The Optimization Services Project on COIN-OR

Robert Fourer, Jun Ma

Industrial Engineering & Management Sciences Northwestern University

[4er,maj]@iems.northwestern.edu

Kipp Martin

Graduate School of Business University of Chicago kmartin@gsb.uchicago.edu

IFORS 2008

Johannesberg, South Africa — 13-18 July 2008 — MC17.3

"Optimization Services" (OS)

A framework for providing optimization tools

- > XML-based
- Service-oriented
- Distributed
- Decentralized

A project for implementing such a framework

- Straightforward and ubiquitous access
- Powerful solvers

Using a robust service-oriented architecture

- Linking modeling languages, solvers, schedulers, data repositories
- Residing on different machines, in different locations, using different operating systems.

OS on the Internet

Home site: www.optimizationservices.org

> Overview, standards, publications, presentations, FAQs

Contact information, downloads, licenses

Developer site: www.coin-or.org/projects/OS.xml

Login, register, wiki, source repository, timeline, search

Newsgroup:

groups.google.com/group/optimizationservices

COIN mailing list:

list.coin-or.org/mailman/listinfo/os

... newsgroup and COIN mailing list are automatically cross-posted

OS Licenses, etc.

Written in multiple languages

- ≻ C/C++
- > Java
- ≻ .NET

Released as open source code

Under the Common Public License ("CPL")

Available as a COIN-OR project

Released this year

- More solvers being added
 - * Bonmin most recently

OS Builds: Platforms

Unix

≻ Mac

≻ Linux

Windows

- Windows (MS Visual Studio)
- Cygwin (gcc)
- ➤ MSYS (gcc, cl.exe)

OS Builds: Integration

Core (OSCommon library)

Modeler side

> AMPL / .nl

- LINGO, What's Best (planned)
- > MATLAB

Solver side

- > COIN OSI
- > AMPL/ASL
- ≻ Linear: CLP, CBC, CPLEX, Impact
- Nonlinear: IPOPT, LINDO, KNITRO, Bonmin
- CppAD (automatic differentiation)

... some still unstable ... looking for developers to provide others

OS Downloads

OSxL XML schemas (OSRepresentation library) OSxL WSDL files (OSCommunication library) in a zipped file or individually

OS Downloads (cont'd)

Sources and builds on common platforms

≻ C/C++

- * readers/writers
- * client agent for contacting remote services
- * interfaces to solvers and modeling systems
- * automatic differentiation, etc.
- Java (to be put up)
 - * same features as C/C++, plus
 Web Services, server, distributed systems.
- ➤ .NET (C#) (to be put up)
 - * similar to Java but not as complete

OS Repository

Linear (netlib basic, infeasible, Kennington)

Individual XML (OSiL format) files available now

Zip files to come

Mixed integer (mainly from miplib 2003)

Nonlinear

➤ CUTE now, more to come

Stochastic

Thanks to Gus Gassmann

... all known documentation (source, solution, description, type, etc.)

Standards

OS framework provides standards in 3 areas

- Optimization instance representation
- Optimization communication
 - * accessing
 - * interfacing
 - * orchestration
- Optimization service registration and discovery

*OSmL: a modeling language and NOT an Optimization Services Protocol *Letters not currently used: w, z

*BPEL: Business Process Execution Language for flow orchestration.

Quick Overview

XML text files

≻OSiL, OSoL, OSrL

In-memory data structures

➢OSInstance, OSOption, OSResult

Motivation **XML Means "Tagged" Text Files . . .**

Example: html for a popular home page

```
<html><head><meta http-equiv="content-type" content="text/html;
charset=UTF-8"><title>Google</title><style><!--
body,td,a,p,.h{font-family:arial,sans-serif;}
.h{font-size: 20px;}
.q{text-decoration:none; color:#0000cc;}
//-->
</style>
</head><body bgcolor=#fffffff text=#000000 link=#0000cc
vlink=#551a8b alink=#ff0000 onLoad=sf()><center>cellspacing=0 cellpadding=0>cellspacing=0 cellpadding=0><img src="/images/logo.gif"
width=276 height=110 alt="Google">......<font size=-2>&copy;2003 Google - Searching 3,307,998,701 web
pages</font>
```

... a collection of XML tags is designed for a special purpose ... by use of a schema written itself in XML

Motivation Advantage of any standard

MN drivers without a

M + *N* drivers with a standard

Motivation

Advantages of an XML Standard

Specifying it

Unambiguous definition via a schema

Provision for keys and data typing

Well-defined expansion to new name spaces

Working with it

Parsing and validation via standard utilities

- Amenability to *compression* and *encryption*
- Transformation and display via XSLT style sheets
- Compatibility with web services

OSiL: Optimization Problem Instances

Design goals

Simple, clean, extensible, object-oriented

Standard problem types supported

- ➤ Linear
- Quadratic
- General nonlinear
- Mixed integer for any of above
- Multiple objective for any of above
- Complementarity

OSiL (cont'd)

Extensions (stable or near-stable)

- User-defined functions
- > XML data (within the OSiL or remotely located)
- Data lookup (via XPath)
- Logical/combinatorial expressions and constraints
- Simulations (black-box functions)

OSiL (cont'd)

Prototypes

- Cone & semidefinite programming
- Stochastic
 - * recourse, penalty-based, scenario (implicit or explicit)
 - * risk measure/chance constrained
 - * major univariate, multivariate, user-defined distributions
 - * general linear transformation and ARMA processes
 - * R. Fourer, H.I. Gassmann, J. Ma, and R.K. Martin, "An XML-Based Schema for Stochastic Programs." Forthcoming in *Annals of Operations Research*.

Text files **Text from the OSiL Schema**

```
<xs:complexType name="Variables">
    <xs:sequence>
        <xs:element name="var" type="Variable" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="number" type="xs:positiveInteger" use="required"/>
        </xs:complexType>
```

```
<rs:complexType name="Variable">
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="init" type="xs:string" use="optional"/>
 <xs:attribute name="type" use="optional" default="C">
 <rs:simpleType>
   <xs:restriction base="xs:string">
      <rs:enumeration value="C"/>
      <rs:enumeration value="B"/>
      <rs:enumeration value="I"/>
      <rs:enumeration value="S"/>
    </rs:restriction>
 </rs:simpleType>
 </rs:attribute>
 <xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
 <xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>
</rs:complexType>
```


Text files Diagram of the OSiL Schema

Text files Details of OSiL's instanceData Element

Text files **Details of OSiL's instanceData Element**

Text files Example: A Problem Instance (in AMPL)

```
ampl: expand var;
Coefficients of x[0]:
        Con1 1 + nonlinear
        Con2 7 + nonlinear
        Obj 0 + nonlinear
Coefficients of x[1]:
        Con1 0 + nonlinear
        Con2 5 + nonlinear
        Obj 9 + nonlinear
ampl: expand obj;
minimize Obj:
         (1 - x[0])^{2} + 100*(x[1] - x[0]^{2})^{2} + 9*x[1];
ampl: expand con;
subject to Con1:
        10 \times [0]^{2} + 11 \times [1]^{2} + 3 \times [0] \times [1] + x[0] <= 10;
subject to Con2:
         log(x[0] * x[1]) + 7 * x[0] + 5 * x[1] >= 10;
```


Text files Example in OSiL

```
<instanceHeader>
   <name>Modified Rosenbrock</name>
   <source>Computing Journal3:175-184, 1960</source>
   <description>Rosenbrock problem with constraints</description>
</instanceHeader>
<variables number="2">
   <var lb="0" name="x0" type="C"/>
   <var lb="0" name="x1" type="C"/>
</variables>
<objectives number="1">
   <obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
      <coef idx="1">9</coef>
   </obj>
</objectives>
<constraints number="2">
   <con ub="10.0"/>
   <con lb="10.0"/>
</constraints>
```


Text files **Example in OSiL** (continued)

```
<linearConstraintCoefficients numberOfValues="3">
   <start>
      <el>0</el>
      <el>1</el>
      <el>3</el>
   </start>
   <rowIdx>
      <el>0</el>
      <el>1</el>
      <el>1</el>
  </rowIdx>
   <value>
      <el>1.0</el>
      <el>7.0</el>
      <el>5.0</el>
   </value>
</linearConstraintCoefficients>
<quadraticCoefficients numberOfQPTerms="3">
   <qpTerm idx="0" idxOne="0" idxTwo="0" coef="10"/>
   <qpTerm idx="0" idxOne="1" idxTwo="1" coef="11"/>
   <qpTerm idx="0" idxOne="0" idxTwo="1" coef="3"/>
</quadraticCoefficients>
```


Text files **Example in OSiL** (continued)

```
<nl idx="-1">
   <plus>
      <power>
         <minus>
            <number type="real" value="1.0"/>
            <variable coef="1.0" idx="1"/>
         </minus>
         <number type="real" value="2.0"/>
      </power>
      <times>
         <power>
            <minus>
               <variable coef="1.0" idx="0"/>
               <power>
                  <variable coef="1.0" idx="1"/>
                  <number type="real" value="2.0"/>
               </power>
            </minus>
            <number type="real" value="2.0"/>
         </power>
         <number type="real" value="100"/>
      </times>
   </plus>
</nl>
```


Text files **Example in OSiL** (continued)

```
<nl idx="1">
  <ln>
      <times>
      <variable idx="0"/>
      <variable idx="1"/>
      </times>
  </ln>
</nl>
```


OSrL: Optimization Problem Results

Counterpart to OSiL for solver output

- General results such as serviceURI, serviceName, instanceName, jobID, time
- Results related to the solution such as status (unbounded, globallyOptimal, etc.), substatus, message
- Results related to variables (activities), objectives (optimal levels), constraints (dual values)
- Service statistics such as currentState, availableDiskspace, availableMemory, currentJobCount, totalJobsSoFar, timeLastJobEnded, etc.
- Results related to individual jobs including state (waiting, running, killed, finished), userName, submitTime, startTime, endTime, duration, dependencies, scheduledStartTime, requiredDirectoriesAndFiles.

OSrL (cont'd)

Additional solution support

- Support for non-numeric solutions such as those returned from combinatorial or constraint programming solvers
- Support for multiple objectives
- Support for multiple solutions
- Integration of analysis results collected by the solver

OSoL: Optimization Options

Counterpart to OSiL for solver instructions

- General options including serviceURI, serviceName, instanceName, instanceLocation, jobID, license, userName, password, contact
- System options including minDiskSpace, minMemorySize, minCPUSpeed
- Service options including service type
- Job options including scheduledStartTime, dependencies. requiredDirectoriesAndFiles, directoriesToMake, directoriesToDelete, filesToCreate, filesToDelete, processesToKill, inputFilesToCopyFrom, inputFilesToCopyTo, etc.

Limited standardization of algorithmic options

Currently only initial values

OSoL (cont'd)

Including support for:

- Various networking communication mechanisms
- Asynchronous communication (such as specifying an email address for notification at completion)
- Stateful communication (achieved mainly through the built-in mechanism of associating a network request with a unique jobID)
- Security such as authentication and licensing
- Retrieving separately uploaded information (when passing a large file as a string argument is inefficient)
- Extended or customized solver-specific or algorithm-specific options

Other XML Schema-Based Standards

Kept by the OS registry

- OSeL (entity, experimental): static information on optimization services (such as type, developer)
- OSpL (process, near stable): dynamic information on optimization services (such as jobs being solved)
- OSbL (benchmark, experimental): benchmark information on optimization services

For use by the discovery process

- OSqL (query, experimental): specification of the query format used to discover the optimization services in the OS registry
- OSuL (uri/url, experimental): specification of the discovery result (in uri or url) sent back by the OS registry

Other Schema-Based Standards (cont'd)

Formats and definitions

- OSsL (simulation, stable): format for input and output used by simulation services invoked via the Optimization Services to obtain function values
- OSgL (general, near stable): definitions of general elements and data types used by other OSxL schemas. Usually included in the beginning of another OSxL schema through the statement: <xs:include schemaLocation="OSgL.xsd"/>
- OSnL (nonlinear, stable): definitions (operators, operands, etc.) of the nonlinear, combinatorial, and other nodes used in other OSxL's, mainly OSiL

Other WSDL-Based Standards

WSDL

Web Service Definition Language

WSDLs for OS (stable)

- OShL (hook): for invoking solver/analyzer services
- OSdL (discover): for invoking optimization registry services to register and discover services
- OScL (call) for invoking simulation services, usually to obtain function values.

www.optimizationservices.org . . .

... Questions?

Fourer, Ma, Martin, The Optimization Services Project on COIN-OR Session WB-03.1, Operations Research 2007, Saarland University, Saarbrücken, Germany, 5-7 September, 2007