Abstract

We describe new developments in the design and testing of Dr. AMPL, a collection of utilities for determining properties of optimization problem instances generated from the AMPL modeling language. Dr. AMPL’s problem analyzer checks properties ranging from size and sparsity to linearity and convexity, then compares the results to a database of solver characteristics to produce a list of recommended solvers. This information can then be fed to optimization services such as NEOS and OSxL.
Outline

Example 1: Nonlinear output from AMPL

Problem analysis
- Information included with problem instance
- Characteristics readily determined by analyzer
- Convexity (with Arnold Neumaier & Hermann Schichl)

Example 2: Analysis of a nonlinear problem

Solver choice
- Relational database
- Database queries

Example 2 (continued): Choice of a solver

Context . . .

Example 1

Nonlinear Output from AMPL

Transportation with nonlinear costs

```plaintext
set ORIG;     # origins
set DEST;     # destinations

param supply {ORIG} >= 0;   # amounts available at origins
param demand {DEST} >= 0;   # amounts required at destinations

param rate {ORIG,DEST} >= 0;   # base shipment costs per unit
param limit {ORIG,DEST} > 0;   # limit on units shipped

var Trans {i in ORIG, j in DEST}
  >= 1e-10, <= .9999 * limit[i,j], := limit[i,j]/2;

minimize Total_Cost:
  sum {i in ORIG, j in DEST}
    rate[i,j] * Trans[i,j]^0.8 / (1 - Trans[i,j]/limit[i,j]);

subject to Supply {i in ORIG}:
  sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
  sum {i in ORIG} Trans[i,j] = demand[j];
```
Example 1

Nonlinear Output (cont’d)

Transportation data

```plaintext
param: ORIG: supply :=
      GARY 1400
      CLEV 2600
      PITT 2900 ;

param: DEST: demand :=
      FRA 900
      DET 1200
      LAN 600
      STL 1700
      FRE 1100
      LAF 1000
      WIN 400 ;

param rate : FRA DET LAN WIN STL FRE LAF :=
           GARY 39 14 11 14 16 82 8  
           CLEV 27 9 12 9 26 95 17  
           PITT 24 14 17 13 28 99 20 ;

param limit: FRA DET LAN WIN STL FRE LAF :=
              GARY 500 1000 1000 1000 800 500 1000  
              CLEV 500 800 800 800 500 500 1000  
              PITT 800 600 600 600 500 500 900 ;
```

Example 1

Nonlinear Output (cont’d)

AMPL’s .nl file: Summary information in header

```plaintext
0 1        # nonlinear constraints, objectives
0 0        # network constraints: nonlinear, linear
0 21 0     # nonlinear vars in constraints, objectives, both
0 0 0 1    # linear network vars; functions; arith, flags
0 0 0 0 0   # discrete vars: binary, integer, nonlinear (b,c,o)
42 21      # nonzeros in Jacobian, gradients
0 0        # max name lengths: constraints, variables
0 0 0 0 0   # common exprs: b,c,o,c1,o1

... AMPL does all the work here
```
Example 1

Nonlinear Output (cont'd)

AMPL's .nl file: Nonlinear expressions

```plaintext
00 0  #Total_Cost
054  #sumlist
21
03 cimal
02  *
39
05  **
00.8
1  # -
1
03  /
00  #Trans['GARY','FRA']
0.8
1
03  /
05  #Trans['GARY','FRA']
500
03  /
02  *
14
05  **
...........
```

Problem Analysis

Information included in .nl file header
- Size
- Differentiability
- Linearity
- Sparsity

Features readily deduced from expression trees
- Quadraticity
- Smoothness

Convexity . . .
Convexity

Significance

- For an optimization problem of the form

\[
\begin{align*}
\text{Minimize} & \quad f(x_1, \ldots, x_n) \\
\text{Subject to} & \quad g_i(x_1, \ldots, x_n) \geq 0, \quad i = 1, \ldots, r \\
& \quad h_i(x_1, \ldots, x_n) = 0, \quad i = 1, \ldots, s
\end{align*}
\]

a local minimum is global provided

* \(f \) is convex
* each \(g_i \) is convex
* each \(h_i \) is linear

- Many physical problems are naturally convex if formulated properly

Analyses . . .

- Disproof of convexity
- Proof of convexity

Disproof of Convexity

Find any counterexample

- Sample in feasible region
- Test any characterization of convex functions

Sampling along lines

- Look for \(f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda) f(x_2) \)
- See implementation in mProbe
 (John Chinneck, www.sce.carleton.ca/faculty/chinneck.html)

Sampling at points

- Look for \(\nabla^2 f(x) \) not positive semi-definite
- Implemented in Dr. AMPL . . .
Disproof of Convexity (cont’d)

Sampling

- Choose points \(x_0 \)
 such that \(x_{01}, \ldots, x_{0n} \) are within inferred bounds

Testing

- Apply GLTR (galahad.rl.ac.uk/galahad-www/doc/gltr.pdf) to
 \[
 \min_d \quad \nabla f(x_0) d + \frac{1}{2} d \nabla^2 f(x_0) d \\
 \text{s.t.} \quad \|d\| \leq \max\{10, \|\nabla f(x_0)\|/10\}
 \]
 - Declare nonconvex if GLTR’s Lanczos method finds a direction of negative curvature
 - Declare inconclusive if GLTR reaches the trust region boundary without finding a direction of negative curvature

Problem analysis

Proof of Convexity

Recursively assess each expression tree node for

- Bounds
- Monotonicity
- Convexity / Concavity

Apply properties of functions

- \(\|x\|_p \) is convex, \(\geq 0 \) everywhere
- \(x^\alpha \) is convex for \(\alpha \leq 0, \alpha \geq 1 \); \(-x^\alpha \) is convex for \(0 \leq \alpha \leq 1 \)
- \(x^p \) for even \(p > 0 \) is convex everywhere, decreasing on \(x \leq 0 \), increasing on \(x \geq 0 \), etc.
- \(-\log x \) and \(x \log x \) are convex and increasing on \(x > 0 \)
- \(\sin x \) is concave on \(0 \leq x \leq \pi \), convex on \(\pi \leq x \leq 2\pi \), increasing on \(0 \leq x \leq \pi/2 \) and \(3\pi/2 \leq x \leq 2\pi \), decreasing . . . \(\geq -1 \) and \(\leq 1 \) everywhere
- \(x^M x \) is convex if \(M \) is positive semidefinite
- \(e^{\alpha x} \) is convex, increasing everywhere for \(\alpha > 0 \), etc.
- \(-(\Pi, x)^{1/2} \) is convex where all \(x_i > 0 \)
 . . . etc., etc.
Proof of Convexity (cont’d)

Apply properties of convexity

- Certain expressions are convex:
 - $-f(x)$ for any concave f
 - $\alpha f(x)$ for any convex f and $\alpha > 0$
 - $f(x) + g(x)$ for any convex f and g
 - $f(Ax + b)$ for any convex f
 - $f(g(x))$ for any convex nondecreasing f and convex g
 - $f(g(x))$ for any convex nonincreasing f and concave g

- Use these with preceding to assess whether
 node expressions are convex on their domains

Apply properties of concavity, similarly

Deduce status of each nonlinear expression

- Convex, concave, or indeterminate
- Lower and upper bounds

Problem analysis

Testing Convexity Analyzers

Principles

- Disprovers can establish nonconvexity, suggest convexity
- Provers can establish convexity, suggest nonconvexity

Test problems

- Established test sets:
 COPS (17), CUTE (734), Hock & Schittkowski (119),
 Netlib (40), Schittkowski (195), Vanderbei (29 groups)
- Submissions to NEOS Server

Design of experiments

- Run a prover and a disprover on each test problem
- Check results for consistency
- Collect and characterize problems found to be convex
- Inspect functions not proved or disproved convex,
 to suggest possible enhancements to analyzers
Analysis of a Nonlinear Problem

Torsion model (parameters and variables)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nx > 0), integer</td>
<td>grid points in 1st direction</td>
</tr>
<tr>
<td>(ny > 0), integer</td>
<td>grid points in 2nd direction</td>
</tr>
<tr>
<td>(c)</td>
<td>constant</td>
</tr>
<tr>
<td>(hx := 1/(nx+1))</td>
<td>grid spacing</td>
</tr>
<tr>
<td>(hy := 1/(ny+1))</td>
<td>grid spacing</td>
</tr>
<tr>
<td>(area := 0.5hxhy)</td>
<td>area of triangle</td>
</tr>
<tr>
<td>(D { i \in 0..nx+1, j \in 0..ny+1 })</td>
<td>distance to the boundary</td>
</tr>
<tr>
<td>(v { i \in 0..nx+1, j \in 0..ny+1 })</td>
<td>definition of the finite element approximation</td>
</tr>
</tbody>
</table>

Problem Analysis (cont’d)

Torsion model (objective and constraints)

```plaintext
var linLower = sum \{ i \in 0..nx, j \in 0..ny \} (v[i+1,j] + v[i,j] + v[i,j+1]);
var linUpper = sum \{ i \in 1..nx+1, j \in 1..ny+1 \} (v[i,j] + v[i-1,j] + v[i,j-1]);
var quadLower = sum \{ i \in 0..nx, j \in 0..ny \} ((v[i+1,j] - v[i,j])/hx)**2 + ((v[i,j+1] - v[i,j])/hy)**2;
var quadUpper = sum \{ i \in 1..nx+1, j \in 1..ny+1 \} ((v[i,j] - v[i-1,j])/hx)**2 + ((v[i,j] - v[i,j-1])/hy)**2;
minimize Stress:
area * (quadLower + quadUpper)/2 - c*(linLower + linUpper)/3;
subject to distanceBound \{ i \in 0..nx+1, j \in 0..ny+1 \}:
-D[i,j] <= v[i,j] <= D[i,j];
```
Problem Analysis (cont’d)

Output from AMPL’s presolver

Presolve eliminates 2704 constraints and 204 variables.
Substitution eliminates 4 variables.

Adjusted problem:
2500 variables, all nonlinear
0 constraints
1 nonlinear objective; 2500 nonzeros.

Choice of a Solver

Relational database
- Table of identifiable problem characteristics
- Table of solvers and general information about them
- Table of all valid problem-solver pairs

Database queries
- Most specialized solvers
- Moderately specialized solvers: “hard” criteria such as convexity not used
- General-purpose solvers

Room for enhancement
- Add data from NEOS Server runs
- Automatically apply “best” solver (or solvers)
Choice of a Solver

Output from Dr. AMPL prototype (analysis)

<table>
<thead>
<tr>
<th>Problem type</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Problem has bounded variables</td>
</tr>
<tr>
<td>- Problem has no constraints</td>
</tr>
</tbody>
</table>

Analyzing problem using only objective

- This objective is quadratic
- Problem is a QP with bounds
- 0.833013 <= objective <= 0.8359

Problem convexity

Nonlinear objective looks convex on its domain.

Detected 0/0 nonlinear convex constraints,
0/0 nonlinear concave constraints.

Solver Choice

Output from Dr. AMPL (solver recommendations)

Specialized solvers, based on all properties

MOSEK
OOQP

Specialized solvers, excluding "hard" properties

BLMVM
FortMP
L-BFGS-B
MINLP
MOSEK
OOQP
PathNLP
SBB
TRON

General-purpose solvers

KNITRO
LANCELOT
LOQO
Example 2

Solver Choice (cont’d)

Output from MOSEK solver run

```ampl
ampl: model torsion.mod;
ampl: data torsion.dat;
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=mosek';ampl: solve;
```

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280313
Kestrel/NEOS Job password : ExPXrKcP

MOSEK finished.
(interior-point iterations - 11, simplex iterations - 0)

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal objective : -0.4180876313
Dual objective : -0.4180876333

Example 2

Solver Choice (cont’d)

Output from OOQP solver run

```ampl
ampl: model torsion.mod;
ampl: data torsion.dat;
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=ooqp';ampl: solve;
```

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280305
Kestrel/NEOS Job password : VwLyfaVl

Check the following URL for progress report :
http://www-neos.mcs.anl.gov/neos/neos-cgi/
check-status.cgi?job=280305&pass=VwLyfaVl

Executing algorithm...
Finished call
OOQP completed successfully.
ampl: display Stress;
Stress = -0.333296
Example 2

Solver Choice (cont’d)

Output from TRON solver run

```
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=tron';
ampl: solve;
```

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 280036
Kestrel/NEOS Job password : xXbXViVa
Executing algorithm...

TRON: ------ SOLUTION ------- Finished call

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of function evaluations</td>
<td>9</td>
</tr>
<tr>
<td>Number of gradient evaluations</td>
<td>9</td>
</tr>
<tr>
<td>Number of Hessian evaluations</td>
<td>9</td>
</tr>
<tr>
<td>Number of conjugate gradient iterations</td>
<td>18</td>
</tr>
<tr>
<td>Projected gradient at final iterate</td>
<td>6.21e-07</td>
</tr>
<tr>
<td>Function value at final iterate</td>
<td>-0.41808763</td>
</tr>
<tr>
<td>Total execution time</td>
<td>0.87 sec</td>
</tr>
<tr>
<td>Percentage in function evaluations</td>
<td>24%</td>
</tr>
<tr>
<td>Percentage in gradient evaluations</td>
<td>15%</td>
</tr>
<tr>
<td>Percentage in Hessian evaluations</td>
<td>33%</td>
</tr>
</tbody>
</table>

Context . . .

Stand-alone

- A solver-like tool for AMPL
- An independent analysis tool like (or within) Mprobe
 * Invokes AMPL to get .nl file

Centralized optimization server

- A solver-like service at the NEOS Server
 * Compare the current “benchmark solver”

Decentralized optimization services

- An independent service
 * Listed on a central “registry”
 * Contacted directly by modeling systems