimensions, sparsity patterns and certain deter-
ministic parameters, such as the coefficient −1 on the variables xtis in equation (3).
This information needs to be given only once, and is contained in the “core” infor-
mation, as explained in more detail in the next section.

In the case of continuous distributions similar considerations hold, although
the trees exhibit infinite branching and might more appropriately be called “fans”.
Nonetheless, we will use the term “event tree” for these objects also.

3 The OSiL format for deterministic problems

In this section we give a quick summary of the deterministic portion of the OSiL
format. This material is condensed from [10]. We will illustrate with (3), using
one specific scenario. This scenario problem plays the role of what is called the
core problem in the SMPS format. The core problem may represent any one of the
scenarios, or even a related problem, such as the mean value problem in which all
random variables are replaced by their mean. The purpose of the core problem is to
fix the problem dimensions, to supply the deterministic values that will be shared by
all scenarios, and to provide placeholders for random variables to be defined later.

The root node of the OSiL schema is the osil node. (We use the terms “tree”,
“node” and “root”) in two different ways in this paper: for the event tree of the
stochastic program and for the expression tree of the corresponding XML file. This
is unfortunate, but it is unavoidable; we hope that the context makes it clear in
each case which tree is being referred to.)

As shown in figure 3, two XML elements combine to form the information in the
osil node. The instanceHeader gives optional information about the problem,
such as name, source, plus a description that can be as detailed as the modeller
wishes, or can be omitted altogether. Solid boxes in the diagram represent required
elements; the small dashed boxes indicate elements that are optional. The three dots
following the osil and instanceHeader nodes indicate that the dependent elements
on the right — if present — must appear in the order set out in the diagram.

Figure 4 shows the possible content of the instanceHeader for the specific in-
stance of (3) described in the previous section.

3 The OSiL format for deterministic problems 9

Fig. 3: Instance header information — XML schema.

<?xml version="1.0" encoding="UTF-8"?>
<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/OSiL.xsd">
<instanceHeader>

<name>FinPlan</name>
<source>Birge and Louveaux, Stochastic Programming</source>
<description>

This is the stochastic financial planning problem,
as given in the book by Birge and Louveaux.
It has four stages and eight scenarios.
...

</description>
</instanceHeader>

Fig. 4: Instance header for investment problem (2).

3 The OSiL format for deterministic problems 10

InstanceData

instanceData

variables

objectives

constraints

linearConstraintCoefficients

quadraticCoefficients

nonlinearExpressions

semidefiniteBlocks

cones

parameterSets

modifications

disjunctiveInformation

stages

stochasticInformation …
Fig. 5: Instance data — XML schema.

The problem data are described in the instanceData element. We look again
at the schema first (figure 5). Separate elements describe the variables, constraints,
objectives (possibly more than one), nonzero elements of the linear constraint ma-
trix, coefficients of quadratic functions in objectives and constraints (if any), and
so on. Figure 6 shows examples of these data items for the Birge and Louveaux
problem. It represents one path through the event tree of figure 2, called the “root
scenario” (labeled ‘0’ in figure 2). In this scenario the economy is good in every
stage. That is, figure 6 represents the deterministic linear program

max w − 4y

s.t. x01 + x02 = 55
1.25x01 + 1.14x02 − x11 − x12 = 0

1.25 x11 + 1.14x12 − x21 − x22 = 0
1.25x21 + 1.14 x22 − w + y= 80.

(4)

3 The OSiL format for deterministic problems 11

<instanceData>
<variables numberOfVariables="8">

<var name="Invest0Stocks" type="C" lb="0.0"/>
<var name="Invest0Bonds"/>
<var name="Invest1Stocks"/>
<var name="Invest1Bonds"/>
<var name="Invest2Stocks"/>
<var name="Invest2Bonds"/>
<var name="wealth"/>
<var name="short"/>

</variables>
<objectives numberOfObjectives="1">

<obj name="expectedWealth" maxOrMin="max"
numberOfObjCoef="2">

<coef idx="6">1.0</coef>
<coef idx="7">-4.0</coef>

</obj>
</objectives>
<constraints numberOfConstraints="4">

<con name="Budget0" lb="55" ub="55"/>
<con name="Budget1" lb="0" ub="0"/>
<con name="Budget2" lb="0" ub="0"/>
<con name="Budget3" lb="80" ub="80"/>

</constraints>
<linearConstraintCoefficients numberOfValues="14">

<start>
<el>0</el> <el>2</el> <el>4</el>
<el>6</el> <el>8</el> <el>10</el>
<el>12</el> <el>13</el> <el>14</el>

</start>
<rowIdx>

<el>0</el> <el>1</el> <el>0</el>
<el>1</el> <el>1</el> <el>2</el>
<el>1</el> <el>2</el> <el>2</el>
<el>3</el> <el>2</el> <el>3</el>
<el>3</el> <el>3</el>

</rowIdx>
<value>

<el> 1</el> <el>1.25</el>
<el> 1</el> <el>1.14</el>
<el>-1</el> <el>1.25</el>
<el>-1</el> <el>1.14</el>
<el>-1</el> <el>1.25</el>
<el>-1</el> <el>1.14</el>
<el>-1</el> <el>1</el>

</value>
</linearConstraintCoefficients>
...

</instanceData>

Fig. 6: Core scenario data.

4 Stage structure 12

4 Stage structure

As stated in Section 2, nonanticipativity in stochastic programs requires careful
consideration of the times when the decisions are made and when new informa-
tion becomes available. This section will explain the issues and how to convey the
information within the OSiL format.

When decisions are made over time — even in a deterministic problem — it is
important to specify the planning period, which in the present situation is given
by the finite discrete set T := {0, 1, . . . , T} (see equation (1)). The stages of the
problem form a subset of the time structure. Each stage in a stochastic program
contains decision points and event points. Decision points that make use of the same
information (i.e., without any further realizations of random events being obtained in
the interim) can be aggregated into the same stage; similarly, multiple realizations
of random variables that are observed without any decisions being taken in the
meantime, can be collected into just a single event point. Each stage, therefore,
contains one set of decisions, xt, and one set of random variables, ξt. The user must
decide whether the random variables precede the decisions or follow them. There are
advantages and disadvantages to either setup (see [14]), and OSiL supports both.

But time structure is also useful in deterministic problems, for instance in dy-
namic programming. For this reason OSiL does not distinguish between periods
and stages. In particular, no check is performed to ensure that there is stochastic
information present for every stage defined in the stages element. The user is also
free to specify whether decisions precede events within a period or follow them (see
Section 5).

The function of the stages element is to specify the number of stages (or periods)
in the problem and to define for each variable and constraint previously introduced
(see Section 3) to which stage it belongs. There are two mechanisms, depending
on the appearance of the variables and constraints elements. If variables and
constraints were given in temporal order, then all that is needed is to record for each
stage the number of variables it contains and the index of the first and last variable.
(In fact, the variable indices could be inferred from the other information.) On the
other hand, if the variables were originally given in arbitrary order, then an explicit
list is needed, giving for each variable and constraint explicit information on the
stage to which it belongs.

Figure 7 shows the OSiL schema element stages that caters to both possibilities.
The corresponding segment of the Birge and Louveaux problem is given in figure 8.
Note that, although both variable and constraint sections were originally set up in
temporal order (see figure 6), we have chosen to illustrate the unordered option for
stages 2 and 3.

4 Stage structure 13

Stages

stages

attributes

numberOfStages

Stage

stage

1 ∞..

attributes

name

StageVariables

variables

attributes

numberOfVariables

startIdx

endIdx

var

1 ∞..

StageConstraints

constraints
attributes

con

1 ∞..

StageObjectives

objectives
attributes

obj

1 ∞..

Fig. 7: Time stages — XML schema.

4 Stage structure 14

<stages numberOfStages="4">
<stage name="stage 0">

<variables numberOfVariables="2" startIdx="0" endIdx="1"/>
<constraints numberOfConstraints="1" startIdx="0"

endIdx="0"/>
</stage>
<stage name="stage 1">

<variables numberOfVariables="2" startIdx="2" endIdx="3"/>
<constraints numberOfConstraints="1" startIdx="1"

endIdx="1"/>
</stage>
<stage name="stage 2">

<variables numberOfVariables="2">
<var idx="4"/>
<var idx="5"/>

</variables>
<constraints numberOfConstraints="1">

<con idx="2"/>
</constraints>

</stage>
<stage name="stage 3">

<variables numberOfVariables="2">
<var idx="6"/>
<var idx="7"/>

</variables>
<constraints numberOfConstraints="1">

<con idx="3"/>
</constraints>

</stage>
</stages>

Fig. 8: Stage information for investment problem.

5 Explicit event trees 15

Stochastic
programs

Explicit scenario
tree

Chance-constrained
programs

Recourse
programs

Hybrid
programs

Implicit scenario
tree

Independent components
Stage-to-stage independence
Random walk / ARMA models
Dependence on past decisions

Deterministic dimensions
Stochastic dimensions

Fig. 9: A taxonomy of stochastic programming models.

5 Explicit event trees

The major effort in a stochastic program is (naturally) the representation and gen-
eration of the stochastic data. Somehow the event tree must be generated, and
with it the data contained in it. In particular, the stochastic representation does
not give the full deterministic equivalent (3) explicitly. Rather, it contains all the
information necessary so that another layer of software can create the deterministic
equivalent or any portion of it (node, path, subtree, etc.) whenever required by an
algorithm, for instance the nested Benders decomposition of [13].

Since frequently only a small portion of the data is stochastic, there is con-
siderable redundancy, which should be exploited. However, the optimal problem
representation will depend on the nature of the uncertainty, and we will first give a
schematic overview of the different problem types (see figure 9).

Different types of models permit different ways of constructing the event tree in
OSiL. Figure 10 gives the high-level overview of the available options. The attribute
decisionEventSequence allows the user to specify whether decisions follow events
in a stage (as in figure 12) or precede them.

If the distributions of all random parameters are finite, and particularly if they
exhibit dependence from one stage to the next, an explicit approach works best
in practice. A scenario-based format is used when the problem dimensions are
deterministic. In this case, the deterministic problem set up in earlier data ele-
ments (variables, constraints, objectives, linearConstraintCoefficients,
etc.) can be used as a blueprint for each of the scenario problems and recording for
each scenario the period when it becomes active along with the parent scenario from
which it branches.

For the investment problem of Section 2, one possible scheme is the following:

5 Explicit event trees 16

StochasticInformation

stochasticInformation

attributes

decisionEventSequence

StochasticEventTree

eventTree

scenarioTree

nodalTree

implicitTree

StochasticSoftConstraints

softConstraints

penalties

probabilisticObjectives

chanceConstraints

integratedChanceConstraints

userDefinedRiskMeasures

Fig. 10: Stochastic models — XML schema.

5 Explicit event trees 17

Scenario First stage Parent
0 stage 0 —
1 stage 3 0
2 stage 2 0
3 stage 3 2
4 stage 1 0
5 stage 3 4
6 stage 2 4
7 stage 3 6

Table 1. Parent scenarios for the investment problem

Scenario 0 is the root scenario, and in each case the base or parent scenario is
taken as the member of the bundle that has the lowest number. The data process is
characterized by multiple inheritance: Any data item not specifically mentioned is
assumed to be the same as the corresponding data item in the parent scenario, or in
the parent’s parent, etc. The root scenario inherits items not specifically mentioned
from the data in the core file. Only those data need to be recorded that differ
from the parent scenario (or from any other convenient reference scenario). The
OSiL schema element that accomplishes this is called the scenarioTree, with the
definition shown in Figure 11.

The data tend to be repetitive, so the example in figure 12 shows only the first
three scenarios of the investment problem. The data for the root scenario (scenario 0
in figure 2) have already been given in the deterministic data section, hence there
is no need for repetition.

The next scenario (scenario 1) branches from it in stage 3. It represents a bad
economy in stage 3, hence the coefficients 1.06 and 1.12 replace, respectively, the
values 1.25 and 1.14 in the last constraint. Taken as a deterministic LP, this scenario
therefore is represented by

max w − 4y

s.t. x01 + x02 = 55
1.25x01 + 1.14x02 − x11 − x12 = 0

1.25 x11 + 1.14x12 − x21 − x22 = 0
1.06x21 + 1.12 x22 − w + y= 80.

(5)

Scenario 2 branches from scenario 0 in stage 2 and represents a bad economy in
stage 2 and a good economy in stage 3. (Since stage 3 information is shared with
scenario 0, there is no need to repeat it here.) The full linear program corresponding

5 Explicit event trees 18

StochasticScenarioTree

scenarioTree

attributes

numberOfScenarios

StochasticScenarioTreeRootScenario

rootScenario

attributes

name

prob

base

stage

parameters

variables

objectives

constraints

linearConstraintCoefficients

quadraticCoefficients

nonlinearExpressions

StochasticScenarioTreeScenario

scenario

0 ∞..

attributes

name

prob

parent

stage

parameters

variables

objectives

constraints

linearConstraintCoefficients

quadraticCoefficients

nonlinearExpressions

Fig. 11: Scenario tree — XML schema.

5 Explicit event trees 19

<stochasticInformation decisionEventSequence="decisionAfterEvent">
<eventTree>

<scenarioTree numberOfScenarios="8">
<rootScenario prob="0.125"/>
<scenario stage="3" prob="0.125" parent="0">

<linearConstraintCoefficients numberOfValues="2">
<el rowIdx="3" colIdx="4">1.06</el>
<el rowIdx="3" colIdx="5">1.12</el>

</linearConstraintCoefficients>
</scenario>
<scenario stage="2" prob="0.125" parent="0">

<linearConstraintCoefficients numberOfValues="2">
<el rowIdx="2" colIdx="2">1.06</el>
<el rowIdx="2" colIdx="3">1.12</el>

</linearConstraintCoefficients>
</scenario>
...

</scenarioTree>
</eventTree>

</stochasticInformation>

Fig. 12: Sample scenario tree.

5 Explicit event trees 20

StochasticNodalTree

nodalTree

StochasticNode

sNode

attributes

prob

base

0 ∞..

osil

changes

scenarioNode

0 ∞..

sNode

0 ∞..

Fig. 13: Node-by-node tree — XML schema.

to this scenario is

max w − 4y

s.t. x01 + x02 = 55
1.25x01 + 1.14x02 − x11 − x12 = 0

1.06 x11 + 1.12x12 − x21 − x22 = 0
1.25x21 + 1.14 x22 − w + y= 80.

(6)

If the problem size is stochastic, then the scenario-wise description is not avail-
able. Instead the event tree and with it the deterministic equivalent problem can
be built node for node in the nodalTree element, as shown in figure 13. For each
node in the event tree it is possible to define the data explicitly, using an osil node
in recursive fashion. This allows complete freedom in the specification of the tree,
including problem dimension, linear and nonlinear functions, etc.

It is also possible to reference data from a reference node and to record changes,
similarly to the scenarioTree element. This assumes that the current node and
the reference node have the same dimensions.

We omit an explicit example of the nodalTree element. The changes option is
very similar to figure 12 and provides no new insights, while the explicit construc-
tion is extremely verbose and not recommended when the problem dimensions are
deterministic, as they are for the investment problem.

6 Implicit event trees 21

StochasticImplicitTree

implicitTree

randomVariables

stochasticElements

rowModifiers

linearTransformation

NonlinearTransformations

randomFunctions

Fig. 14: Implicit event trees— XML schema.

6 Implicit event trees

When the distributions of the random variables are independent of each other, or
when they are subject to random processes that are influenced by random variables
with period-to-period independence, then the event tree can also be built implicitly.
Figure 14 shows the general OSiL schema. What is required in this case is a specifi-
cation of the random variables and a set of transformations that link these random
variables to the coefficients and parameters of the model.

The schema for specifying random variables is depicted in figure 15. There
are several univariate and multivariate distributions defined, such as the uniform,
normal, lognormal, beta, gamma distributions, etc., and in addition the user can
specify any arbitrary distributions via nonlinear functions.

The investment problem in Section 2 has three simple two-stage distributions,
and we illustrate two ways to specify them. In figure 16, the distributions of the two
returns in stages 1 and 2 are given as explicit two-point discrete random vectors,
while the distribution in stage 3 is given as a Bernoulli random variable (or equiv-
alently, as binomial(N, p) with N = 1 and p = 0.5). The two-point distribution of
the random vector r = (r1, r2) can then be recovered by writing

r = r0 + ξ3 ∗∆r (7)

where r0 and ∆r are fixed values and ξ3 represents the Bernoulli random variable. In
the investment example, r0 = (1.25, 1.14) and ∆r = (−0.19,−0.02). If the Bernoulli
random variable ξ3 takes a value of 0, this yields the realization (1.25, 1.14) for the
returns in stage 3, and if the Bernoulli random variable takes value 1, the returns
are (1, 06, 1.12). Note that equation (7) decomposes a multi-dimensional random
vector into a single one-dimensional factor.

It is important to note that the random variables have not yet been tied to any
stochastic problem parameters, which allows for considerable flexibility. The linkage

6 Implicit event trees 22

StochasticRandomVariables

randomVariables

attributes

numberOfDistributions

StochasticDistribution

distr

1 ∞..

attributes

name

stage

StochasticUnivariateDistribution

univariate

DistributionGro...

generalDistribution

userF

StochasticMultivariateDistribution

multivariate

attributes

numberOfRandomVariables

MultiDimensionalDistributionGr...

generalDistribution

userF

Fig. 15: Distributions of random variables — XML schema.

6 Implicit event trees 23

<randomVariables numberOfDistributions="3">
<distr stage="2">

<multivariate numberOfRandomVariables="2">
<multivariateDiscrete>

<scenario prob="0.5">
<el>1.25</el>
<el>1.14</el>

</scenario>
<scenario prob="0.5">

<el>1.06</el>
<el>1.12</el>

</scenario>
</multivariateDiscrete>

</multivariate>
</distr>
<distr stage="3">

<multivariate numberOfRandomVariables="2">
<multivariateDiscrete>

<scenario prob="0.5">
<el>1.25</el>
<el>1.14</el>

</scenario>
<scenario prob="0.5">

<el>1.06</el>
<el>1.12</el>

</scenario>
</multivariateDiscrete>

</multivariate>
</distr>
<distr stage="4">

<multivariate numberOfRandomVariables="2">
<multivariateDiscrete>

<scenario prob="0.5">
<el>1.25</el>
<el>1.14</el>

</scenario>
<scenario prob="0.5">

<el>1.06</el>
<el>1.12</el>

</scenario>
</multivariateDiscrete>

</multivariate>
</distr>

</randomVariables>

Fig. 16: Univariate and multivariate distributions.

7 Soft constraints 24

between the random variables and the stochastic problem parameters is made by
specifying explicit transformations. The schema for these transformations is given
in figure 17.

This separation of random variables and stochastic parameters allows for com-
pact representation of complicated random processes, for instance ARMA or GARCH
processes, with comparable ease. In the current case we have simple linear trans-
formations, which in the case of the random variables in stage 1 and 2 are just
identities.

For the investment problem (3) the collection of all transformations can be given
as a single affine transformation

r11

r12

r21

r22

r31

r32

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −0.19
0 0 0 0 −0.02

ξ11

ξ12

ξ21

ξ22

ξ3

+

0
0
0
0

1.25
1.14

.

There are only five random variables (or components of random vectors), because
the last two stochastic elements are generated from a single random variable using
equation (7).

Figure 18 shows the content of the element stochasticTransformations.

7 Soft constraints

It is not always possible to insist that all constraints be satisfied under all possible
realizations of the random variables; occasionally there may be a need to relax a
constraint a little. This is commonly termed a “soft constraint”, and there are
two general ways of dealing with such a constraint: One could impose a penalty
term (that is added to the objective) and “tax” the violation of a constraint. Since
violating this constraint is expensive for the decision maker, there is an incentive to
satisfy the constraint “most of the time”. The other option is to limit the exposure
to risk. For instance, one could require that the constraint be satisfied in at least
95% of all possible situations, or that the expected constraint violation be small, or
that some other moment constraint be satisfied.

OSiL contains provisions for both approaches, as illustrated in figure 19.
The objective function of the investment problem is essentially a penalty term:

falling short of the target is penalized, while exceeding the target earns a small
reward. This kind of objective could be expressed in OSiL as shown in figure 20.
Since the penalty function is linear for each type of constraint violation, the problem
is technically called a “simple recourse problem”. If this formulation of the problem

7 Soft constraints 25

StochasticImplicitTree

implicitTree

randomVariables

StochasticElements

stochasticElements

attributes

numberOfElements

1 ∞..

param

var

obj

con

el

qTerm

number

rowModifiers

StochasticLinearTransformation

linearTransformation

StochasticLinearTransformationMatrixCoefficients

matrixCoefficients

attributes

numberOfValues

start

rowIdx

colIdx

value

autoregressiveTerms

NonlinearTransformations

randomFunctions

Fig. 17: Transformations of random variables — XML schema.

7 Soft constraints 26

<stochasticElements numberOfElements="6">
<el rowIdx="1" colIdx="0"/>
<el rowIdx="1" colIdx="1"/>
<el rowIdx="2" colIdx="2"/>
<el rowIdx="2" colIdx="3"/>
<el rowIdx="3" colIdx="4" baseValue="1.25"/>
<el rowIdx="3" colIdx="5" baseValue="1.14"/>

</stochasticElements>
<linearTransformation>

<matrixCoefficients numberOfValues="6">
<start>

<el>0</el>
<el>1</el>
<el>2</el>
<el>3</el>
<el>4</el>
<el>5</el>
<el>6</el>

</start>
<rowIdx>

<el>0</el>
<el>1</el>
<el>2</el>
<el>3</el>
<el>4</el>
<el>5</el>

</rowIdx>
<value>

<el>1.0</el>
<el>1.0</el>
<el>1.0</el>
<el>1.0</el>
<el>-0.19</el>
<el>-0.02</el>

</value>
</matrixCoefficients>

</linearTransformation>

Fig. 18: Linear transformations for investment problem (3).

7 Soft constraints 27

StochasticSoftConstraints

softConstraints

StochasticPenalties

penalties

StochasticPenaltiesRow

row

1 ∞..

attributes

idx

StochasticSimpleRecourse

simpleRecourse

attributes

shortagePenalty

surplusPenalty

robustOptimization

piecewiseLinearQuadratic

userDefinedPenalty

probabilisticObjectives

StochasticChanceConstraints

chanceConstraints

StochasticSimpleChanceConstraint

simpleChanceConstraint

0 ∞..

attributes

rowIdx

lb

ub

jointChanceConstraint

0 ∞..

integratedChanceConstraints

userDefinedRiskMeasures

Fig. 19: Soft constraints — XML schema.

8 Conclusions and future plans 28

<softConstraints>
<penalties>

<row idx="3">
<simpleRecourse surplusPenalty="1" shortagePenalty="-4"/>

</row>
</penalties>

</softConstraints>

Fig. 20: Soft constraints — simple recourse.

is chosen, there will be only six decision variables instead of eight, and the two
objective coefficients in figure 6 will have to be removed.

8 Conclusions and future plans

This paper has shown the design of a very general instance description for multistage
stochastic nonlinear programs. The stochastic format complements and extends
earlier endeavours towards a unified format for general deterministic optimization
problems and is part of an on-going development of XML schemas for virtually every
aspect of the model development life cycle.

The format can handle continuous as well as discrete distributions, stochastic
problem dimensions, ARMA and GARCH processes, arbitrary penalties for soft
constraints, linear and nonlinear objectives and constraints, probabilistic constraints
and other risk measures.

Only a small portion of the format’s features has been illustrated in this paper,
mostly due to length restrictions. Additional papers as well as a web site are planned
in order to explain other aspects such as stochastic problem dimensions, general
user-defined probability distributions, soft constraints, nonlinear problems, etc.

At present only finite discrete time periods are supported, but we have plans to
extend the schema to include infinite horizons as well as continuous time decision
problems.

Future development will also include schemas for capturing solver output and
solver communication, readers and writers, internal data objects for storing the
problem instances, and a library of test problems illustrating the many features of
the format.

8 Conclusions and future plans 29

Acknowledgements

The first and third authors were supported by grant DMI-0322580 from the U.S.
National Science Foundation, and by a gift from the IBM Faculty Awards program.
The second author was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC).

References

[1] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W.
Wallace, “A standard input format for multiperiod stochastic linear programs”,
COAL Newsletter #17, pp. 1–19, 1987.

[2] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer
Series in Operations Research, Springer Verlag, New York, 1997.

[3] A. Brooke, D. Kendrick and A. Meeraus, GAMS — A User’s Guide, The Sci-
entific Press, Redwood City, CA, 1988.

[4] A. Charnes and W.W. Cooper, “Chance-constrained programming”, Manage-
ment Science 5 (1959) 73–79.

[5] A.R. Conn, N.I.M. Gould and P.L. Toint, “The SIF Reference Document”,
world-wide web document http://www.numerical.rl.ac.uk/lancelot/sif/sif.html,
accessed 13 July 2006.

[6] W. J. Cook, “MPS Format ”,world-wide web document
http://www2.isye.gatech.edu/ wcook/qsopt/hlp/ff mps format.htm, accessed
6 September 2006.

[7] D. Dentcheva and A. Ruszczyński, “Portfolio optimization with stochastic dom-
inance constraints”, Journal of Banking and Finance 30, No. 2 (2006) 433–451.

[8] J. Edwards, “A proposed standard input format for computer codes which
solve stochastic programs with recourse”, in: Yu. Ermoliev and R.J-B Wets
(eds.), Numerical Techniques for Stochastic Optimization, Springer Series in
Computational Mathematics, Vol. 10, Springer Verlag, Berlin, 1988, pp. 215–
227.

[9] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL — A Modeling Language
for Mathematical Programming (2nd ed.), Brooks/Cole—Thomson Learning,
Pacific Grove, CA, 2003.

8 Conclusions and future plans 30

[10] R. Fourer, J. Ma and R.K. Martin, “Optimization Services Instance Language
(OSiL), a General-Purpose Instance Representation for Optimization Prob-
lems”, Working paper, Department of Industrial Engineering and Management
Science, Northwestern University, Evanston, Illinois.

[11] R. Fourer, J. Ma and R.K. Martin, “Optimization Services (OS) Overview ”,
world-wide web document http://gsbkip.chicagogsb.edu/os/os overview.html,
accessed 13 November 2006.

[12] H.I. Gassmann, “The SMPS format for stochastic linear programs”, world-
wide web document http://myweb.dal.ca/gassmann/smps2.htm, accessed 13
July 2006.

[13] H.I. Gassmann, “MSLiP: An algorithm for the multistage stochastic linear pro-
gramming problem”, Mathematical Programming 47 (1990) 407–423.

[14] H.I. Gassmann and A. Prékopa, “On stages and consistency in stochastic pro-
gramming”, Operations Research Letters 33 No. 2 (March 2005), 171–175.

[15] H.I. Gassmann and E. Schweitzer, “A comprehensive input format for stochastic
linear programs”, Annals of Operations Research 104 (2001) 89–125.

[16] D.M. Gay, “Electronic mail distribution of linear programming test problems”,
Numerical Analysis Manuscript 86-0, AT&T Bell Laboratories, Murray Hill,
NJ, 1986.

[17] B.V. Halldórsson, E.S. Thorsteinsson and B. Kristjánsson, “A Modeling In-
terface to Non-Linear Programming Solvers - An instance: xMPS, the ex-
tended MPS format”, Carnegie Mellon University Mathematical Sciences
Department Working Paper, 2001, available as world-wide-web document
http://www.mmedia.is/esth/papers/xmps-2000 022000.pdf, accessed 13 No-
vember 2006.

[18] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187,
Springer Verlag, 1981.

[19] W.K. Klein Haneveld, Duality in Stochastic Linear and Dynamic Programming,
Lecture Notes in Economics and Mathematical Systems, Vol. 274, Springer-
Verlag, Berlin, 1986.

[20] D. Klingman, A. Napier and J. Stutz, “NETGEN: A program for generating
large scale capacitated assignment, transportation, and minimum cost flow net-
work problems”, Management Science 20 (1974) 814–821.

8 Conclusions and future plans 31

[21] LPSolve, “MPS file format”, world-wide web document
http://lpsolve.sourceforge.net/5.1/mps-format.htm accessed 6 September
2006.

[22] J. Ma, “Optimization Services (OS)”, PhD Thesis, Industrial Engineering and
Management Sciences, Northwestern University, 2005. Available as world-wide
web document http://gsbkip.chicagogsb.edu/os/publications/Thesis2005.pdf,
accessed 6 September 2006.

[23] J. Ma, “Welcome to the Official Optimization Services (OS) Home ”, world-
wide web document, http://www.optimizationservices.org/, accessed 23 Au-
gust 2006.

[24] MOSEK ApS, “The MPS file format”, world-wide web document
http://www.mosek.com/products/3/tools/doc/html/toolbox/node10.html,
accessed 13 July 2006.

[25] B.A. Murtagh and M.A. Saunders, MINOS 5.1 User’s Guide, Technical Report
SOL 83-20R, Systems Optimization Laboratory, Stanford University, 1987 (re-
vised).

[26] J.L. Nazareth, Computer Solution of Linear Programs, Oxford University Press,
New York, 1987.

[27] Netlib.org, “Netlib linear programming test set”, world-wide web document
http://www.netlib.org/lp/index.html, accessed 13 July 2006.

[28] Pintér Consulting Services, “LGO: A Model Development System for Contin-
uous Global Optimization”, User’s Guide, Halifax, Nova Scotia, Canada, 2002.

[29] A. Prékopa, Stochastic Programming, Kluwer Academic Publishers, Dordrecht/
Boston/London, 1995.

[30] Refsnes Data, “Introduction to XML”, world-wide web document
http://www.w3schools.com/xml/xml whatis.asp, accessed 13 November
2006.

[31] R.T. Rockafellar and R.J-B Wets, “Scenario and policy aggregation in opti-
mization under uncertainty”, Mathematics of Operations Research 16 (1991)
119–147.

[32] R.T. Rockafellar and S. Uryasev, “Optimization of Conditional Value-At-Risk”,
The Journal of Risk 2 (2000) 21–41.

[33] K. Schittkowski, More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 282, Springer Verlag, 1987.

8 Conclusions and future plans 32

[34] K. Schittkowski, “Test Problems for Nonlinear Programming — User’s Guide”,
world-wide web document http://www.uni-bayreuth.de/departments/math/
∼kschittkowski/tpnp.htm, accessed 13 July 2006.

[35] E.S. Thorsteinsson, “xMPS, the Extended MPS Format for Non-Linear Pro-
grams”, Technical Report 99-224, Carnegie Mellon University Mathemati-
cal Sciences Department, December 1999, available as world-wide-web docu-
ment http://www.mmedia.is/esth/papers/xmpstech-1999 121999.pdf, accessed
13 November 2006.

[36] R.S. Tsay, Analysis of Financial Time Series, Wiley Publishers, 2002.

[37] R.J. Vanderbei, “LOQO User’s Manual — Version 4.05”, Technical report
ORFE-99-77, Department of Operations Research and Financial Engineering,
Princeton University, Princeton, New Jersey. Also available as world-wide web
document http://www.princeton.edu/ rvdb/tex/loqo/loqo405.pdf.

[38] Wolfram Research, Inc., “Multivariate ARMA Models”, world-wide
web document http://documents.wolfram.com/applications/timeseries/
UsersGuidetoTimeSeries/1.2.5.html, accessed 13 July 2006.

[39] Ziena Optimization Inc, “Knitro 5.0 Interfaces”, world-wide web document
http://www.ziena.com/interfaces.htm, accessed 13 July 2006.

