

Fundamentals of Modeling Systems and a System Approach to Simulation Optimization

OUTLINE

- 1. History and Background
- 2. Optimization Systems Design and Architecture
- 3. System Components
- 4. AMPL-NEOS System

5. Motorola Intelligent Optimization System and Simulation Optimization

6. Conclusion

History and Background

- Linear programming by George Dantzig in the late 1940's
 - Intensive labor in translation from model to solver
 - Human labor alone
- Matrix generator (till early 1980's)
 - A computer code to generate coefficient matrices
 - Translation task divided between human and computer
- Modeling Language (mid 1980's till now)
 - GAMS, AMPL, LINDO, AIMMS, MPL, OPL, MOSEK
 - Translation entirely shifted to computer
 - Separation of data from model
 - Separation of modeling language form solver
 - Verifiable, modifiable, documentable, independent, simple
- Optimization server (mid 1990's)
 - Optimization web pages
 - Online optimization solvers
 - NEOS

•

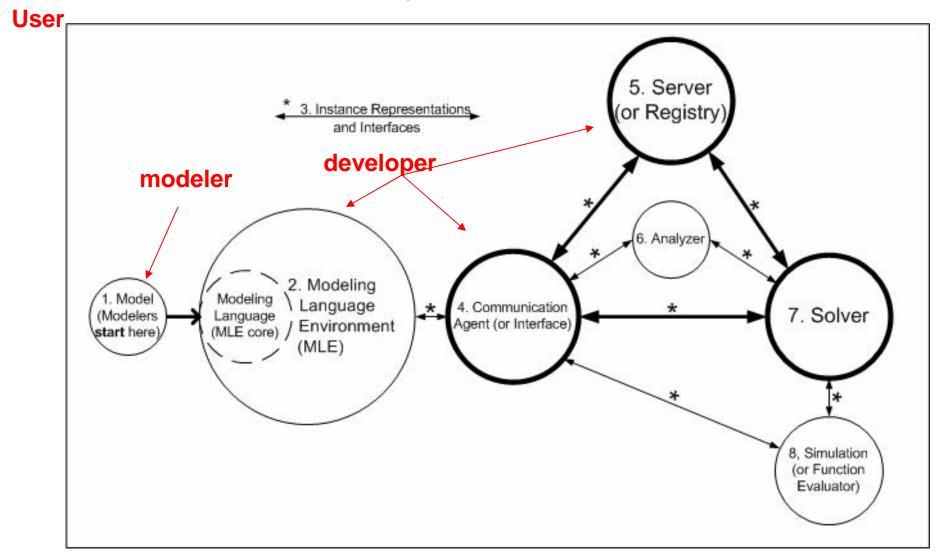
•

- Optimization Services (current)
 - Registry
 - Decentralization (peer to peer)
 - XML and Web Services
 - Standards

Optimization Systems Terminology

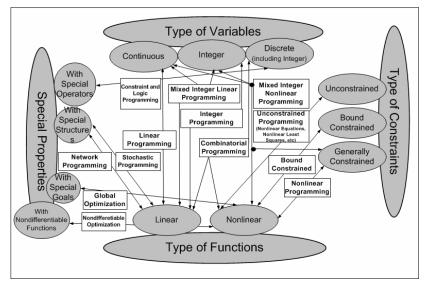
- Modeling system (?)
- Modeling language environment (MLE)
 - Model language
 - Compiler

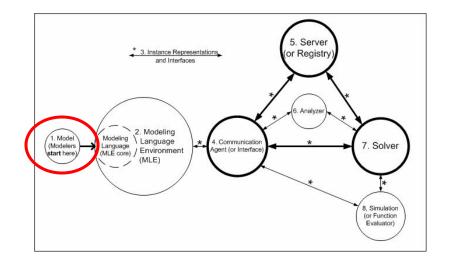
•


- Auxiliary tools
- Optimization system
 - All the components discussed next
 - Including solvers
 - Local or distributed
- Library, system and framework

Optimization Systems

Design and Architecture


5


System Components Model

- Different forms
 - Flowchart
 - Graphics
 - Mathematical program

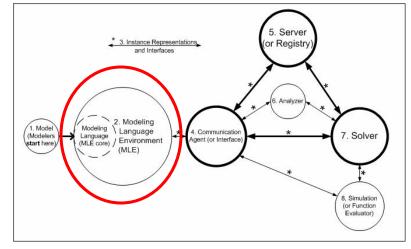
 $\begin{array}{ll} \underset{x}{\text{minimize}} & cx\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$

- Different variation
 - Language variation
 - Algebraic variation
 - Type variation

- Symbolic
- General

•

.

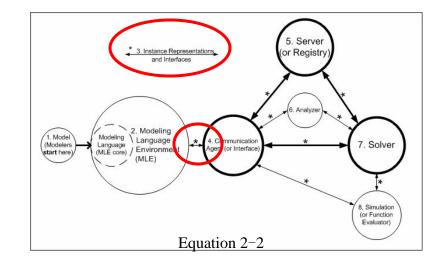

- Concise
- Understandable

System Components Modeling Language Environment (MLE)

- Language design
- Compilation
- Auxiliary tools
 - Analyzer
 - Preprocessor
 - GUI

A Data Reconciliation Demo		
<u>Eile Edit View Data Run Settings Tools Window H</u> elp		
	S P V C 🗔] 🐹 🏗 🗟 🏭 🕷 🕷 🕷 🕺
Model Explorer 4 ×	Composition Com	ponentFlow CompositionsAddUpToOne 4 b ×
DataReconciliationModel DetaReconciliationModel DetaReconciliationModel	Туре	Variable 🔹 🐴 🔂 🔂 🗸 🗸 🗸 🗛
A Reconciliation Model	Identifier 🔀	ComponentFlow
 Flow Variables Component Variables and Constraints Composition(nnf,c) CompositionAddUpToOne(nmf) CompositionAddUpToOne(nmf) CompositionSAddUpToOne(nmf) ComponentBalance(pu,c) ComponentBalance(pu,c) ComponentBalances Fore Control Fore Error Control Reconciliation Programs InitializeModel Composition Errors SolveTheModel Checks for Measurement Redundancy OUI support Comport Example Initialization 	Index domain 🔀 Text Range 🔀	(f,c in MappedFlowComponents(f)) nonnegative Mmol/h Composition(MappedFlow(f),c) * Flow(f) / MolarFlowMass(MappedFlow(f)) CompositionS
Model Explorer B Identifier Selector Data Reconclisation.prj Act.Case:	Comment	The component flow of component c in flow f

• Low-level instance generation



System Components Instance Representation

- Characteristics
 - explicit rather than symbolic
 - specific rather than general
 - redundant rather than concise
 - convenient rather than understandable

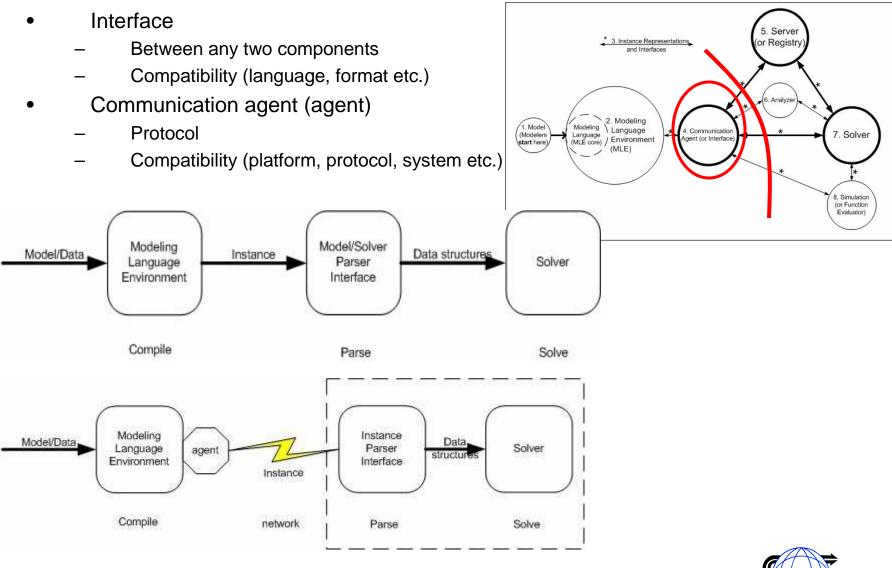
minimize
_x
$$-x_2 + 1/2(2x_1^2 - 3x_1x_3 + 4x_2^2 + 5x_3^2)$$

subject to
 $6x_1 + 7x_2 - 8x_3 \ge 9$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0x_1$

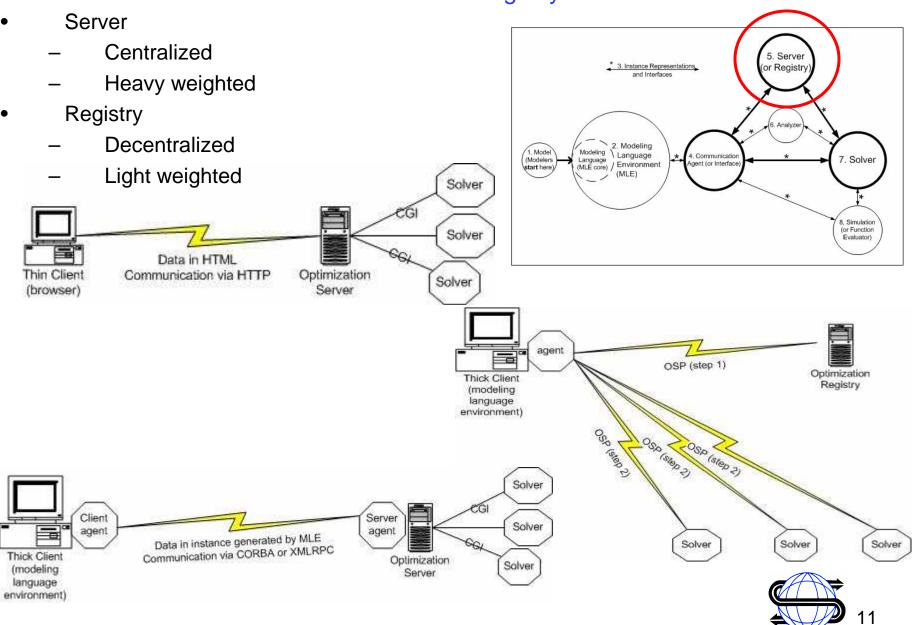
NAME ROWS N obj G cl COLUMNS	qpEx			
xl	cl	6		
x2	obj	-1		
x2	cl	7		
x3	cl	-8		
RHS				
rhs	cl	9		
QSECTION	obj			
xl	xl	2		
xl	x3	-3		
x2	x2	4		
x3	x3	5		
ENDATA				

System Components

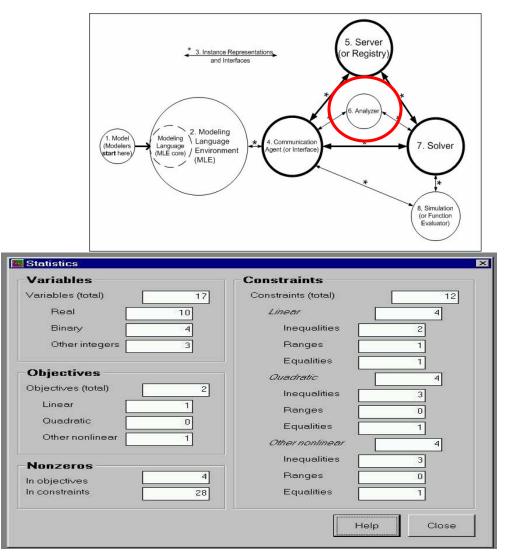
Instance Representation


Linear Programming	MPS, xMPS, LP, CPLEX, GMP,]
Quadratic Programming	GLP, PuLP, MLE instances	5. Server
Mixed Integer Linear Programming		and Interfaces (or Registry)
Nonlinearly Constrained Optimization	MLE instances	*
Bounded Constrained Optimization	SIF (only for Lancelot solver)	6. Analyzer *
Mixed Integer Nonlinearly Constrained Optimization		odeling nguage vironment Ager (or Interface)
Complementarity Problems		
Nondifferentiable Optimization		(8, Simulation
Global Optimization		(or Function Evaluator)
Semidefinite & Second Order Cone Programming	Sparse SDPA, SDPLR	Equation 2–2
Linear Network Optimization	NETGEN, NETFLO, DIMACS,	-
	RELAX4	
Stochastic Linear Programming	sMPS	-
Stochastic Nonlinear Programming	None	-
Combinatorial Optimization	None (except for TSP input,	-
	only intended for solving	
	Traveling Sales Person	
	problems.	
Constraint and Logic Programming	None	-
Optimization with Distributed Data	None	-
Optimization via Simulation	None	

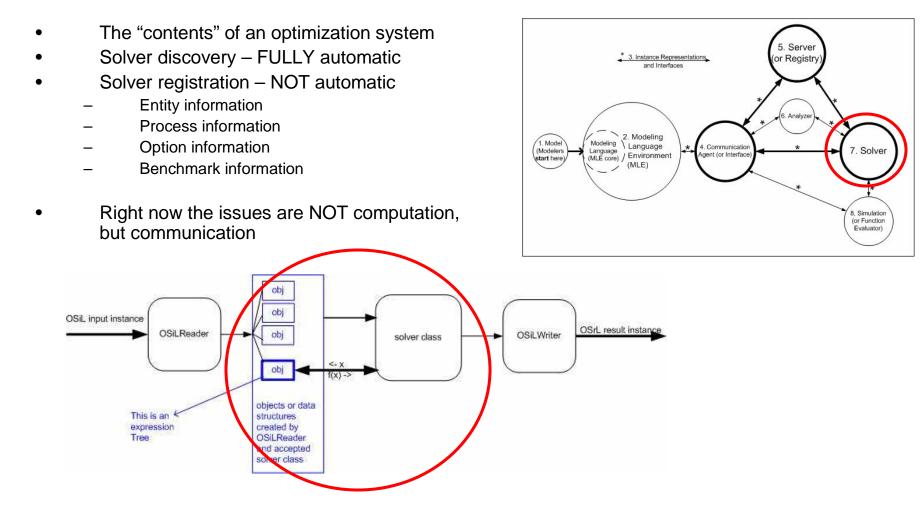
9


System Components

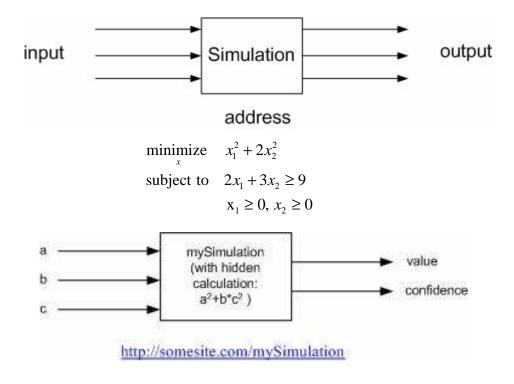
Interface(Local)/Communication Agent (Distributed)

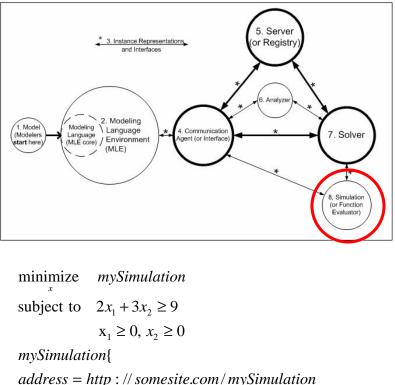

Server and Registry

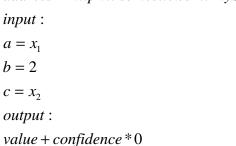
Jun Ma, Northwestern University February 02, 2005


System Components Analyzer

- Analyzer:Modeling Language :: Debugger:Programming Language
- Analyze low-level instance, NOT highlevel modeling
- Some analysis are easy and involves only parsing
- Some involves computational analysis but can generate definite answer (e.g. network flow problem, quadratic problem)
- Some are hard and uncertain (e.g. convexity)
- Analyzer is a separate component in an optimization system; it plays a key role in automation (no human interaction).

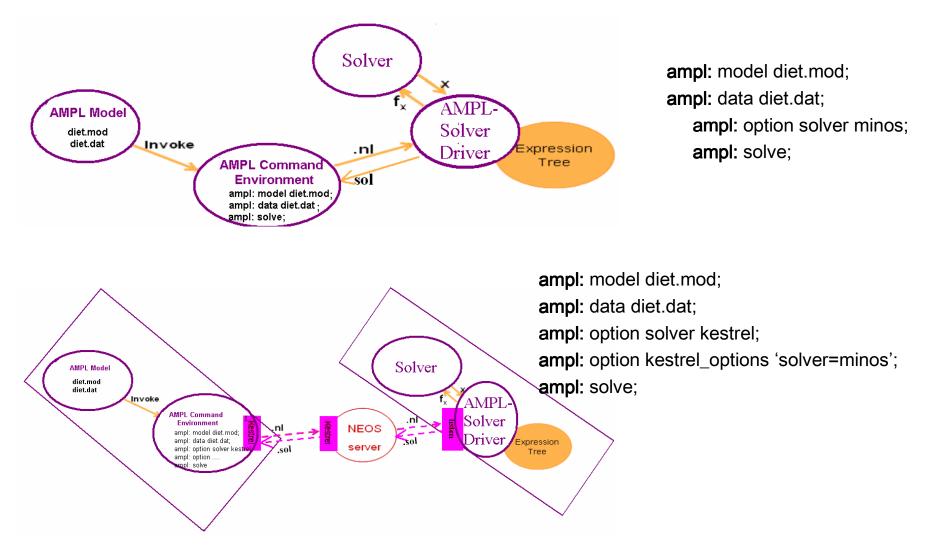

System Components Solver

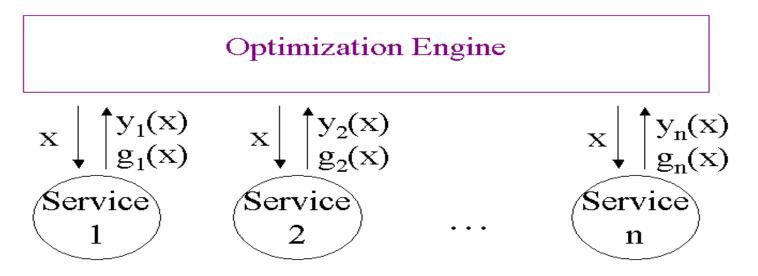




System Components Simulation

- Any function evaluation
 - Function pointer: local, closed form
 - Simulation: remote, non-closed form
- Other properties of simulation (too complex, proprietary, multiple services, hard to move




AMPL-NEOS System

Motorola Intelligent Optimization System Data Flow and Knowledge Flow

min
$$f(y_1(x), y_2(x), ..., y_n(x))$$

s.t. $g_j(x) \le 0$ for all $j = 1,...,n$

 $T = T_s \times LF(t) + DT$

 $T_s =$ Service time for a given server;

LF(t) = Load factor as a function of time (t);

DT= Down time.

Three kinds of services with typical behaviors are identified:

Service A:

 $T_s =$ Uniform distribution [6, 30] seconds;

LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise;

DT = 5% probability of the service going down for 30 seconds.

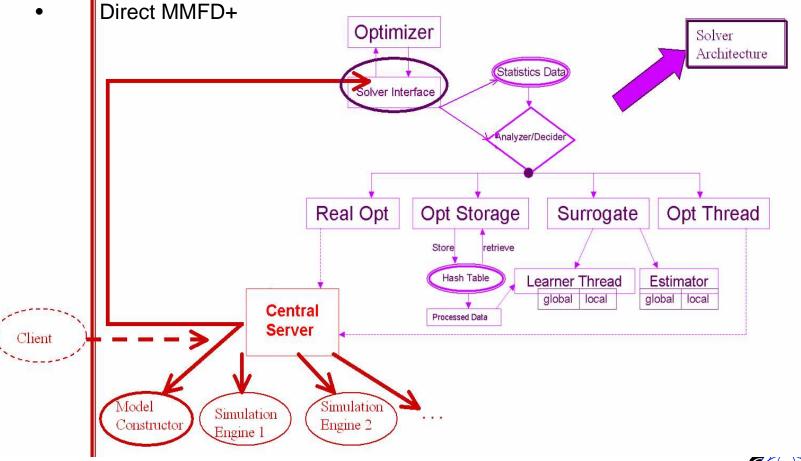
This service has automatic "crash detection" and recovery; therefore, the maximum down time is 30 seconds. **Service B**:

 $T_s =$ Uniform distribution [30, 60] seconds;

LF(t) = 1.25 from 0600 to 1400 hours; 1.0 otherwise;

DT = Insignificantly small;

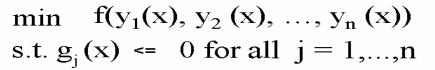
Service C:

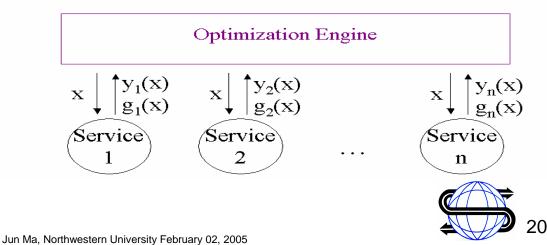

 $T_s =$ Uniform distribution [30, 90] seconds;

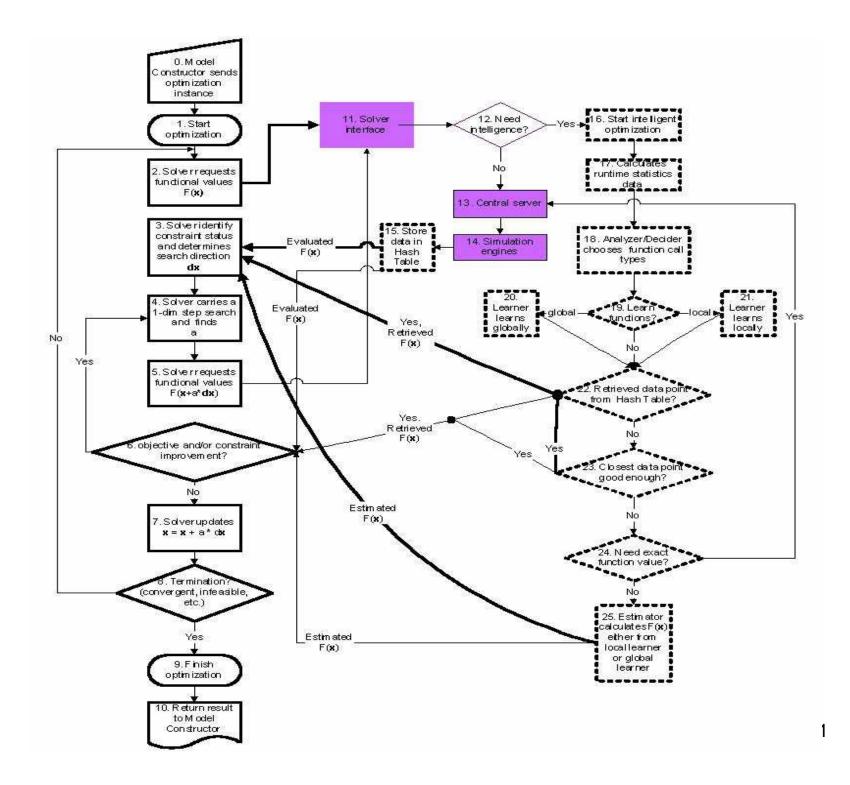
LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise;

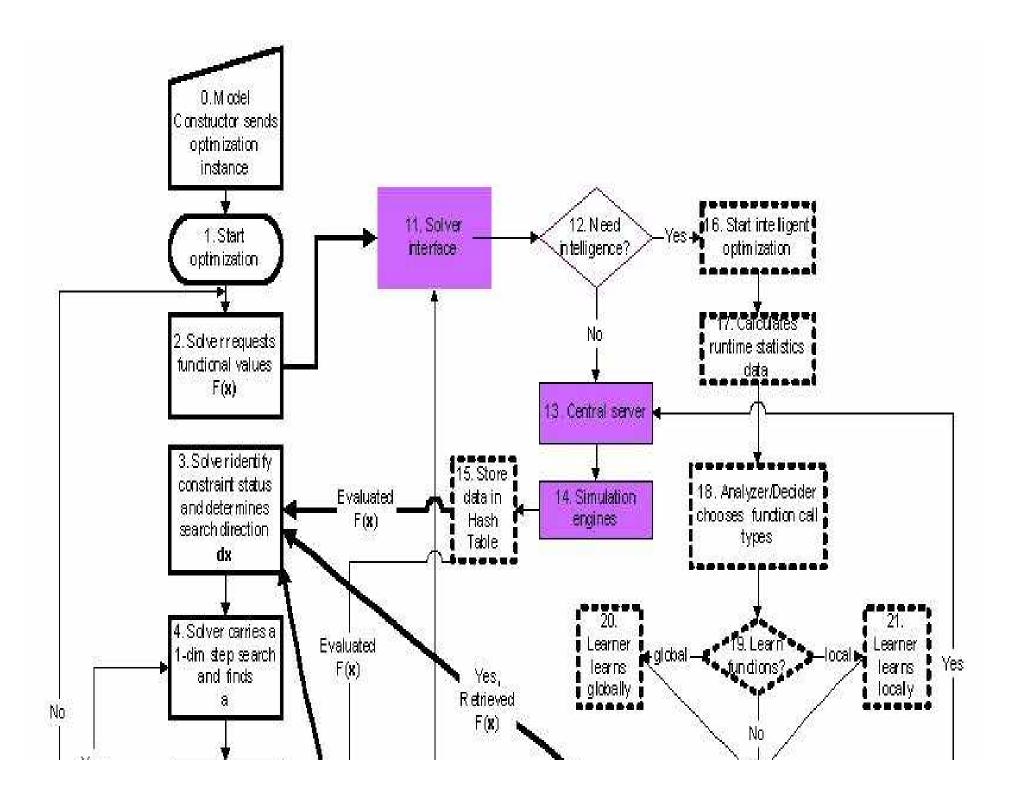
DT = 1% probability of the service going down for anywhere between 15 minutes and 16 hours.

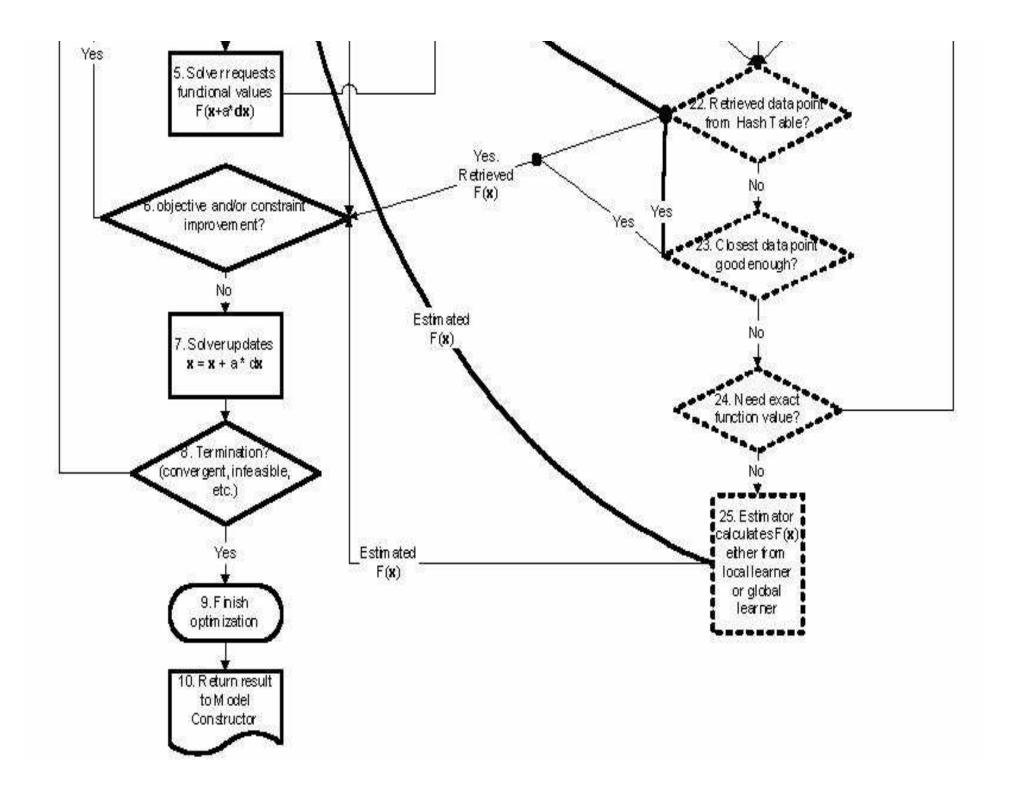
- MFD
- MFD+
- Direct MMFD


18


learning and approximation


- Simple fitting
- 3-Layer neural network
- Gene expression programming
- Generalized neural network




- 1) Initial Design Generation
- 2) Common Variable Resolution
- 3) Objective Construction
- 4) Constraint Enforcement
- 5) Result Interpretation
- 6) Process Coordination
- 7) Queue/Sequence Arrangement
- 8) Input Parsing/Output Reporting

service type	MFD	MFD+	Direct MMFD	Direct MMFD+
A	Х	Х	Х	Х
В	623	137	310	110
С	Х	Х	Х	Х
A+B	Х	Х	Х	Х
A+C	Х	Х	Х	Х
B+C	Х	Х	Х	Х
A+B+C	Х	Х	Х	Х

intelligent optimization flow (w/ simple 3-layer neural netowrk learning)

service type	MFD	MFD+	Direct MMFD	Direct MMFD+
Α	619	132	376	78
В	645	287	389	172
С	>1500	>1500	422	192
A+B	641	212	358	142
A+C	1231	>1500	401	>1500
B+C	908	333	385	180
A+B+C	1147	324	>1500	202

intelligent optimization flow (w/gene expression programming learning)

service type	MFD	MFD+	Direct MMFD	Direct MMFD+
A	343	71	210	40
В	360	160	215	91
С	>1500	>1500	230	106
A+B	361	118	190	79
A+C	>1500	190	210	92
B+C	480	846	202	93
A+B+C	647	165	273	114

intelligent optimization flow (w/ an advanced generalized neural network learning)

service type	MFD	MFD+	Direct MMFD	Direct MMFD+
Α	182	66	93	49
В	204	87	108	42
C	>1500	1452	105	54
A+B	165	87	92	37
A+C	1002	487	145	49
B+C	229	132	123	45
A+B+C	293	145	123	67

Motorola Intelligent Optimization System benchmark

- Without "Intelligence" (learning + approximation) : slow or crash.
- Optimization takes longer when simulations take longer, but usually correlates with the simulation that takes the longest, not the number of simulations.
- Direct methods works.
- Intensive linear search helps even more significantly, because it takes much less time than finding direction.
- Direct methods + intensive line search is the best.
- With "Intelligence": erratic but robust.
- Leaning helps: function behavior of simulation not as irregular as benchmark problems.
- Speed and quality of learning algorithms matter significantly.
- Combination of simulation may sometimes help.
- Quality of solutions does not matter too much, partly due to final stage fine tuning and safeguard for convergence, partly due to "good" behavior of simulation function forms, and partly due to high tolerance for termination.
- Curse of dimensionality is still an issue (variable number is around 10-15): good learning algorithms robust in high dimension can help.

Conclusion

- Optimization system history and background (linear programming, matrix generator, modeling language, optimization server, optimization services)
- System architecture and components (model, MLE, representation, interface/agent, server/registry, analyzer, solver, simulation)
- AMPL standalone and AMPL-NEOS architectures (You can still do your homework with 300+ variables in AMPL "Kestrel Solver")
- Motorola Intelligent Optimization System (real world is different from text book)
- System approach to simulation optimization
 - Direct methods help
 - Accurate line search help
 - Learning algorithm can help

