
Project Summary
Next-Generation Servers for Optimization as an Internet Resource

Large-scale optimization has been a subject of investigation for over 50 years, but the
challenge of making it useful in practice has continued to the present day. Initially the
greatest difficulties were posed by solution computation and model representation, but
the primary impediment to broader use of optimization models and methods today is
one of communication. Increasing numbers of optimization “solvers” are implemented
increasingly well, but prospective users are unaware of them or do not see the potential
benefit that would justify obtaining and installing them. Modeling systems tend to
be slow to support new solvers, moreover, especially ones that address new problem
types.

The ability to send optimization problems over the Internet, for submission to a
solver at some remote site, is now providing an increasingly practical way of addressing
communication problems in large-scale optimization. A remote optimization “server”
can accommodate numerous problem types and can provide varied solvers for problems
of each type, giving modelers much more of a choice than they could hope to have
locally. Previous work under the auspices of the Optimization Technology Center of
Northwestern University and Argonne National Laboratory studied and experimented
with the concept of an optimization server through the creation of the NEOS Server,
which makes nearly 50 solvers available through a broad variety of network interfaces.
Still, the current NEOS Server only begins to address the communication difficulties of
large-scale optimization with respect to solver choice, scheduling, benchmarking, and
connection to modeling languages. Because the Server has evolved along with the Web
and the Internet, moreover, it is limited to some degree by early design decisions.

Intellectual merit. The planned research is motivated by a vision of a next-generation
NEOS Server that addresses outstanding challenges of communication in large-scale op-
timization. This work will address design as well as implementation issues posed by
standardizing problem representations, automating problem analysis and solver choice,
working with new web-service standards, scheduling computational resources, bench-
marking solvers, and verification of results — all in the context of the special require-
ments of large-scale computational optimization.

Research in these areas is timely, being motivated by new standards for web services
and by the recent success of the NEOS Server itself, and will build on the considerable ex-
pertise in optimization servers already available at the Optimization Technology Center.

Broader impact. The NEOS project has been a major activity of the Optimization
Technology Center since the Center’s founding in 1994. Its continuing goal is to make
optimization a part of the worldwide software infrastructure that supports science and
commerce. To this end, the NEOS Guide (www.mcs.anl.gov/otc/Guide) includes on-
line examples of optimization problems, listings of test problem collections, and surveys
of publications and software. The complementary NEOS Server (www-neos.mcs.anl.
gov) provides remote access to solvers and hence is the focus of the proposed research.

The ready availability of optimization tools has widespread benefits, both directly
to practitioners, and indirectly by improving the quality of research and education in
optimization techniques. Excerpts of comments from a wide variety of users testify to
the NEOS Server’s value in helping potential users of all kinds. The Server’s variety of
solvers and interfaces also tend to ensure that it is addressing a broad base of needs.



Project Description
Next-Generation Servers for Optimization as an Internet Resource

Large-scale optimization has been a subject of investigation for over 50 years, but the
challenge of making it useful in practice has continued to the present day. Initially the
primary difficulties were posed by computation, but breathtaking increases in computer
power and algorithm sophistication combined to allow for routine solution of large prob-
lems arising in practical applications [3]. As computational needs were addressed, the
more serious difficulties came to be posed by representation, as modelers found that
they could solve larger problems than they could manage or understand [15, p. 169].
This challenge, too, was eventually met, by increasingly sophisticated modeling lan-
guages and systems for describing and working with optimization problems [12, 26].

The primary difficulty of large-scale optimization has now shifted again, to one of
communication. Increasing numbers of optimization algorithms are implemented in-
creasingly well, but prospective users are unaware of these “solvers” or do not see the
potential benefit that would justify obtaining and installing them. Only certain combi-
nations of solvers and modeling systems work with each other, moreover, and modeling
language support is slow to keep up with solver extensions to new problem types.

The Internet is now providing an increasingly practical way of addressing communi-
cation problems in large-scale optimization [19]. Websites offer abundant solver infor-
mation [16], to be sure, but the more significant advance is the ability to send optimiza-
tion problems over the Internet for submission to a solver at some remote site. The
remote optimization “server” can address numerous problem types and can provide
varied solvers for problems of each type, giving modelers much more of a choice than
they could hope to have locally. In previous work under the auspices of the Optimiza-
tion Technology Center of Northwestern University and Argonne National Laboratory,
we have studied and experimented with the concept of an optimization server through
the creation of the NEOS Server [6, 9, 24], which makes nearly 50 solvers available via a
broad variety of network interfaces.

The current NEOS Server only begins to address the communication difficulties of
large-scale optimization, however. The Server cannot tell users which solvers are ap-
propriate for a problem that has been submitted, or choose a solver host based on
the expected resource needs of a problem. Connections from modeling languages to
solvers are still incomplete, and support for benchmarking is limited. Because NEOS
has evolved along with the Web and the Internet — its first interface, through e-mail,
dates back to 1996 — it is limited to some degree by early design decisions.

The research that we propose is thus motivated by our vision of a next-generation
NEOS Server that addresses outstanding challenges of communication in large-scale op-
timization. This work will address design as well as implementation issues posed by
standardizing problem representations, automating problem analysis and solver choice,
working with new web-service standards, scheduling computational resources, bench-
marking solvers, and verification of results — all in the context of the special require-
ments of large-scale computational optimization. Our research in these areas is timely,
being motivated by new standards for web services and by the recent success of the
NEOS Server itself, and will build on the considerable expertise in optimization servers
already in place at the Optimization Technology Center.

The remainder of this introduction addresses the broader impact of the Optimization
Technology Center, the NEOS project, and specifically the NEOS Server. The four major
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aspects of the proposed research are then discussed in four sections, roughly according
to the order in which they would affect a typical new user:

§1. Representing:
new standard forms for optimization problem instances

§2. Analyzing and categorizing:
procedures for guiding prospective users in their choice of solvers

§3. Scheduling:
new web service standards and their use in distributed, intelligent assignment of
optimization requests to resources

§4. Benchmarking and verifying:
services for automatically making benchmark runs and comparing results

The work in each of these areas will help to advance the others as well, as we will
indicate. Other key researchers in these areas will collaborate on some aspects of the
research, as noted at the end of each section.

A final section (§5) presents the standard Results from Prior NSF Support for the
principal investigators.

The Optimization Technology Center. The proposed work will be carried out under
the auspices of the Optimization Technology Center (www.ece.northwestern.edu/
OTC), a joint endeavor of Northwestern University and Argonne National Laboratory.
The Center is devoted to research in numerical optimization, in Internet and distributed
computing, and in problem-solving environments, and to the study of optimization in
a wide range of applications.

The two principal investigators for the proposed project are the current Northwest-
ern and Argonne co-directors of the Center. We expect that extensive collaboration
between Northwestern and Argonne members of the Center will continue in carrying
out this research, with members of each institution spending some time at the other.
Because Argonne is a national laboratory, however, this proposal’s budget does not
include direct support for Argonne researchers; instead the supplementary documen-
tation provides a statement of participation on behalf of Argonne.

The NEOS Project. The Network Enabled Optimization System project has been a
major activity of the Optimization Technology Center since the Center’s founding in
1994. The continuing goal of the NEOS project is to make optimization a part of the
worldwide software infrastructure that supports science and commerce. To this end, the
NEOS Guide (www.mcs.anl.gov/otc/Guide) includes online examples of optimization
problems, listings of test problem collections, and surveys of publications and software.
The complementary NEOS Server (www-neos.mcs.anl.gov) provides remote access to
solvers and so is the focus of the proposed research.

The NEOS Server currently supports nearly 50 solvers. Collectively these solvers
accept about a dozen different kinds of input, ranging for example from function def-
initions in programming languages (Fortran, C, Matlab) to explicit problem instance
descriptions (MPS, LP, sparse SDPA) to symbolic modeling language descriptions (AMPL,
GAMS). A callable interface, Kestrel [8], also permits direct access to many of the NEOS
solvers from within modeling systems’ environments.

Usage of the NEOS Server (Figure 1) has grown to an average level of about 6500
submissions per month; peak loads of 4000 in a week have been handled without dif-
ficulty. Submissions have leveled off in the past year; this has motivated us to direct
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Figure 1: Monthly total submissions to the NEOS Server since 1999. “Internal” submissions are
those from the domains of Argonne (anl.gov) and Northwestern (nwu.edu).

some of the proposed research, particularly in §2, toward making the Server easier to
use for those who are not solver experts. We have also arranged to give NEOS tutorials
this May at the INFORMS Conference on OR/MS Practice and the Annual Conference of
the Institute of Industrial Engineers.

The ready availability of optimization tools has broad impact both directly through
its role in a great variety of business and scientific applications, and indirectly by im-
proving the quality of research and education in optimization modeling. Comments
from existing NEOS Server users, excerpted in Figure 2, testify to the Server’s appeal
to potential practitioners of many kinds. The Server’s varied offering of solvers and
interfaces also tends to ensure that it addresses a broad base of needs.

The idea of an optimization server is beginning to have an influence beyond the NEOS
project, moreover. A copy of the NEOS software has been set up at Sandia National
Laboratory, for example, and a Northwestern graduate student has been hired as an
intern to help with development of an internal optimization server at Motorola, Inc.

1. Representation standards for optimization problem instances

Even a cursory look at the NEOS Server’s list of solvers (Figure 3) reveals the ba-
bel of input formats recognized by current optimization software. There are about 10
different low-level formats — ones that describe problem instances — recognized by
one or another solver in the NEOS lineup, including MPS and LP formats for linear and
integer programming, SMPS extensions to the MPS format for stochastic programming,
formats such as SDPA specific to semidefinite programming, and DIMACS min-cost flow
and other formats for network linear programming. Other solvers recognize input pro-
grammed as functions in various languages including Fortran, C, C++, and Matlab.

To the extent that there is any greater degree of standardization, it is through the
use of input written in higher-level optimization modeling languages. Although NEOS
works with the GAMS [2, 4] and AMPL [17, 18] languages, however, each of these supports
only some of the available solvers. An arrangement that applies AMPL solvers to GAMS
models is at best a stopgap, requiring execution of both the AMPL and GAMS compilers.
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I have been working on a system for protein structure prediction. As part of my
system, I had need to incorporate a nonlinear programming solver to handle
packing of sidechain atoms in the protein. . . . I was able to evaluate solutions
provided by different nonlinear solvers . . . in effect testing the code before
deciding which to acquire and attempt to link into my system.

I am regularly suggesting my students to use NEOS as soon as their projects in
AMPL cannot be solved with the student edition. So they debug their AMPL
models locally . . . and then they run their real-life projects thanks to NEOS.

Our idea is trying to design antennas by using the computer . . . We have tried
various solvers on NEOS to see if this is possible at all . . . The NEOS server . . . gives
us the opportunity to find out which approach works best. Without this server it
would probably be impossible to find out what strategy is most likely to succeed.

This is a great resource for those of us who need to demonstrate large scale
optimization to students, but who do not have enough need for this (or funds!)
to justify the purchase of a large scale optimization package.

It has greatly helped in the work I am doing here at General Motors. I have been
able to build and solve a prototype combinatorial auction MIP model using AMPL
and NEOS in a fraction of the time it would have required me to do this had I
needed to requisition a solver and install it locally. Because of this, internal GM
customers have been able to see the benefits of optimization in this business
context, and will most likely give the go ahead for a full scale development project.

NEOS has been a very valuable tool in the two graduate optimization courses
that I regularly teach. NEOS allows students to see a broader variety of solvers
than we have available . . .

I have been using the mixed-integer solvers at NEOS to study the complexity of
phase retrieval, a problem encountered in several disciplines, principally
crystallography and astronomy. My NSF grant has a budget for computer software,
but not in the amount required to purchase some of the high end optimization
software at NEOS. Another benefit provided by NEOS is that I am able to do serious
number crunching from my humble laptop.

I didn’t even know what nonlinear programming was and after I discovered
what it was, it became clear how enormous a task it would be to solve the
problems assigned to me. . . . I had extremely complicated objective functions,
both convex and nonconvex, an armload of variables, and an armload of
convex, nonconvex, equality and inequality constraints, but when I sent off the
information via the web submission form, within seconds I received extremely
accurate and consistent results.˚The results were used for verifying a certain
theory in my professor’s research and so accuracy was extremely important.

I am attempting to find solutions to the modified Cahn-Hilliard equation, a fourth
order partial differential equation by techniques to minimize the total free energy of
the system. . . . The submission process is straightforward and the availability of the
NEOS solver has allowed me to concentrate more on the physics of our problem
than the mechanics of writing optimization codes.

Figure 2. Users’ descriptions of their applications of the NEOS Server, excerpted from a much
more extensive list at http://www-neos.mcs.anl.gov/neos/stories.html.
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Figure 3: Part of the NEOS Server’s list of solvers and problem formats.

As part of our research, we propose to design a new low-level format that will be
flexible enough to represent a broad variety of the optimization problems currently
handled by the NEOS Server. Our representation will address problems that are not
application-specific, but that are as specialized as network linear programs or as gener-
alized as nonlinearly-constrained nonlinear programs. The adoption of such a format
by solvers will make them more universally available through internet services. The
adoption of the same format by modeling languages will enable solvers to more readily
support many languages, moreover; the overall effect will be to decouple language and
solver choice, letting the user pick the best tools for any project.

Current circumstances are particularly favorable for a study of this sort. It is not only
that services such as the NEOS Server demand more standardization. New principles
and tools have emerged over the past few years to guide the design of standard forms
for Internet communication of all kinds.

Forms based on XML, in particular, are being used for a wide variety of purposes, and
we propose to investigate their application for communicating instances of optimization
problems. An XML representation consists of data delimited by <tags>, much like an
html representation of the content of a web page. New collections of XML tags can
be defined for any specialized purpose, however, by specifying a schema (Figure 4).
Given a schema, standard tools are available for parsing files that correspond to it,
and for building libraries to display and manipulate the contents of these files [29, 30].

C–5



<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema targetNamespace=”http://COIN/XML˙LPschema.xsd” ... >
<xs:element name=”mathProgram”>
...
<xs:element name=”sparseVector” type=”sparseVector”

minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”sparseMatrix” type=”sparseMatrix”

minOccurs=”0” maxOccurs=”unbounded”/>
<xs:element name=”linearProgram” type=”linearProgram”

minOccurs=”0” maxOccurs=”unbounded”>
<xs:key name=”columnKey”>
<xs:selector xpath=”.//NS:columns/NS:column”/>
<xs:field xpath=”@columnIdx”/>

</xs:key>
<xs:key name=”rowKey”>
<xs:selector xpath=”.//NS:rows/NS:row”/>
<xs:field xpath=”@rowIdx”/>

</xs:key>
</xs:element>
<xs:element name=”linearProgramSolution” type=”linearProgramSolution”

minOccurs=”0” maxOccurs=”unbounded”/>
...
</xs:element>
...
<xs:complexType name=”linearProgram”> ...

Figure 4. Excerpts from a prototype schema (see www.w3.org/XML/Schema) that defines an
XML representation of linear programming problem instances. Ellipses indicate lines omitted.

Additional schemas can be included to provide optional extensions. Thus a standard for
optimization can be enforced and can grow in a well-defined way to accommodate new
problem types. This contrasts with the current situation, where for example parsers for
the MPS standard [28] vary in details between implementations, interpreters of the SMPS
standard [1] are even more varied, and no proposal for nonlinear extensions (see, for
instance [25]) has caught on at all. One perceived disadvantage of XML is its verbosity —
the considerable file space taken up by tags — but in fact the tags only increase file size
by a constant factor, which can be considerably reduced by use of optional alternatives
to an ASCII representation.

A preliminary phase of this work is already being undertaken in collaboration with
Northwestern University graduate student Leonardo Lopes and Prof. Kip Martin of the
University of Chicago. We are building a complete XML-based specification for instances
of linear programs, together with a library of support routines, which we will interface
with at least one modeling language and several solvers. The example in Figure 4 is
taken from an early prototype.

Building on this initial experience, the proposed research will undertake a more
ambitious project to design a standard representation that addresses all of the problem
types supported through the NEOS Server, with sufficient flexibility to be extended to
new types. This is an undertaking of a breadth and difficulty not undertaken previously
in the area of optimization, and as a result we see it as a proper object of a research
project. It complements our interest in extending modeling languages to new problem
forms, by focusing on the design of a new low-level standard that can provide diverse
higher-level modeling languages with a standard way of reaching solvers.
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This work is also complementary to the design of OSI, a standard procedural inter-
face to solvers currently being implemented under the auspices of the COIN-OR project
(see www-124.ibm.com/developerworks/opensource/coin/). OSI provides a way of
calling optimizers directly from applications, whereas our standard form is to be a
representation of the content of optimization problem instances, which could be com-
municated to solvers in a variety of ways. We intend to use COIN-OR to publicize our
work on this project, to attract additional collaborators and reviewers, and to distribute
the interface library for our XML-based standard. We have already been instrumental in
creating a COIN-OR mailing list for standard forms in optimization and in organizing
(with the help of Robin Lougee-Heimer of IBM) an organizational meeting on this topic
attended by about two dozen participants at the INFORMS November 2002 meeting.

2. Analyzing and categorizing optimization problems prior to solving

A new NEOS Server user typically begins at the website index screen, which presents
a list of 13 problem types:

Semi-infinite Optimization Unconstrained Optimization
Mixed Integer Nonlinearly Constrained Opt. Linear Network Optimization
Mixed Integer Linear Programming Complementarity Problems
Nonlinearly Constrained Optimization Nondifferentiable Optimization
Linear Programming Stochastic Linear Programming
Bound Constrained Optimization Global Optimization
Semidefinite & Second Order Cone Progr.

Each type links into a list of solvers and input formats (Figure 3). The choice among
solvers is then up to the user. To provide some assistance in the choice, each solver
has a main page with links to the NEOS Guide and to solver-specific documentation
(Figure 5).

Although this arrangement has proved adequate for many purposes, unavoidably
it burdens users with the job of determining a problem type and choosing a solver.
Requests to our help line (neos-comments@mcs.anl.gov) suggest, in particular, that
many potential users are analysts who have the training to build a model using a high-
level modeling language, but who do not have the expertise to determine what category
of model they have produced and what solvers are appropriate for it. The previously
remarked leveling off of NEOS Solver requests (Figure 1) may reflect the difficulty of
broadening the user base to include modeling and application domain experts who are
not also algorithm and solver experts.

A description of an optimization problem instance already contains, at least implic-
itly, all of the information needed to properly categorize the problem. This principle
underlies the design of interactive problem analyzers such as ANALYZE [23] for linear
problems and MProbe [5] for nonlinear problems. Interactive analyzers rely on fairly so-
phisticated users, however, who are looking to better understand their problems with
the aim of making their own determination of how best to solve them. In the context
of the NEOS Server, we cannot be sure of as high a level of sophistication on the user’s
part, nor can we assume that the user is available to interact with the system online.
We want to make an automated determination of problem characteristics, and of solver
choice based on those characteristics.

The first part of our research in this area will thus concentrate on design of a problem
analyzer for the NEOS Server. Initially we will base the analyzer on the “.nl” format of
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Figure 5: An example of a NEOS Server web page for a particular solver. with links to the NEOS
Guide and to solver-specific documentation. The box at the top right provides links to the web
interface and to instructions for other interfaces.

AMPL [22], which is already recognized by two dozen varied NEOS solvers. Later we will
switch to the universal format that will be developed as described in §1.

The envisioned analyzer is actually a collection of analysis routines, each deriving
some information of interest. In many cases, the information is in fact explicit in the
problem instance description; the AMPL .nl format, for example, gives the numbers
of variables figuring nonlinearly in the objective and in the constraints, so that non-
linear problems are immediately distinguishable from linear ones. About 15 values of
this sort are provided in all [22]. Other problem characteristics can be unambiguously
determined by fast algorithms applied to the problem instance. For example:

� Pure network flow problems can be detected by a scaling algorithm that alternately
scans rows and columns of a linear constraint matrix.

� Quadratic objectives can be found by an algorithm that recursively walks the ob-
jective function expression tree to extract the coefficients of the Hessian matrix.

� Convex and concave quadratic expressions can be identified by a numerical test
for positive semi-definiteness of the Hessian, such as an elimination algorithm.

Structure detection algorithms of these sorts need only process the whole problem when
they are successful; they stop immediately when a failure occurs. Also some can be
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bypassed when not needed, so that for example a problem that has variables occurring
nonlinearly in the constraints need not be tested for pure network constraints.

In addition to compiling a library of algorithms such as those above, we propose to
tackle a more difficult analysis: the distinction of convex from non-convex problems.
Because no algorithm for this purpose is both efficient and completely reliable, we must
have efficient algorithms that approach the analysis from opposite sides:

� Convexity can be disproved by finding a counterexample. Randomly generated
lines can be tested (as in MProbe) for violation of f(λx + (1 − λ)y) ≤ λf(x) +
(1−λ)f(y), or randomly generated points can be tested for indefiniteness of the
Hessian ∇2f(x).

� Convexity can be proved by recursively applying known properties — the sum of
convex functions is convex, an increasing convex univariate function of a convex
function is convex, and so forth — to an expression tree in the problem instance
representation.

Both of these problems are harder than they seem at first, because it is usually desired
to test convexity only over some convex constraint set. Many refinements to successive
versions of MProbe’s disprover, for example, have dealt with ways of sampling effec-
tively over the feasible set. A convexity prover will also have to recursively propagate
bound information in order to effectively apply the convexity properties. No effective
prover yet exists, to our knowledge.

Applying both a prover and a disprover of convexity to a benchmark problem collec-
tion, we expect to find a small subset of test problems that appear convex on the basis
of sampling but that cannot be proved convex given the properties our prover is able
to apply. These will be candidates for further analysis, which will likely suggest further
refinements to the sampling strategies for disproof or further properties to be tested
for proof. In addition to hundreds of problems in existing nonlinear test libraries avail-
able in AMPL (see www.sor.princeton.edu/˜rvdb/ampl/nlmodels), the NEOS Server
receives a continuing stream of new trial problems.

The second part of the proposed research in this area concerns the determination
of appropriate solvers, given a list of problem properties from the analyzer. We require
a flexible approach that allows for adding properties and changing the mix of solvers
without revising some program to reflect each change. This is a concern that has not
been addressed by previous research, because dozens of solvers were not available from
a single source prior to the advent of the Internet, the Web, and the NEOS Server.

Initially, we intend to experiment with a straightforward scheme that relies on a
database that pairs solvers with problem types they can handle. Characteristics of a
problem instance, determined from the analysis phase, will be used to automatically
generate a query on the database that will return a list of appropriate solvers. Once
this is running, we will consider extensions to generate lists ranked by degree of ap-
propriateness. In a subsequent stage of the research we envision a more sophisticated
mechanism that takes account of additional information that would be used by a solver
expert; in this work we will aim to answer questions such as the following:

� How should solver recommendations deal with problem types that are subsets of
other problem types? A general nonlinear optimization code might be a reason-
able choice for bound-constrained optimization, for example, but not for linear
programming.
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� How can recommendations be extended to solvers’ settings? Many solvers that
offer significant algorithmic alternatives expect the user to decide between them,
leaving the non-expert user in need of advice.

For these purposes, a straightforward database approach may not be adequate. The
proposed research will consider more sophisticated ways of determining recommenda-
tions, such as through business rules systems (see www.businessrulesgroup.org).

We have made informal arrangements to collaborate in this work with the developer
of MProbe, Prof. John Chinneck of Carleton University. Initial work on the convexity de-
tection and solver recommendation projects is being undertaken by Dr. Dominique Or-
ban, who has been appointed a postdoctoral fellow at Northwestern University through
January 2004. We have also heard from Prof. Arnold Neumeier of some work underway
to collect convexity properties, in a project at the University of Vienna, which may lead
to some collaboration.

3. Web services for optimization

When the NEOS project was begun in 1995, the Web was just beginning to come into
widespread use. At first the NEOS Server supported only low-level file formats or Fortran
programs, and input only via e-mail; successive enhancements provided the much more
powerful and convenient communication options available today (and described in the
introduction to this proposal). To ensure reliability of the Server, this work used early
and relatively mature standards, such as web forms, TCP/IP sockets for the NEOS Sub-
mission Tool (see www-neos.mcs.anl.gov/neos/server-submit.html) and CORBA
for the Kestrel interface [8] (see also www-neos.mcs.anl.gov/neos/kestrel.html).

We are now seeing a new generation of standards that are designed to make web
services more flexible in design and easier to build and maintain. One arrangement that
has received particularly strong interest comprises three essential components (see also
www.enterprise-component.com/docs/cxsLesson5.pdf):

� SOAP (Simple Object Access Protocol) allows calls to remote objects’ methods and
access to remote objects’ data using standard web servers, the standard HTTP
protocol for those servers, and XML to describe the call. SOAP is intended to serve
as a more general and flexible successor to DCOM and CORBA.

� UDDI (Universal Description, Discovery, and Integration) is a specification for an
online registry of web services. Providers can list their services in this registry,
and users can seek out services by searching the registry in a standard way.

� WSDL (Web Services Description Language) defines the XML tags to be used in
accessing a web service. Links to WSDL descriptions can be given through UDDI
listings.

With tools like these, we can start to think about a more general and flexible optimization
service environment. Developers and researchers might make their solvers available
through the UDDI registry, using WSDL to define the problem information required.
An XML-based standard for describing optimization problem instances (as we propose
in §1) would fit nicely here. Only the XML tags for solver-specific options would need
to be defined by individual providers of solver services.
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Such an arrangement has the potential to substantially decentralize the registry of
solver characteristics currently maintained for the NEOS Solver at Argonne National
Laboratory. The remaining work of the centralized NEOS Solver would be focused on
activities not specific to individual solvers, such as analyzing problems and recommend-
ing solvers (§2) and on providing multi-solver services such as benchmarking (§4 below)
and translation (as with the current GAMS-to-AMPL modeling language translator).

This vision of a next-generation NEOS Server leaves open the question of how opti-
mization “jobs” will be scheduled to run on available workstations. The current central-
ized scheme maintains one queue for each solver/format combination, along with a list
of the workstations on which each solver can run. We will want to maintain this schedul-
ing control, while at the same time making the scheduling decisions more distributed
(like the solver services). We will also investigate extending the power of the NEOS sche-
duling schemes to take advantage of Grid computing [14], both in making use of idle
computing power (as provided, for instance, by Condor [27, 13]) and in supporting the
use of multi-processor optimization methods. In the case of the latter our work has
especially great potential to stimulate new applications, by saving potential users the
considerable difficulty of setting up the required hardware and networking software.

The special features of optimization serve to distinguish our research in this area
from the routine design of new web services. Optimization runs are characterized by
their huge and hard-to-predict consumption of processor time and memory space; only
a modest increase in the instance size generated from an integer programming model,
for example, can cause the solution time to increase from minutes to days, with a cor-
responding increase in the maximum size of the branch-and-bound tree. Predictions of
resource requirements must take account of problem characteristics, since for instance
a continuous linear program in hundreds of thousands of variables is generally much
more tractable than an integer or nonlinear program of the same size.

We propose to study how categorization of optimization problem instances (as out-
lined in §2) together with statistics from previous runs can be used to improve upon
the current scheduling decisions of the NEOS Server. As just one example, an intelligent
scheduler should not assign two large jobs to a single-processor machine, since they will
only become bogged down contending for resources; but a machine assigned one large
job could also take care of a series of very small jobs without noticeable degradation
to performance on either kind of job. Both the kind and size of optimization instances
must be assessed in order to determine which should be considered “large” and which
“very small” for purposes of this scheduling approach.

Northwestern graduate student Jun Ma is beginning dissertation research in this
area. He has spent 9 months on an internship with an optimization group at Motorola,
Inc., where he has built parts of an optimization server scheme for internal use. We are
also discussing collaboration with Prof. Jeffrey Linderoth of Lehigh University, who was
a major contributor to studies of optimization methods on computational grids in the
earlier MetaNEOS Project (see www.mcs.anl.gov/metaneos).

4. Benchmarking and verification

The availability of more than one solver for many classes of problems makes the
NEOS Server an obvious choice as a benchmarking tool. In fact the Server is potentially
useful both in choosing a solver for a particular application and in comparing solvers
generally. There are significant barriers to achieving these potentials, however, which
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motivate this part of the proposed research.
Someone who has developed a new model, but who is not sure which of the several

applicable solver packages to apply, is often advised that the only way to be sure is
to carry out some test runs on typical problem instances. The straightforward way to
do this is to send each test instance to each candidate solver. But as NEOS makes no
guarantee that separate runs will be done on comparable machines under comparable
conditions, the results may say little about the relative efficiency of the solvers. The
results may say more about the reliability of the solvers, but even so they may be dis-
torted by differences in the memory available on the workstations devoted to different
solvers, or by differences in time limits imposed by the owners of different workstations
on which NEOS Server jobs run. There is not necessarily any obvious way to compensate
for the differences between runs, moreover, because in general each solver is available
on any of a number of dissimilar workstations, among which one is selected by the
Server according to the load at the time a job is submitted.

As a first step in addressing these difficulties, we have added to the NEOS server a
kind of “benchmarking solver.” A user tells this benchmarker which solvers are to be
compared (Figure 6) and which problem (in AMPL or GAMS) they are to be compared
on. The benchmarker then applies all of the requested solvers — on the same computer
— and returns concatenated listings of their results, along with a summary of problem
statistics. For the case of smooth nonlinear problems, the benchmarker also optionally

Figure 6: Part of the web interface for the special benchmarking solver of the NEOS Server.
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Figure 7: A performance profile [10] summarizing benchmark results from four solvers on a
variety of test problems. Toward the left the curves emphasize speed of the solvers, while
toward the right they place greater emphasis on reliability.

assesses the quality of each solver’s solution with respect to complementarity, feasibility
and optimality tolerances (which may be adjusted by the user) [11]. This innovative
approach to solution verification is independent of any correctness claims or statistics
made by individual solvers. In the proposed research, we will investigate connecting the
analyzer described in §2 to the current benchmarker, so that the user is asked to choose
only among solvers that are appropriate for the problem to be solved. Concurrently,
we will further test and refine the verification methods in [11] and will extend them to
handle a broader variety of problems and situations.

Benchmarking on only one problem can be misleading, so a number of sample prob-
lems from an application are often tested at the same time. Benchmark tests on large
sets of problems from diverse applications are also common, for purposes of comparing
the overall quality of different solvers. For this purpose we have developed the concept
of a performance profile [10], which clearly shows the tradeoffs between speed and re-
liability of alternative solvers applied to a test problem set (Figure 7). This device has
been favorably received and is being increasingly adopted by researchers for their com-
putational comparisions of new algorithmic ideas. We will investigate the incorporation
of this approach into the NEOS Server environment, with the aim of producing a bench-
marker that takes a set of problems as input and produces statistics and performance
profiles for appropriate solvers.

We intend our benchmarking tool to accept but not require guidance from the user,
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so that it is appropriate for use by practitioners as well as researchers. The measures of
reliability reflected in the resulting performance profiles will make use of our verifica-
tion approach to ensure that consistent standards are applied in comparing of solvers.
The NEOS Server might then be able to automatically maintain benchmark results on
available solvers for public test problem sets, re-running the benchmarker periodically
to take account of updates or newly available solvers.

We have discussed this aspect of the proposed research with Hans Mittelmann of the
University of Arizona, who has maintained an extensive website of optimization bench-
marks (plato.la.asu.edu/bench.html) and has contributed a substantial number of
the solvers currently accessible through the NEOS Server. We envision the possibility of
considering at a later point a more formal collaboration.

5. Results of prior NSF support

Robert Fourer and Jorge Moré. “ITR: Advanced Application Service Provider Tech-
nologies for Large-Scale Optimization”: Grant CCR-0082807, $468,359 for September
2000 through August 2003.

The NSF award most closely related to this proposal in the past five years is the
same for both co-Principal Investigators. Thus their results of prior NSF support are
given here together.

The NEOS Server. The greatest part of our research under this project has centered
on the development of the NEOS Server as an application service provider for large-scale
optimization problems. As a result of this work, today’s NEOS Server (www-neos.mcs.
anl.gov) is a collaborative project that provides access to dozens of academic and
commercial optimization packages through an assortment of Internet interfaces. Over
seventy thousand job requests are handled annually, including optimization problems
from academic, commercial, and government institutions. Recent NEOS applications [9]
include circuit simulation, protein folding, VLSI design, brain modeling, airport crew
scheduling, and modeling of electricity markets. A full description of the use, design,
and implementation of the NEOS Server and administrative tools is provided by the
NEOS Administrative Guide [7].

Version 4.0 of the NEOS Server has an improved scheduling algorithm, and com-
munications daemons that can track jobs for possible termination or verification. In
particular, we ensure that NEOS jobs do not overwhelm the systems of collaborative
institutions by providing numerous options to increase flexibility in setting limits on
jobs. Examples of these options include file size limits, job time limits, limits on the
number of submissions from one address per unit of time, and limits on the number of
jobs that may run concurrently on a particular workstation.

We have also increased the level of fault tolerance for our communications pack-
age. We now make better use of the Internet Protocol to detect communication errors
between the NEOS Server and remote solver stations and to return information to the
user. Responding to communication faults, we can overcome a temporary loss of con-
nectivity between the Server and solver communications handler and return completed
results to the user as if no lapse had occurred.

The most recent of our studies of NEOS Server interfaces to bear fruit is Kestrel [8].
This CORBA–based interface is designed to send optimization problems generated by
a local modeling language environment, AMPL [18] or GAMS [4], to the NEOS Server.
The user chooses a solver from the Server’s list of appropriate solvers and issues the
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modeling language’s solve command as if the problem were going to be solved locally.
Once the problem is solved on the remote system, the results are returned in the original
(native) modeling format. The key feature of the Kestrel interface is that the native result
format lets the user’s modeling language interpret and manipulate the results directly,
rather than parsing text output listings that vary greatly from one solver to the next.

Performance profiles. In considering the problems associated with an automated
choice of algorithm, we developed the concept of performance profiles [10] for evaluat-
ing and comparing optimization software. The performance profile for a solver is the
cumulative probability distribution function for a performance metric. We have shown
that performance profiles provide a means of visualizing the expected performance
difference among many solvers, without any of the deficiencies of previous approaches.

The concept of performance profiles has been accepted by the optimization com-
munity as the method of choice for presenting comparative results among solvers or
among variations of a solver. We expect that other communities will also welcome this
approach in the near future.

Representation of stochastic programming models. The NEOS Server offers a few
solvers for stochastic programming problems, but their usefulness is limited by the
lack of good tools for describing the underlying models symbolically. Some aspects can
be described through conventional algebraic modeling languages, but others — notably
the multistage scenario trees — are not inherently algebraic and require substantially
different interpretations.

Northwestern graduate student Leonardo Lopes is writing his PhD dissertation on
this topic. He has shown how a simple, innovative extension to the AMPL modeling lan-
guage can allow for simplified models of individual stages, which need not have explicit
indices for either stages or scenarios. A working prototype of a system using this ex-
tension has been built, and will be used in subsequent empirical tests of people’s ability
to write stochastic programming models. A draft description of this work [21] is nearly
ready to be submitted for publication.

An earlier paper in this project [20] describes a related system for transforming,
aggregating, and relaxing stochastic programming problem instances to meet the needs
of a variety of solvers. To be fully general, these aggregation routines require a fast
heuristic for the minimum supertree problem. This kind of facility is ideal for use by
an optimization server to make available a variety of solvers while permitting each user
to employ only one input form.

Design of a server for interdisciplinary optimization. With additional support from
internships at Motorola Inc., graduate student Jun Ma has investigated the design of a
central optimization server for models whose functions must be evaluated at several
remote sites. Individual sites may differ greatly in their efficiency and reliability, posing
difficult problems for the optimizing algorithm.

As part of this work, Ma has done considerable investigation of web service protocols,
gaining experience that will be highly useful in the proposed research.

Development of human resources. The prior NSF support has funded some pre-
liminary research in analysis of optimization problems before solution, carried out by
postdoctoral associate Dominique Orban and graduate student Jennifer Strehler. The
work of Dolan, Lopes, and Ma cited above has also been supported in part by the prior
grant.
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