
Optimization Services: A Framework
For Distributed Optimization

Robert Fourer
Northwestern University

Jun Ma
Northwestern University

Kipp Martin
University of Chicago

November 4, 2007

1

Outline

What is OS?

Downloading the Project

Building From Source Code

The OS Library

Using the API

Using the Solver Service

Examples

2

Web Page

Project Wiki:

projects.coin-or.org/OS

see also

www.optimizationservices.org

3

projects.coin-or.org/OS
www.optimizationservices.org

What Is OS?

I A set of XML-based standards for representing information
relevant to the practice of optimization, most importantly
optimization instances (OSiL), optimization results (OSrL),
and optimization solver options (OSoL).

I Open source libraries that support and implement many of the
standards.

I A robust API for both solver algorithms and modeling
systems. Corresponding to an OSiL instance representation
there is an in-memory object, OSInstance, along with a set
of get(), set(), and calculate() methods for accessing
and creating problem instances. The API is for linear, integer,
and general nonlinear programs.

4

What Is OS?

I A command line executable OSSolverService for reading
problem instances (in OSiL format, AMPL nl format, or MPS
format) and calling a solver either locally or on a remote
server.

I Utilities that convert MPS files and AMPL nl files into the
OSiL XML-based format.

I Standards that facilitate the communication between clients
and optimization solvers using Web Services and libraries that
support these standards.

5

What Is OS?

I An executable program amplClient that is designed to work
with the AMPL modeling language. The amplClient appears
as a “solver” to AMPL and, based on options given in AMPL,
contacts solvers either remotely or locally to solve instances
created in AMPL.

I Server software that works with Apache Tomcat and Apache
Axis. This software uses Web Services technology and acts as
middleware between the client that creates the instance, and
solver on the server that optimizes the instance and returns
the result.

6

Downloading the OS Project

1. Binary format

2. Use subversion (SVN) for source code

3. Download the source code in a tarball or zip file

7

Downloading the OS Project Binary

8

Downloading the OS Project Binary

Binary Format Available for:

I Windows with Microsoft Visual Studio cl compiler

I GNU/Linux 32 bit gcc 3.4.6

I Mac OS X (Intel) gcc 4.0.1

9

Downloading the OS Project Binary

Binary Format Also Available For Server Software:

OS-1.0.0-server-distribution.tgz

I os-server-1.0.0 (OS software + Apache Tomcat)

I os.war (OS software)

Contains an OSSolverService for Linux, Windows, and Mac.

More from Jun Ma in session SD29.

10

Downloading the OS Project Source Code

You can checkout the source code using subversion.

Get a release version:

svn co https://projects.coin-or.org/svn/OS/releases/1.0.0 OS

Get a stable version:

svn co https://projects.coin-or.org/svn/OS/stable/1.0 OS

Get a trunk version:

svn co https://projects.coin-or.org/svn/OS/trunk OS

11

Downloading the OS Project Source Code

You can checkout the source code as tarballs or zip files.

12

OS Root

13

OS Project Dependencies

I Buildtools

I CoinUtils

I Cbc

I Cgl

I Clp

I CppAD

I DyLP

I Ipopt

I Osi

I SYMPHONY

I Vol

14

OS Project Root

15

Building the OS Project

Build Flavors:

I Pure Unix

I Hybrid Microsoft-Unix

I Pure Microsoft

16

Building the OS Project – Unix

Project is designed to work with autotools:

After downloading, do:

./configure
make
make test
make install

There is a fairly extensive unitTest.

Note: may wish to build without Ipopt if you don’t have
FORTRAN 95

./configure COIN_SKIP_PROJECTS=Ipopt

17

Building the OS Project - Pure Windows

Use the Version 7 or Version 8 Microsoft Visual Studio Solution
and Project files that download with the project. There are
project files for:

I The OS lib

I The OSSolver Service

I The OS unitTest

Note: Project files do not include any Third Party software
(nothing outside of COIN-OR)

18

Building the OS Project - Windows-Unix
Hybrids

Hybrid in the following sense: we are using the Unix auto tools
(which are not Windows native) to do an OS build.

I Cygwin/gcc

I Cygwin/cl

I MINGW/gcc

I MSYS/cl

OS builds on all of the above

19

Platforms

Summary: OS has been built successfully on:

I Various flavors of GNU/Linux

I Windows using Microsoft Visual Studio

I Windows using MSYS and Microsoft cl

I Windows using MINGW and gcc

I Windows using Cygwin and gcc

I Windows using Cygwin and cl (an excellent platform for users
with too much free time)

I Mac OS X (both Intel and Power PC)

20

OS Library Components

I OSAgent

I OSCommonInterfaces

I OSModelInterfaces

I OSParsers

I OSSolverInterfaces

I OSUtils

21

Using the API

The OSCommon library provides in-memory representation of an
optimization instance, OSInstance. It is an API that has three
types of methods:

I get() methods: a set of methods to get information about
the problem instance

I set() methods: a set of methods to create/modify a problem
instance

I calculate() methods: a set of methods for performing
Algorithmic Differentiation (based upon the COIN-OR CppAD
– see talk in Session SD29 by Brad Bell).

22

get() Methods

get() methods: a set of methods to get information about the
problem

For example, the CoinSolver class takes and OSInstance object
and creates an instance for an COIN Osi compatible solver.

osinstance->getVariableNumber()

osinstance->getConstraintUpperBounds()

osinstance->getLinearConstraintCoefficientsInColumnMajor()->values

You can also use get() methods to get the problem in postfix or
prefix format.

23

set() Methods

set() methods: a set of methods to get information about the
problem

See OS/examples/instanceGenerator for an example of creating
a problem instance using the set() methods

osinstance->setVariableNumber(2);

osinstance->addVariable(1, "x1", 0, 1, ’B’, OSNAN, "");

24

calculate() Methods

calculate() methods: a set of methods to calculate constraint
and objective function

I values

I gradients

I Hessians

sparseJacobian = osinstance->getJacobianSparsityPattern();
sinstance->calculateAllConstraintFunctionGradients();

osinstance->getLagrangianHessianSparsityPattern();
osinstance->calculateLagrangianHessian()

25

Using the OSSolverService

The OS build includes the OSSolverService executable. This
executable can be called locally, or on a remote server.

A local call:

26

Using the OSSolverService

Here is the local call

OSSolverService -config
../data/configFiles/testlocal.config

where testlocal.config is

-osil ../data/osilFiles/parincLinear.osil
-solver ipopt
-serviceMethod solve

Options at command line override options in the configure file.

27

Using the OSSolverService

A remote call:

28

Using the OSSolverService

Here is the local call

OSSolverService -config
../data/configFiles/testremote.config

where testremote.config is

-serviceLocation
http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

-osil ../data/osilFiles/parincLinear.osil

29

Using the OSSolverService

A remote call with data solver server and data server:

30

Using the OSSolverService

To have the solver server call a data server for the model instance
send it some OSoL with the

<instanceLocation>

specified

<general>
<instanceLocation locationType="http">
http://www.coin-or.org/OS/parincLinear.osil</instanceLocation>
</general>
<optimization>

<other name="os_solver">ipopt</other>
</optimization>

31

Using the OSSolverService with OShL

32

Solvers

OSSolverService has an interface for the following solvers:

I Clp (COIN-OR Osi Interface)

I Cbc (COIN-OR Osi Interface)

I Cplex (COIN-OR Osi Interface)

I Dylp (COIN-OR Osi Interface)

I Glpk (COIN-OR Osi Interface)

I Ipopt

I Knitro

I Lindo

I SYMPHONY (COIN-OR Osi Interface)

I Vol (COIN-OR Osi Interface)

33

Examples

In the OS directory, there is an examples directory with:

I algorithmicDiff

I amplClient

I fileUpload

I instanceGenerator

34

Examples – amplClient

To invoke a solver locally using AMPL and amplClient:

take in problem 71 in Hock and Schittkowski
model hs71.mod;
tell AMPL that the solver is amplClient
option solver amplClient;
now tell amplClient to use Ipopt
option amplClient_options "solver ipopt";
the name of the nl file (this is optional)
write gtestfile;
now solve the problem
solve;

35

Examples – amplClient

To invoke a solver remotely using AMPL and amplClient, after the
command

option amplClient_options "solver ipopt";

Next, set the solver service option to the address of the remote
solver service.

option ipopt_options
"service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";

36

Documentation

I OS User’s Manual in pdf format

I OS User’s Manual online

I Doxygen

I See also www.optimizationservices.org

37

	What is OS?
	Downloading the Project
	Building From Source Code
	The OS Library
	Using the API
	Using the Solver Service
	Examples

