
Optimization Services (OS) Framework
and

OSP Protocols (OSxL)
“Combining Operations Research with Computing Techn ology”

Jun Ma
maj@northwestern.edu

10/24/2004
INFORMS Conference, Denver

Robert Fourer
Jun Ma

Northwestern University

Kipp Martin
University of Chicago

The Positioning of
Optimization Services Framework

in OR/MS

The Positioning of
OSP Protocols (OSxL)

in Computing

Application

Presentation

Session

Transport

Network

Link

Physical

The 7-layer OSI Model The 4-layer Internet model

HTTP

IP

TCP

Ethernet

SOAP

OSP
Application

Presentation

Session

Transport

Network

Link

Physical

GET /xt/services/ColorRequest HTTP/1.0
Content Length: 442
Host: localhost
Content-type: text/xml; charset=utf-8
SOAPAction: "/getColor"

<soap:Envelope>
<soap:Body>

<soap:Body>
</soap:Envelope>

OSP – specifies soap content

Communication Interface
Representation

e.g. hook (“<OSiL> … </OSiL>”)

Optimization Services (OS) Framework

• A framework, NOT a system
– cf. constitution, NOT government/Court System. Only that the framework

specifications are written in XML languages (NOT English).
– cf. DOM/SAX, NOT Xerces, Crimson, or other real

implementations/providers.
– But we are in the middle of developing the modeling system according to

this framework.
– We are also building libraries for other people to put up their optimization

services.
• Distributed environment (Local environment being just a special Case)
• Service Oriented Decentralized Architecture (Registry NOT Server).
• Optimization Services Components

1. Modeling Language Environment (MLE) (e.g. AMPL, OSmL) -- OSModel
2. Optimization Registries (e.g. The next generation NEOS) – OSRegistry
3. Analyzers/Preprocessors (e.g. Mprobe, Dr. AMPL) -- OSAnalyzer
4. Optimization Solvers (e.g. Lindo) -- OSSolver
5. Simulation (e.g. Finite Element Analysis) -- OSSimulation
6. Communication Software Agent – OSAgent
7. All of the above are communicating in a common language -- OSCommon

Optimization Services (OS) Framework
The next generation NEOS
THE Optimization Internet

the Universal distributed/local COIN for OR

Model/Data
Agent

hook (instance)

OShL (OSiL)

(result)

(OSrL)

A M P L

O S m L

Parse to OSiL

XML-based standard

Web
Service
Server

Web
Service
Server

Web
Service
Server

location

Discover (query)

OSdL (OSqL)

URL

(OSuL)

Join (Entity Description)
OSjL (OSeL)

Web
Service
Server

Call (in/out)
OScL (OSsL)

Flow
(OSfL)

Max f(x) :objective
 x :variables
s.t. lb1 <= g1(x) <= ub2 :constraints
 lb2 <= g2(x) <= ub2

f(x) can be sin(x(1))+x(x(2))
g1(x) can be if(x(1)>0) then x(2) else cost(x(2))
g2(x) can be a metric from a finite element simulation
 (non-closed form black box function evaluator)

[Standard, Simple, Scalable] => Smooth
•The General and Universal Framework for Optimizatio n in Local and Distributed Environment.
•Combining Optimization with Modern Computing Techno logies.
•A Next Generation Modeling System as An Internet Re source.
•Standardization of Optimization Representation, Com munications, Registration, and Discovery
•Using Optimization Computing Tools Just Like Daily Utility Services.

Invoke

OShL

(instance)

(OSiL)

(analysis)

(OSaL)

User Experience Movement
• Open Environment
• Convenience just like Using Utility Services
• No High Computing Power Needed
• No Knowledge in Optimization Algorithms and Software (solvers,

options, etc.)
• Better and More Choices of Modeling Languages
• More Solver Choices
• Solve More Types of Problems
• Automatic Optimization Services Discovery
• Decentralized Optimization Services Development and Registration
• More Types of Optimization Services Components Integrated

(Analyzers/Preprocessors, Problem Providers, Bench Markers)
• Smooth Flow and Coordination of Various Optimization Services

Components.
• A University, Scalable and Standard Infrastructure that promotes

Collaboration and Other Related Researches
• Concentration on Good Modeling

Why Not MathML
"Need." Content MathML includes more than we need in the OR/MS community. If an

instance unintentionally includes these features which shouldn't be allowed, MathML
DTD or Schema would still validate while none of the solvers would ever recognize
such features.

"Design." OSnL has a very consistent recursive design There is also a one -to-one
correspondence between each node element in the expression tree and each node class
in the parsing library. Content MathML cannot achieve the consistency because it has
to tailor to general needs. The <apply> element in Content MathML consistently result
in lengthier representation of nonlinear functions than OSiL.

"Specialty" We have all the special features such as XPath node, user functions and
parameters, variable subscripts supported. Content MathML can work around some, but
in awkward ways.

"Level." There is a reason that Content MathML is not called "Computation MathML."
MathML is at a different level of the "bottom", maybe higher because it's still intended
for "symbolic" content representation. Content MathML is a content-faithful
transformation from the high level in that Content MathML retains original content.
OSiL may be more appropriately called "Computation MathML." For example OSiL
does substitution for high level identifiers and it's a "numerical instance" at the bottom,
which no longer retains all the information of the original model.

"Control." The OR community does not have control over the design of MathML. Certain
features that are critical in optimization may not be "naturally" built or not supported at
all in MathML. As long as one feature is not supported at all in Content MathML, we
should not adopt it.

"Flexibility." We can embed MathML in OSnL and OSiL, while MathML does not embed
OSxL.

"Optimization." Critical optimization related information are treated more importantly than
other general math information.

