
Optimization Services, Web Services, and Excel

Kipp Martin
University of Chicago

Visiting Professor
University of Cincinnati

Other Collaborators: Bob Fourer, Gus Gassmann, Jun Ma, and
Wayne Sheng.

January 12, 2009

1

Outline

The Optimization Services Project

The Excel Project

Obtaining the Code

Running the Classes
The OSInstance Class
The Web Service Class

2

The Optimization Services Project

Optimization Services (OS) integrates numerous COIN-OR
projects. The OS project provides:

I A set of XML based standards for representing optimization
instances (OSiL), optimization results (OSrL), and
optimization solver options (OSoL).

I A robust API for linear and nonlinear problems.

I A command line executable OSSolverService for reading
problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server.

I Utilities that convert AMPL nl files into the OSiL format and
MPS files into the OSiL format.

3

The Optimization Services Project

OS Continued ...

I Standards that facilitate the communication between clients
and solvers using Web Services.

I Client side software that is used to create Web Services SOAP
packages with OSiL instances and OSoL options and contact
a server for the OSrL solution.

I Server software (reference implementation) that works with
Apache Tomcat.

4

The Optimization Services Project

OS available as COIN-OR project that builds and runs on:

I Windows using Microsoft Visual Studio (project files available)

I Windows using MSYS and Microsoft cl

I Windows using MINGW (MSYS + gcc)

I Windows using Cygwin and gcc

I Windows using Cygwin and cl

I Numerous flavors of GNU/Linux (32 and 64 bit)

I Solaris

I Mac OS X (both Intel and Power PC)

I IBM AIX

For unit testing platforms see:

https:

//projects.coin-or.org/TestTools/wiki/NightlyBuildInAction

5

https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction
https://projects.coin-or.org/TestTools/wiki/NightlyBuildInAction

The Excel Project

Motivation: originally from teaching a masters level VBA course.

I Have students solve large problems – get away from typical
toy problems

I Business school theorem – if it is in Excel it is applied

I Make licensing issues go away – easy to do with COIN-OR

I Make problem size issues go away – easy to do with COIN-OR

I Teach VBA – students use VBA to create the model instance

I Teach Web Services – show the ease and utility of Web
Services in Excel/VBA (also XML)

Decided to include as part of the OS project for individuals want to
use Excel with COIN-OR solvers.

6

The Excel Project

Important Disclaimer! Not meant to compete with the Frontline
Systems Solver product.

Full Disclosure! Knowledge of VBA absolutely required to use
this software!!!

My Objective: if you know a little VBA (arrays, loops, if-then
logic), be able to build and solve big problems with no license and
size worries.

7

The Excel Project

As Aside: COIN-OR in the classroom. I have experimented with
three levels at the College of Business at the University of
Cincinnati.

I Provide Visual Studio project files. Have students build
models using the OS API and call the COIN-OR solvers.
Students need to compile their own code and link with OS lib
(among others). Knowledge of C++ a must.

I Provide VBA class files and have students build models in
VBA and call COIN-OR solvers. Only need to know some
VBA. This experiment motivated this talk.

I Even less programming – Build GAMS models and call
COIN-OR solvers (locally or remotely with GAMSlinks). Make
use of GAMS scripts for column, cut generation, etc.

8

Obtaining the Code

A zip of all the files necessary is at:

http:
//www.coin-or.org/download/binary/OS/excelBinDist.zip

9

http://www.coin-or.org/download/binary/OS/excelBinDist.zip
http://www.coin-or.org/download/binary/OS/excelBinDist.zip

Obtaining the Code

The Excel files:

I clsOSInstance.cls – user defined class

I parIncVBA.xlsm – example model

I clsws OSSolverServiceServic.cls – user defined class

I OSWebServiceGUI.xlsm – example of remote call

10

Building and Solving a Model

The big picture:

I The OSSolverService.exe that is part of the download is the
executable that will optimize the model formulation. You call
this executable from inside Excel. It contains the following
solvers:

I COIN-OR Bonmin – an integer + nonlinear solver

I COIN-OR Cbc – an integer programming solver based on
branch-and-cut

I COIN-OR Clp – a linear programming solver

I COIN-OR Couenne – an integer + nonlinear solver + global

I COIN-OR DyLP – a linear programming solver

I COIN-OR Ipopt – a nonlinear solver (assumes continuous
variables)

I COIN-OR SYMPHONY – a linear integer programming solver

11

Building and Solving a Model

The big picture (continued):

I The OSSolverService.exe takes a model instance in the
OSiL (Optimization Services input Language) XML format.

I You import clsOSInstance.cls from the download into your
VBA project. This class has methods that use the XML DOM
(Document Object Model) to create a string in the OSiL XML
format.

I You do not need to worry about the DOM – you read data
from ranges in the spreadsheet that contain the data and call
methods in the clsOSInstance.cls that take your data and
put it into the DOM.

The OSiL XML string is written to file which is then read and
executed by the OSSolverService.exe executable

12

Building and Solving a Model

The first step is open up a workbook and then import
clsOSInstance.cls into VBA project. Then create a blank module
where you put your code.

Next create an instance object.

Dim osinstance As New clsOSInstance

Use the osinstance to:

I define the variables

I define the objective function

I define the constraints

I define the constraint matrix

13

Building and Solving a Model

In the download there is a workbook parIncVBA.xlsm that
illustrates this process. The worksheet parInc has the data and
when the model is solved the result gets written to the result
worksheet. This workbook illustrates solving the problem:

MAX 10 ∗ X1 + 9 ∗ X2

.7 ∗ X1 + X2 ≤ 630

.5 ∗ X1 + (5/6) ∗ X2 ≤ 600

X1 + (2/3) ∗ X2 ≤ 708

.1 ∗ X1 + .25 ∗ X2 ≤ 135

X1, X2 ≥ 0

14

Building and Solving a Model

Variables: the variables are defined in OSiL as

<variables numberOfVariables="2">
<var name="x0" lb="0" />
<var name="x1" lb="0" />

</variables>

to define these in VBA

osinstance.numVar = amatrix.Columns.count
For I = 1 To osinstance.numVar

varLBArray(I) = 0
varTypeArray(I) = "C"
varUBArray(I) = osinstance.PosInf

Next I
Call osinstance.OSgenerateVariables(varLBArray,

varUBArray, varTypeArray)

15

Building and Solving a Model

Objective Function: the objective function is defined in OSiL as

<obj maxOrMin="max" numberOfObjCoef="2">
<coef idx="0">10</coef>
<coef idx="1">9</coef>

</obj>

to define these in VBA

osinstance.isMax = True
For I = 1 To osinstance.numVar

objCoefArray(I) = objCoef.Cells(I, 1)
Next I
Call osinstance.OSgenerateObjective(objCoefArray)

No knowledge of XML is required!!!

16

Building and Solving a Model

Objective Function (continued): the objective function
coefficients for objCoefArray(I) come from the range objCoef.

17

Building and Solving a Model

Constraints: the constraints are defined in OSiL as

<constraints numberOfConstraints="4">
<con ub="630" />
<con ub="600"/>
<con ub="708"/>
<con ub="135"/>

</constraints>

to define these in VBA

osinstance.numCon = amatrix.Rows.count
For I = 1 To osinstance.numCon

conUBArray(I) = rhs.Cells(I, 1)
conLBArray(I) = -osinstance.PosInf

Next I
Call osinstance.OSgenerateConstraints(conLBArray,

conUBArray)

18

Building and Solving a Model

Constraints (continued): the right-hand-side values for
conUBArray(I) come from the range rhs.

19

Building and Solving a Model

Constraint Matrix Coefficients: the constraint matrix
coefficients (sparse storage) are defined in OSiL as

<linearConstraintCoefficients numberOfValues="8">
<start>

<el>0</el><el>4</el><el>8</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>2</el>
<el>3</el><el>0</el><el>1</el>
<el>2</el><el>3</el>

</rowIdx>
<value>

<el>0.7</el><el>.5</el><el>1.</el>
<el>.1</el><el>1.0</el><el>0.8333</el>
<el>0.6667</el><el>0.25</el>

</value>
</linearConstraintCoefficients>

20

Building and Solving a Model

Constraint Matrix Coefficients (continued: the corresponding
VBA code is

For J = 1 To osinstance.numVar
startsArray(J + 1) = startsArray(J) +

amatrix.Rows.count
For I = 1 To osinstance.numCon

indexesArray(startsArray(J) + I - 1) = I
valuesArray(startsArray(J) + I - 1) =

amatrix.Cells(I, J)
Next I

Next J
Call osinstance.OSgenerateLinearConstraintMatrix(

startsArray, indexesArray, valuesArray)

Example problem happens to be dense, but the class
clsOSInstance.cls is based on a sparse matrix storage system.

21

Building and Solving a Model

Constraint Matrix Coefficients (continued): coefficients for the
values array valuesArray(I) come from the range amartix.

22

Building and Solving a Model

Example of sparse input array. Model is built by row, each row has
variable indexes.

23

Building and Solving a Model

Solving the model: there are two solve methods in class
clsOSInstance.cls. One is a synchronous solve and the other is an
asynchronous solve. Both of these methods take two arguments:

I Argument 1: the location of the OSiL file that was created

I Argument 2: the location of the OSrL (result file) that is
written by OSSolverService.exe

To write the result to a spreadsheet call the procedure:

Call osinstance.OSWriteResult("result", "C:/result.osrl")

you get the result on the following page.

24

Building and Solving a Model

The solution result:

25

The Web Service Class

Call a Web Service: the class clsws OSSolverServic.cls allows
the user to send the instance to a remote solver. This is illustrated
in the workbook OSWebServiceGUI.xlsm.

26

The Web Service Class

How should a client communicate with a solver server over the
network?

I The client wants to communicate an instance to the solver
server.

I The client want to know if a job is done.

I The client may wish to “kill” a job.

I The client wants to retrieve the result when the problem is
optimized.

The OShL (Optimization Services hookup Language) is a protocol
that uses WSDL to specify six key methods for communication.

27

The Web Service Class
The six OShL methods:

28

The Web Service Class

Building a Web Service in Excel is trivial.

29

The Web Service Class
The WSDL on the server.

30

The Web Service Class

The VBA code is trivial, for example, retrieving the result of the
solve from the Web Server is as easy as:

Dim ws As New clsws_OSSolverServiceServic
osrl = Retrieve(osol, ws)

where this Retrieve method calls underlying function

sc_OSSolverServiceServic.Retrieve(str_osol)

created by the Excel Web Services tool.

31

	The Optimization Services Project
	The Excel Project
	Obtaining the Code
	Running the Classes
	The OSInstance Class
	The Web Service Class

