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LogicBlox Inc.
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• Startup company based in Atlanta

– http://www.logicblox.com 

– ~60 employees + academic collaborators

• Objective

– Declarative database platform for automated decision support

• Simulation, optimization, data mining, advanced querying

– Software as a service

• Applications:

– Retail supply-chain management (Predictix), 

– On-demand business intelligence (Verabridge),

– Program analysis (Semmle)



LogicBlox (LB) Technology

• Workspace
– Provides efficient persistent data storage

– Organizes data into predicates (like tables)

– Stores programs, schemas and system parameters in a meta-model

• Logic Engine
– Manipulates data based on program rules and constraints

– Manages program execution

– Handles concurrency, locking and transactions

• Clients
– Communicate with the engine through Datalog programs

• Write and install Datalog programs with the engine

• Receive results of Datalog programs as data
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Introduction to Datalog

• A program is a set of logical statements about a database  
– If stored data is changed, the Logic Engine recalculates the data to 

satisfy the program

– The logic engine executes each program in a transaction 

• A value is an atomic piece of data
– Primitive types: floats, strings, integers

– Entities: abstract user-defined atoms (like a C enum)

• A predicate is the only complex data-structure
– Relations between values, like tables in SQL

• e.g., parent, ancestor, name, etc.

– Typed
• Unary predicates (e.g., person) define types.

person(x) -> .
person:firstName(x,s) -> person(x), string(s).
person:lastName(x,s) -> person(x), string(s).

• person is a collection of abstract values (entities)

• person:firstName and person:lastName are binary predicates relating each 
person entity to strings



Datalog predicates

• Extensional predicates

– Store externally provided data

– Values can be added to extensional predicates declaratively 
+person(x), +person:firstName(x,”David”), +person:lastName(x,”Z.”). 
+person(x), +person:firstName(x,”Beata”), +person:lastName(x,”S.”). 
+person(x), +person:firstName(x,”Emir”), +person:lastName(x,”P.”). 

• The program asserts three facts about the database

• The Logic Engine satisfies this program by creating new entities, and 
inserting the appropriate tuples into the predicate storage

• Intensional predicates

– Derived from extensional through rules
person:name(x,n) <- person:firstName(x,first), person:lastName(x,last), n = first + last. 

• Built-in support for functional predicates

– person:firstName[x]=s means: for all x,s1,s2, if 
person:firstName(x,s1) and person:firstName(x,s2) then s1=s2.

– The Logic Engine uses this fact for efficient execution and static 
checking 



Datalog constraints

• A constraint is a logical assertion that is always 
satisfied by a database
– Any program that violates the assertion is aborted

• Works on both intensional and extensional predicates

– Typing constraints 
person:firstName[x] = s -> person(x), string(s).
person:firstName[x] = 43. // REJECTED!

– Runtime constraints
parent(p,c) -> person(p), person(c). 
!(parent(x,x)).

• Declaring a new predicate parent that relates a parent to a child

• Asserting a constraint that nobody can be their own parent

• Can be (syntactically) positive or negative

!(person(x), person:Age[x] < 0). 
person(x) -> person:Age[x] >= 0. 



Derivation rules

• A derivation rule is a logical specification of how 

predicates are computed from other predicates

person:name[x] = n -> person(x), string(n). 

person:name[x] = n <-

n = person:firstName[x] + “ ” + person:lastName[x].

• The logic engine finds a set of tuples such that the head 

(person:name) of the rule is true whenever the body (n = 
person:firstName[x] + “ ” + person:lastName[x]) is true

– Bottom-up evaluation: all possible facts will be derived

– Incremental evaluation: if any predicates in the body change, 

only the smallest amount of computation will be performed to 

update person:name



Rules II

• Support for recursion
parent(x,y) -> person(x), person(y).
ancestor(x,y) -> person(x), person(y). 
ancestor(x,y) <- parent(x,y).
ancestor(x,y) <- ancestor(x,z), ancestor(z,y).

• Support for aggregation
– Aggregation expressed by special rule syntax

person:salary[p,m] = n -> person(p), month(m), float[32](n). 
person:salary:toDate[p,m] += 

(person:salary[p,prevM] where prevM < m).

– Aggregation is built-in

• Any particular aggregation is expressible in pure Datalog

• But the general aggregation operator (like sum, count etc.) is not

• Thus += is a special kind of rule that 

– iterates through all tuples on the right hand side that produce a value

– sums up those values and stores them in the left-hand-side predicate



Blocks

• A block is a collection of predicates, rules and 

constraints

– Clients communicate with the logic engine by sending blocks to it

– Logic Engine installs and executes blocks

• Installed blocks: database lifetime

• Executed blocks: single-transaction lifetime

– Blocks form modules in a workspace

• Control visibility of predicates

• Can be added and removed as a unit



Properties of (LB) Datalog

• Guaranteed termination 

– Datalog programs capture exactly the PTIME complexity class

• Purely declarative

– A subset of first order logic

• E.g., unlike prolog conjunction is commutative

• No fixed evaluation strategy implicit in the program

– Logic engine determines data structures, persistence, execution 

strategy, memory management

• Efficient execution 

– Persistence 

– Parallelization

– Query optimization techniques

– Incremental execution



Optimization

• Cannot solve problems harder than PTIME in Datalog

– E.g., MIP solvers (they are NP problems)

– There are many applications for linear/mixed-integer programming

• Scheduling (shift assignment, flight assignment etc)

• Retail replenishment planning

• Problem: How to give LogicBlox users the power of escaping the 
PTIME complexity bounds while maintaining good properties of 
Datalog?

• Solution: Interface LB Datalog with specialized solvers

• Challenges:

– Interface with solvers in a declarative/pure way

– Leverage specialized knowledge embodied in existing implementations

– Give users the flexibility in interacting with the solvers without 
compromising the purity of the language

– Integrate optimization seamlessly with the LB logic engine



Integrating Optimization with LB Datalog

• Use existing Datalog syntax 
– Represent variables and parameters as predicates 

– Represent constraints as runtime constraints

– Invoke solvers using (slightly extended) rule syntax

• Users still write only high-level specifications
– Logic engine delegates the solver to calculate values satisfying variable 

predicates

– The engine verifies the solutions “for free” by executing runtime 
constraints
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Optimization Services (OS)

• A project developed under COIN/OR

– “a set of standards for representing optimization instances, 

results, solver options, and communication between clients and 

solvers in a distributed environment using Web Services.” 

• Key technology in integrating solvers with LB

• C/C++ and XML Implementation

– Integrates well with our code base (in C++)

– Cross-platform



COIN/OR Optimization Services

• OSiL

– Provides a standard API to construct a single problem instance

• OSoL

– Provides a standard API to specify solver options

• OSrL

– Provides a standard API to retrieve results of a solver running on an 
instance

• Returns values for instance variables

• Other information (not used in LB)

• OSI

– Provides a standard API to interact with multiple solvers

– Pluggable drivers for executing instances on different solvers

• COIN-OR LP solver (OsiClp) and COIN-OR Branch and Cut solver (CoinBcp); 
CPLEX (OsiCpx); DyLP (OsiDylp); FortMP (OsiFmp); GLPK, the GNU Linear 
Programming Kit (OsiGlpk); Mosek (OsiMsk); OSL, the IBM Optimization 
Subroutine Library (OsiOsl); SYMPHONY (OsiSym); The Volume Algorithm 
(OsiVol); XPRESS-MP (OsiXpr). 



Optimization in Datalog

• Compiler

– Rewrites a Datalog block containing definitions of variables, 

parameters, objective functions and constraints into a low-level 

mathematical specification of the optimization problem

• Execution engine extension

– Executes the optimization problem specification by 

supplementing standard Datalog rule execution semantics

– Invisible to the user

• Seamlessly integrates with non-optimization based rules

• Logically preserves semantics of Datalog



Optimization Compiler

• Find (based on special syntax) the set of variable predicates

• Identify the runtime constraints that involve the variable predicates

– check constraints for basic feasibility

• linear arithmetic

• correct use of indexes on variables and parameters

• Identify predicates that represent index sets and parameters

• Build a low-level runtime specification in an intermediate 

mathematical notation

– similar to AMPL or other modeling languages

– the objective function, constraints, bounds, types of variables, set, 

parameter, and variable predicates, and direction of optimization

• Pass the low-level runtime specification to the logic engine as part of 

the definition of the variable predicates



Optimization Execution

The logic engine uses the low-level specification to compute the values 
of the variable predicates:

• Evaluate all index sets 

• Check that parameter predicates have values at required 
parameters

• Create a OSiL instance data-structure 
– for each variable predicate, at each index, create a unique symbolic 

instance variable

– use a small interpreter for the low-level representation
• symbolically evaluate the objective function, binding instance variables 

• symbolically evaluate the constraints to obtain a constraint matrix

• Invoke OSI library to call the solver on the instance
– returns a binding of each instance variable to a value (OSrL)

• Map the values of instance variables back to the variable predicate

• Continue with LB execution
– Eventually runtime constraints are executed with real values of variables 

to check the solution



Discussion

• Both index sets and parameters can be computed by rules

– e.g., dependent and arbitrary patterns of indexing of variables and sets 

• Incremental evaluation forces re-computation of the optimization 

solution when parameter data changes

• Additional options can be passed to OSoL through the meta-model

– predicates in the database that store the information about executing the 

optimizer, e.g., which optimizer to use

• Optimization Services library is essential

– we avoid re-implementing our infrastructure for different solvers

– clear, high-level API for solver/optimization users (not necessarily 

experts)

– good XML support for debugging of instances 



Future Work

• Increase expressiveness
– Disjunctive constraints

• Compile into conjunctive constraints using known techniques

– Non-linear constraints
• Already supported by OS. We just need to extend our compiler slightly to 

construct the non-linear OS instances. 

– What-if evaluation
• If user interactively changes data in a variable predicate, turn it into extra 

constraints and re-solve

• Use optimization techniques to extend expressive power of Datalog
– Compile disjunctive Datalog into integer optimization problems

• Increase efficiency
– Automatically detect fastest possible solver based on types and 

constraints (e.g., don’t use an integer solver if all variables are reals)

– Warm-start (e.g., can we make solvers at least partly incremental, like 
LB Datalog rules)

– Automatically break up problems based on data dependencies and solve 
in parallel



THE END

THE END



Example: Diet

• Given

– Index sets 

• FOOD : set of foods

• NUTR : set of nutrients

– Parameters

• amt[n,f] = v: the amount v of a nutrient n in food f

• nutrLow[n]=v: the minimum daily amount of nutrient n

• cost[f]=v: the cost of food f

• Objective

– Variable(s): buy[f] = v : amount of food to buy, for each f in FOOD

– Minimize total cost of food while satisfying the constraint that the 

daily minimum amount for each nutrient is met



Diet problem in LB Datalog

• Index sets are implemented as entities

– Abstract values denoting distinct items
NUTR(x), NUTR:name(x:n) -> string(n).
FOOD(x), FOOD:name(x:n) -> string(n).

• Parameters are represented as functional predicates 

with an index set domain, and a numeric range
amt[n, f] = a -> NUTR(n), FOOD(f), float[64](a), a >= 0.
nutrLow[n] = nL -> NUTR(n), float[64](nL), nL >= 0.

cost[f] = c -> FOOD(f), float[64](c), c >= 0.

• Variables are represented as functional predicates with 

an index set domain, and a numeric range

– Note the runtime constraint that buy[f] >= 0 as a part of type 

declaration

Buy[f] = b -> FOOD(f), float[64](b), b>=0.



Diet problem in LB Datalog

• Objective function is represented as a predicate that 

computes its value from the index sets and variables
totalCost[] = x -> float[32](x).
totalCost[] += cost[f] * Buy[f] where FOOD(f). 

– totalCost is a functional predicate containing only one value

– It is an aggregation (sum) of cost[f] * buy[f] for each food f

• Constraints are represented as LB Datalog runtime 

constraints involving the variable predicate
totalNutrAmt[n] += amt[n,f] * Buy[f] where FOOD(f). 
!(NUTR(n), totalNutrAmt[n] < nutrLow[n]).

– The constraint states that the total amount of each nutrient is 

never less than the required daily minimum 

– Auxiliary predicate totalNutrAmt[n] computes the total amount 

of nutrient n in all purchased foods



Diet problem in LB Datalog

• The Datalog rule that computes buy[f] puts all those 

elements together

– Built-in higher-order predicate solve:minimize is the interface to 

the solver

• Takes the value of the objective function

• Based on runtime constraints in the block, runs the solver to compute 

the value of the variable predicates

Buy[f] = result <- result = (solve:minimize[cost][f] where totalCost[]=cost).


