
Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Optimization Services
hookup Language

(OShL)

Jun Ma
INFORMS, Pittsburgh

11/08/2006

Jun Ma
Robert Fourer

Northwestern University
Kipp Martin

University of Chicago

-- API for invoking Remote Solver Service

-- Think of HTTP/HTML, JDBC/ODBC

-- Open Source

-- Platform Independent

-- Programming Language Independent

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

OUTLINE

2. Invoking a remote solver service

3. Optimization Services hookup Language (OShL)

4. Conclusion

1. Optimization Services and OSP (OSxL’s)

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Optimization Services (OS)
THE Optimization Internet

Model/Data AgentParse to OSiL

XML-based standard

OS

Server

OS Server

location

Max f(x) :objective
 x :variables
s.t. lb1 <= g1(x) <= ub2 :constraints

 lb2 <= g2(x) <= ub2

f(x) can be sin(x(1))+x(x(2))

g1(x) can be if(x(1)>0) then x(2) else cost(x(2))

g2(x) can be a metric from a finite element simulation

 (non-closed form black box function evaluator)

browser

Web page

Google

Web Server

CGI
socket

http/html

OSP/
OSxL

Web address

html form

OS Server

OShL – Optimization Services hookup Language

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Invoking remote solver service (1)

Requirement Solution
1. Platform Independent OS is Web services based

2. Language Independent OShL is XML Based WSDL
3. Protocol Independent OShL is in SOAP envelope

4. Type compatibility Uses all strings as arguments

5. Simple 6 methods, 2 args, only 1 method impl., no network knowledge req.

6. Built-in state/session maintenance jobID

solve(instance, option) -> result

getJobID(option) -> jobID

7. Request and response/Blocking solve(instance, option) -> result

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Invoking remote solver service (2)

Requirement Solution
8. Communication only No specification on arguments

9. Truly asynchronous (server side) send(instance, option) -> true/false

10. Retrieve anytime, anywhere jobID, service-oriented architecture

11. Must stop remote process Kill (≠ stop on the browser)

send(instance, option) -> true/false

kill(option) -> killProcessResult

retrieve(option) -> result

Argument specification -> xml schemas -> OSiL, OSoL, OSrL etc.

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Invoking remote solver service (3)

Requirement Solution
8. Dynamic process information (heartbeat) Knock

9. Extendable 2 inputs, 1 output (leverages on OSpL)

ping getServiceStatistics

knock(inputProcess, option) -> outputProcess

setServiceStatistics

getJobStatistics setJobStatistics

getOptmizationStatistics setOptmizationStatistics

getAll setAll

notifyJobCompletion requestJob

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Invoking remote solver service (4)

knock(inputProcess, option) -> outputProcess

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Optimization Services hookup Language (OShL)

getJobID (String OSoL) -> jobID

solve (String OSiL, String OSoL) -> OSrL

send (String OSiL, String OSoL) -> true/false

retrieve (String OSoL) -> OSrL

kill (String) -> OSpL

knock(String OSpL, String OSoL) -> OSpL

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Our OShL-compatible solver hosting SERVER reference impl.
Remote job submission, management and control
Remote retrieval of previously submitted jobs
Session and state maintenance
Synchronous and asynchronous solver invocation
Killing long jobs over the remote server
Checking and managing service status and job statistics
Automatic job completion notification via most common protocols including emails
Persistence between service starts
Service logging
Automatic notification of critical service information to admin
Centralized user configuration
Directory and file cleanup
Disk, memory and process cleanup
Critical data backing up
Waiting job queue management
Long computational job handling
Job dependency handling
Keeping track of service utilization and preparing periodic report
Automatic input and output validation and processing
Support of machines with multiple CPUs
Support of all major operating systems
Authentication and authorization
Security

Robert Fourer, Jun Ma, Kipp Martin
Copyright 2006

Conclusion

• Optimization Services, OS Protocols (OSP => OSxL’s)
• Design Requirement in Invoking Remote Solver Service
• Optimization Services

• Optimization Services will be released end of the year or
beginning of next year.

• Almost all major parties (commercial, open source,
research projects) are adopting it (It’s a private process
now!)

• Next generation NEOS
• Critical role in Cyber-infrastructure
• A Mega COIN project – touches nearly all the major COIN

optimization-related projects
• “Run-Time” COIN (COmputational INfrastructure)
• Optimization Internet
• Contact us in private

