
Using Optimization Services

in Datalog

Molham Aref, Emir Pasalic, Beata Sarna-Starosta, David Zook

January 12, 2009

LogicBlox Inc.

1

• Startup company based in Atlanta

– http://www.logicblox.com

– ~60 employees + academic collaborators

• Objective

– Declarative database platform for automated decision support

• Simulation, optimization, data mining, advanced querying

– Software as a service

• Applications:

– Retail supply-chain management (Predictix),

– On-demand business intelligence (Verabridge),

– Program analysis (Semmle)

LogicBlox (LB) Technology

• Workspace
– Provides efficient persistent data storage

– Organizes data into predicates (like tables)

– Stores programs, schemas and system parameters in a meta-model

• Logic Engine
– Manipulates data based on program rules and constraints

– Manages program execution

– Handles concurrency, locking and transactions

• Clients
– Communicate with the engine through Datalog programs

• Write and install Datalog programs with the engine

• Receive results of Datalog programs as data

Workspace

Logic

Engine

Client
Datalog

Programs

Datalog

program

Data

Introduction to Datalog

• A program is a set of logical statements about a database
– If stored data is changed, the Logic Engine recalculates the data to

satisfy the program

– The logic engine executes each program in a transaction

• A value is an atomic piece of data
– Primitive types: floats, strings, integers

– Entities: abstract user-defined atoms (like a C enum)

• A predicate is the only complex data-structure
– Relations between values, like tables in SQL

• e.g., parent, ancestor, name, etc.

– Typed
• Unary predicates (e.g., person) define types.

person(x) -> .
person:firstName(x,s) -> person(x), string(s).
person:lastName(x,s) -> person(x), string(s).

• person is a collection of abstract values (entities)

• person:firstName and person:lastName are binary predicates relating each
person entity to strings

Datalog predicates

• Extensional predicates

– Store externally provided data

– Values can be added to extensional predicates declaratively
+person(x), +person:firstName(x,”David”), +person:lastName(x,”Z.”).
+person(x), +person:firstName(x,”Beata”), +person:lastName(x,”S.”).
+person(x), +person:firstName(x,”Emir”), +person:lastName(x,”P.”).

• The program asserts three facts about the database

• The Logic Engine satisfies this program by creating new entities, and
inserting the appropriate tuples into the predicate storage

• Intensional predicates

– Derived from extensional through rules
person:name(x,n) <- person:firstName(x,first), person:lastName(x,last), n = first + last.

• Built-in support for functional predicates

– person:firstName[x]=s means: for all x,s1,s2, if
person:firstName(x,s1) and person:firstName(x,s2) then s1=s2.

– The Logic Engine uses this fact for efficient execution and static
checking

Datalog constraints

• A constraint is a logical assertion that is always
satisfied by a database
– Any program that violates the assertion is aborted

• Works on both intensional and extensional predicates

– Typing constraints
person:firstName[x] = s -> person(x), string(s).
person:firstName[x] = 43. // REJECTED!

– Runtime constraints
parent(p,c) -> person(p), person(c).
!(parent(x,x)).

• Declaring a new predicate parent that relates a parent to a child

• Asserting a constraint that nobody can be their own parent

• Can be (syntactically) positive or negative

!(person(x), person:Age[x] < 0).
person(x) -> person:Age[x] >= 0.

Derivation rules

• A derivation rule is a logical specification of how

predicates are computed from other predicates

person:name[x] = n -> person(x), string(n).

person:name[x] = n <-

n = person:firstName[x] + “ ” + person:lastName[x].

• The logic engine finds a set of tuples such that the head

(person:name) of the rule is true whenever the body (n =
person:firstName[x] + “ ” + person:lastName[x]) is true

– Bottom-up evaluation: all possible facts will be derived

– Incremental evaluation: if any predicates in the body change,

only the smallest amount of computation will be performed to

update person:name

Rules II

• Support for recursion
parent(x,y) -> person(x), person(y).
ancestor(x,y) -> person(x), person(y).
ancestor(x,y) <- parent(x,y).
ancestor(x,y) <- ancestor(x,z), ancestor(z,y).

• Support for aggregation
– Aggregation expressed by special rule syntax

person:salary[p,m] = n -> person(p), month(m), float[32](n).
person:salary:toDate[p,m] +=

(person:salary[p,prevM] where prevM < m).

– Aggregation is built-in

• Any particular aggregation is expressible in pure Datalog

• But the general aggregation operator (like sum, count etc.) is not

• Thus += is a special kind of rule that

– iterates through all tuples on the right hand side that produce a value

– sums up those values and stores them in the left-hand-side predicate

Blocks

• A block is a collection of predicates, rules and

constraints

– Clients communicate with the logic engine by sending blocks to it

– Logic Engine installs and executes blocks

• Installed blocks: database lifetime

• Executed blocks: single-transaction lifetime

– Blocks form modules in a workspace

• Control visibility of predicates

• Can be added and removed as a unit

Properties of (LB) Datalog

• Guaranteed termination

– Datalog programs capture exactly the PTIME complexity class

• Purely declarative

– A subset of first order logic

• E.g., unlike prolog conjunction is commutative

• No fixed evaluation strategy implicit in the program

– Logic engine determines data structures, persistence, execution

strategy, memory management

• Efficient execution

– Persistence

– Parallelization

– Query optimization techniques

– Incremental execution

Optimization

• Cannot solve problems harder than PTIME in Datalog

– E.g., MIP solvers (they are NP problems)

– There are many applications for linear/mixed-integer programming

• Scheduling (shift assignment, flight assignment etc)

• Retail replenishment planning

• Problem: How to give LogicBlox users the power of escaping the
PTIME complexity bounds while maintaining good properties of
Datalog?

• Solution: Interface LB Datalog with specialized solvers

• Challenges:

– Interface with solvers in a declarative/pure way

– Leverage specialized knowledge embodied in existing implementations

– Give users the flexibility in interacting with the solvers without
compromising the purity of the language

– Integrate optimization seamlessly with the LB logic engine

Integrating Optimization with LB Datalog

• Use existing Datalog syntax
– Represent variables and parameters as predicates

– Represent constraints as runtime constraints

– Invoke solvers using (slightly extended) rule syntax

• Users still write only high-level specifications
– Logic engine delegates the solver to calculate values satisfying variable

predicates

– The engine verifies the solutions “for free” by executing runtime
constraints

Cplex

Symphony

CBCO

S

I
CLP

O

S

Workspace

Logic

Engine

Client
Datalog

Programs

Datalog

program

Data

Optimization Services (OS)

• A project developed under COIN/OR

– “a set of standards for representing optimization instances,

results, solver options, and communication between clients and

solvers in a distributed environment using Web Services.”

• Key technology in integrating solvers with LB

• C/C++ and XML Implementation

– Integrates well with our code base (in C++)

– Cross-platform

COIN/OR Optimization Services

• OSiL

– Provides a standard API to construct a single problem instance

• OSoL

– Provides a standard API to specify solver options

• OSrL

– Provides a standard API to retrieve results of a solver running on an
instance

• Returns values for instance variables

• Other information (not used in LB)

• OSI

– Provides a standard API to interact with multiple solvers

– Pluggable drivers for executing instances on different solvers

• COIN-OR LP solver (OsiClp) and COIN-OR Branch and Cut solver (CoinBcp);
CPLEX (OsiCpx); DyLP (OsiDylp); FortMP (OsiFmp); GLPK, the GNU Linear
Programming Kit (OsiGlpk); Mosek (OsiMsk); OSL, the IBM Optimization
Subroutine Library (OsiOsl); SYMPHONY (OsiSym); The Volume Algorithm
(OsiVol); XPRESS-MP (OsiXpr).

Optimization in Datalog

• Compiler

– Rewrites a Datalog block containing definitions of variables,

parameters, objective functions and constraints into a low-level

mathematical specification of the optimization problem

• Execution engine extension

– Executes the optimization problem specification by

supplementing standard Datalog rule execution semantics

– Invisible to the user

• Seamlessly integrates with non-optimization based rules

• Logically preserves semantics of Datalog

Optimization Compiler

• Find (based on special syntax) the set of variable predicates

• Identify the runtime constraints that involve the variable predicates

– check constraints for basic feasibility

• linear arithmetic

• correct use of indexes on variables and parameters

• Identify predicates that represent index sets and parameters

• Build a low-level runtime specification in an intermediate

mathematical notation

– similar to AMPL or other modeling languages

– the objective function, constraints, bounds, types of variables, set,

parameter, and variable predicates, and direction of optimization

• Pass the low-level runtime specification to the logic engine as part of

the definition of the variable predicates

Optimization Execution

The logic engine uses the low-level specification to compute the values
of the variable predicates:

• Evaluate all index sets

• Check that parameter predicates have values at required
parameters

• Create a OSiL instance data-structure
– for each variable predicate, at each index, create a unique symbolic

instance variable

– use a small interpreter for the low-level representation
• symbolically evaluate the objective function, binding instance variables

• symbolically evaluate the constraints to obtain a constraint matrix

• Invoke OSI library to call the solver on the instance
– returns a binding of each instance variable to a value (OSrL)

• Map the values of instance variables back to the variable predicate

• Continue with LB execution
– Eventually runtime constraints are executed with real values of variables

to check the solution

Discussion

• Both index sets and parameters can be computed by rules

– e.g., dependent and arbitrary patterns of indexing of variables and sets

• Incremental evaluation forces re-computation of the optimization

solution when parameter data changes

• Additional options can be passed to OSoL through the meta-model

– predicates in the database that store the information about executing the

optimizer, e.g., which optimizer to use

• Optimization Services library is essential

– we avoid re-implementing our infrastructure for different solvers

– clear, high-level API for solver/optimization users (not necessarily

experts)

– good XML support for debugging of instances

Future Work

• Increase expressiveness
– Disjunctive constraints

• Compile into conjunctive constraints using known techniques

– Non-linear constraints
• Already supported by OS. We just need to extend our compiler slightly to

construct the non-linear OS instances.

– What-if evaluation
• If user interactively changes data in a variable predicate, turn it into extra

constraints and re-solve

• Use optimization techniques to extend expressive power of Datalog
– Compile disjunctive Datalog into integer optimization problems

• Increase efficiency
– Automatically detect fastest possible solver based on types and

constraints (e.g., don’t use an integer solver if all variables are reals)

– Warm-start (e.g., can we make solvers at least partly incremental, like
LB Datalog rules)

– Automatically break up problems based on data dependencies and solve
in parallel

THE END

THE END

Example: Diet

• Given

– Index sets

• FOOD : set of foods

• NUTR : set of nutrients

– Parameters

• amt[n,f] = v: the amount v of a nutrient n in food f

• nutrLow[n]=v: the minimum daily amount of nutrient n

• cost[f]=v: the cost of food f

• Objective

– Variable(s): buy[f] = v : amount of food to buy, for each f in FOOD

– Minimize total cost of food while satisfying the constraint that the

daily minimum amount for each nutrient is met

Diet problem in LB Datalog

• Index sets are implemented as entities

– Abstract values denoting distinct items
NUTR(x), NUTR:name(x:n) -> string(n).
FOOD(x), FOOD:name(x:n) -> string(n).

• Parameters are represented as functional predicates

with an index set domain, and a numeric range
amt[n, f] = a -> NUTR(n), FOOD(f), float[64](a), a >= 0.
nutrLow[n] = nL -> NUTR(n), float[64](nL), nL >= 0.

cost[f] = c -> FOOD(f), float[64](c), c >= 0.

• Variables are represented as functional predicates with

an index set domain, and a numeric range

– Note the runtime constraint that buy[f] >= 0 as a part of type

declaration

Buy[f] = b -> FOOD(f), float[64](b), b>=0.

Diet problem in LB Datalog

• Objective function is represented as a predicate that

computes its value from the index sets and variables
totalCost[] = x -> float[32](x).
totalCost[] += cost[f] * Buy[f] where FOOD(f).

– totalCost is a functional predicate containing only one value

– It is an aggregation (sum) of cost[f] * buy[f] for each food f

• Constraints are represented as LB Datalog runtime

constraints involving the variable predicate
totalNutrAmt[n] += amt[n,f] * Buy[f] where FOOD(f).
!(NUTR(n), totalNutrAmt[n] < nutrLow[n]).

– The constraint states that the total amount of each nutrient is

never less than the required daily minimum

– Auxiliary predicate totalNutrAmt[n] computes the total amount

of nutrient n in all purchased foods

Diet problem in LB Datalog

• The Datalog rule that computes buy[f] puts all those

elements together

– Built-in higher-order predicate solve:minimize is the interface to

the solver

• Takes the value of the objective function

• Based on runtime constraints in the block, runs the solver to compute

the value of the variable predicates

Buy[f] = result <- result = (solve:minimize[cost][f] where totalCost[]=cost).

