
Jun Ma, Northwestern University, February 02, 2005

Fundamentals of Modeling Systems
and a System Approach to

Simulation Optimization

Jun Ma
IEMS, Northwestern University

02/02/2005

2
Jun Ma, Northwestern University February 02, 2005

OUTLINE

2. Optimization Systems – Design and Architecture

3. System Components

5. Motorola Intelligent Optimization System
and Simulation Optimization

1. History and Background

4. AMPL-NEOS System

6. Conclusion

3
Jun Ma, Northwestern University February 02, 2005

History and Background
• Linear programming by George Dantzig in the late 1940’s

– Intensive labor in translation from model to solver
– Human labor alone

• Matrix generator (till early 1980’s)
– A computer code to generate coefficient matrices
– Translation task divided between human and computer

• Modeling Language (mid 1980’s till now)
– GAMS, AMPL, LINDO, AIMMS, MPL, OPL, MOSEK
– Translation entirely shifted to computer
– Separation of data from model
– Separation of modeling language form solver
– Verifiable, modifiable, documentable, independent, simple

• Optimization server (mid 1990’s)
– Optimization web pages
– Online optimization solvers
– NEOS

• Optimization Services (current)
– Registry
– Decentralization (peer to peer)
– XML and Web Services
– Standards

4
Jun Ma, Northwestern University February 02, 2005

Optimization Systems
Terminology

• Modeling system (?)

• Modeling language environment (MLE)
– Model language

– Compiler

– Auxiliary tools

• Optimization system
– All the components discussed next

– Including solvers

– Local or distributed

• Library, system and framework

5
Jun Ma, Northwestern University February 02, 2005

Optimization Systems
Design and Architecture

User

modeler
developer

6
Jun Ma, Northwestern University February 02, 2005

System Components
Model

• Different forms
– Flowchart
– Graphics
– Mathematical program

0x

tosubject

 minimize

≥
= bAx

cx
x

• Different variation
– Language variation
– Algebraic variation
– Type variation

• Symbolic
• General
• Concise
• Understandable

7
Jun Ma, Northwestern University February 02, 2005

System Components
Modeling Language Environment (MLE)

• Language design
• Compilation

• Auxiliary tools
– Analyzer
– Preprocessor
– GUI

AIMMS

• Low-level instance generation

8
Jun Ma, Northwestern University February 02, 2005

System Components
Instance Representation

• Characteristics
– explicit rather than symbolic
– specific rather than general
– redundant rather than concise
– convenient rather than understandable

Equation 2-2
1321

321

2
3

2
231

2
12

0,0,0x

9876tosubject

)5432(2/1 minimize

xxx

xxx

xxxxxx
x

≥≥≥
≥−+

++−+−

NAME qpEx
ROWS
N obj
G c1
COLUMNS

x1 c1 6
x2 obj -1
x2 c1 7
x3 c1 -8

RHS
rhs c1 9

QSECTION obj
x1 x1 2
x1 x3 -3
x2 x2 4
x3 x3 5

ENDATA

9
Jun Ma, Northwestern University February 02, 2005

System Components
Instance Representation

Equation 2-2

10
Jun Ma, Northwestern University February 02, 2005

System Components
Interface(Local)/Communication Agent (Distributed)

• Interface
– Between any two components
– Compatibility (language, format etc.)

• Communication agent (agent)
– Protocol
– Compatibility (platform, protocol, system etc.)

11
Jun Ma, Northwestern University February 02, 2005

System Components
Server and Registry

• Server
– Centralized

– Heavy weighted

• Registry
– Decentralized

– Light weighted

12
Jun Ma, Northwestern University February 02, 2005

System Components
Analyzer

• Analyzer:Modeling Language ::
Debugger:Programming Language

• Analyze low-level instance, NOT high-
level modeling

• Some analysis are easy and involves
only parsing

• Some involves computational
analysis but can generate definite
answer (e.g. network flow problem,
quadratic problem)

• Some are hard and uncertain (e.g.
convexity)

• Analyzer is a separate
component in an
optimization system; it
plays a key role in
automation (no human
interaction).

13
Jun Ma, Northwestern University February 02, 2005

System Components
Solver

• The “contents” of an optimization system
• Solver discovery – FULLY automatic
• Solver registration – NOT automatic

– Entity information
– Process information
– Option information
– Benchmark information

• Right now the issues are NOT computation,
but communication

14
Jun Ma, Northwestern University February 02, 2005

System Components
Simulation

• Any function evaluation
– Function pointer: local, closed

form
– Simulation: remote, non-closed

form
• Other properties of simulation (too

complex, proprietary, multiple
services, hard to move

0,0x

932tosubject

2 minimize

21

21

2
2

2
1

≥≥
≥+

+

x

xx

xx
x

}

0*

:

2

:

/.//:

{

0,0x

932tosubject

 minimize

2

1

21

21

confidencevalue

output

xc

b

xa

input

onmySimulaticomsomesitehttpaddress

onmySimulati

x

xx

onmySimulati
x

+

=
=
=

=

≥≥
≥+

15
Jun Ma, Northwestern University February 02, 2005

AMPL-NEOS System

ampl: ampl: ampl: ampl: model diet.mod;
ampl: ampl: ampl: ampl: data diet.dat;

ampl: ampl: ampl: ampl: option solver minos;
ampl: ampl: ampl: ampl: solve;

ampl: ampl: ampl: ampl: model diet.mod;
ampl: ampl: ampl: ampl: data diet.dat;
ampl: ampl: ampl: ampl: option solver kestrel;
ampl: ampl: ampl: ampl: option kestrel_options ‘solver=minos’;
ampl: ampl: ampl: ampl: solve;

16
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
Data Flow and Knowledge Flow

17
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
simulation

Ts = Service time for a given server;
LF(t) = Load factor as a function of time (t);
DT= Down time.
Three kinds of services with typical behaviors are identified:
Service A:
Ts = Uniform distribution [6, 30] seconds;
LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise;
DT = 5% probability of the service going down for 30 seconds.
This service has automatic “crash detection” and recovery; therefore, the maximum down time is 30 seconds.
Service B:
Ts = Uniform distribution [30, 60] seconds;
LF(t) = 1.25 from 0600 to 1400 hours; 1.0 otherwise;
DT = Insignificantly small;
Service C:
Ts = Uniform distribution [30, 90] seconds;
LF(t) = 2.0 from 0800 to 1700 hours; 1.0 otherwise;
DT = 1% probability of the service going down for anywhere between 15 minutes and 16 hours.

DTtLFTT s +×=)(

18
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
optimization

• MFD
• MFD+

• Direct MMFD

• Direct MMFD+

19
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
learning and approximation

• Simple fitting
• 3-Layer neural network

• Gene expression programming

• Generalized neural network

20
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
issues

1) Initial Design Generation

2) Common Variable Resolution

3) Objective Construction

4) Constraint Enforcement

5) Result Interpretation

6) Process Coordination

7) Queue/Sequence Arrangement

8) Input Parsing/Output Reporting

21
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
simulation optimization with learning

22
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
simulation optimization with learning

23
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
simulation optimization with learning

24
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
benchmark

intelligent optimization flow (w/ simple 3-layer neural netowrk learning)
service type MFD MFD+ Direct MMFD Direct MMFD+

A 619 132 376 78
B 645 287 389 172
C >1500 >1500 422 192

A+B 641 212 358 142
A+C 1231 >1500 401 >1500
B+C 908 333 385 180

A+B+C 1147 324 >1500 202

in te lligent op tim iza tion flow (w / gene express ion program m ing learn ing)
serv ice type M F D M FD + D irect M M FD D irect M M F D +

A 343 71 210 40
B 360 160 215 91
C >1500 >1500 230 106

A+B 361 118 190 79
A+C >1500 190 210 92
B +C 480 846 202 93

A+B +C 647 165 273 114

in te lligent op tim iza tion flow (w / an advanced genera lized neura l ne tw ork learn ing)
serv ice type M F D M FD + D irect M M FD D irect M M F D +

A 182 66 93 49
B 204 87 108 42
C >1500 1452 105 54

A+B 165 87 92 37
A+C 1002 487 145 49
B +C 229 132 123 45

A+B +C 293 145 123 67

serv ice typ e M F D M F D + D ire c t M M F D D irec t M M F D +
A X X X X
B 623 1 37 31 0 110
C X X X X

A +B X X X X
A +C X X X X
B +C X X X X

A+ B +C X X X X

25
Jun Ma, Northwestern University February 02, 2005

Motorola Intelligent Optimization System
benchmark

• Without “Intelligence” (learning + approximation) : slow or crash.

• Optimization takes longer when simulations take longer, but usually
correlates with the simulation that takes the longest, not the number of
simulations.

• Direct methods works.

• Intensive linear search helps even more significantly, because it takes much
less time than finding direction.

• Direct methods + intensive line search is the best.
• With “Intelligence”: erratic but robust.

• Leaning helps: function behavior of simulation not as irregular as benchmark
problems.

• Speed and quality of learning algorithms matter significantly.

• Combination of simulation may sometimes help.
• Quality of solutions does not matter too much, partly due to final stage fine

tuning and safeguard for convergence, partly due to “good” behavior of
simulation function forms, and partly due to high tolerance for termination.

• Curse of dimensionality is still an issue (variable number is around 10-15):
good learning algorithms robust in high dimension can help.

26
Jun Ma, Northwestern University February 02, 2005

Conclusion

• Optimization system history and background (linear programming, matrix
generator, modeling language, optimization server, optimization services)

• System architecture and components (model, MLE, representation,
interface/agent, server/registry, analyzer, solver, simulation)

• AMPL standalone and AMPL-NEOS architectures (You can still do your
homework with 300+ variables in AMPL – “Kestrel Solver”)

• Motorola Intelligent Optimization System (real world is different from text
book)

• System approach to simulation optimization

– Direct methods help
– Accurate line search help

– Learning algorithm can help

