
CoinEasy

Kipp Martin
Booth School of Business

University of Chicago

November 14, 2011

1



IMPORTANT DISCLAIMER!

What follows are opinions of this author – not official opinions of
the COIN-OR Strategic Leadership Board or the Technical
Leadership Council.

I am speaking strictly as an individual COIN-OR user.

2



Background

I The idea for a “CoinEasy” came from a panel discussion at
the 2009 San Diego INFORMS meeting.

I Purpose: get people up and running quickly.

I There is a prototype at:

https://projects.coin-or.org/CoinEasy

3

https://projects.coin-or.org/CoinEasy


Background

Idea: characterize COIN-OR users by need and customize help for
each group. A possible characterization:

1. A user who does not want to compile code – only run solvers.
No compilers allowed.

2. A user who wishes to write applications that link to COIN-OR
libraries, but do not want to compile project source code.

3. A user who wishes to compile COIN-OR project source code.
My guess is that this is a small percentage of potential users.

4



Background

Opinion:

1. COIN-OR should make it easier for individuals in the first and
second group.

2. COIN-OR should make it easier for users of Microsoft
Windows.

3. Most project managers develop in some flavor of Unix so there
is a natural bias.

4. There is a potentially large user base not familiar with
concepts such as svn, configure, make, etc.

5



Group One

Option 1 Use a Commercial/Proprietary Modeling Language:

I GAMS: ships with COIN-OR solvers Bonmin, Clp, Cbc,
Couenne, Ipopt, and OS (for remote calls).

I MPL: ships with COIN-OR solvers Clp and Cbc

I AMPL: Use OSAmplClient – must download this separately
for the CoinBinary Web site.

If you are using GAMS, MPL, or AMPL, life doesn’t change if you
want to use COIN-OR. Just tell the modeling language to use a
COIN-OR solver.

6



Group One

Option 1 (Modeling Language Continued): Use a modeling
language.
AMPL: Use OSAmplClient. To AMPL this is like any other solver
except that you can place calls to remote solver servers or just
solve the problem locally.

model hs71.mod;
option solver OSAmplClient;
option OSAmplClient_options "solver SYMPHONY ";
solve;

OSAmplClient gives the user access to Bonmin, Cbc, Clp,
Couenne, DyLP, Ipopt, SYMPHONY, and Vol.

7



Group One

OSAmplClient is part of the CoinAll or OS binary download.

With OSAmplClient there is no installation process. The user can
put the executable in any desired location.

Should OSAmplCient be a separate download from CoinAll binary.

8



Group One

Option 1 (Modeling Language Continued): Use a COIN-OR
modeling language. There are three choices.

I Coopr (Pyomo) – Python based

I PuLP – Python based

I Cmpl – an alternative to GAMS and AMPL and has it won
algebraic scripting language.

These require a checkout and installation.

Actually, there is a fourth option, FlopCpp, but these requires
writing/compiling C++.

9



Group One

Option 2 (Excel Users): A user familiar with Frontline Solver can
formulate a model as always using Solver.

Solve the model with COIN-OR Cbc using OpenSolver.

See www.opensolver.org.

There are no limits on model size using this option.

New Develpment: OpenSolver Studio build your models in
Excel with PuLP and never leave Excel.

10

www.opensolver.org


Group One

Option 3 (OSSolverService execuatble): A command line
executable OSSolverService for reading problem instances (in
OSiL format, AMPL nl format, or MPS format) and calling a
solver either locally or on a remote server.

The OSSolverService has an interactive shell.

You can just “double-click” on the executable and it will guide you
through the process.

Like OSAmplClient – nothing to install, download the binary and
locate in any folder.

11



Group One

Option 3 (OSSolverService executable):

12



Group One

If COIN-OR provided solvers running on a server the Group One
users could use OSAmplClient or OSSolverService to access
COIN-OR servers.

Nothing to build – just download the executable for the
appropriate platform.

Should we try to do this?

13



Group Two – Use COIN-OR Libraries

Once again, a definition of group two:

I Want to build applications that link to COIN-OR project
libraries.

I Do not need to build the projects from source.

Example: build a customized app to read data, build an instance,
communicate instance to solver through and API, solve, present
solution results to user.

14



Group Two – Use COIN-OR Libraries

Once again, a definition of group two:

I Want to build applications that link to COIN-OR project
libraries.

I Do not need to build the projects from source.

Example: build a customized app to read data, build an instance,
communicate instance to solver through and API, solve, present
solution results to user.

15



Group Two – Use COIN-OR Libraries

The CoinAll binary provides the following:

16



Group Two – Use COIN-OR Libraries

Time Out: Make sure we understand:

I CoinEasy: – a Wiki designed to provide information about
using COIN-OR.

I CoinAll: – A macro project that contain many COIN-OR
solvers including virtually all of the optimization solvers.

I CoinBinary: – A project (repository) devoted to distributing
binaries of various COIN-OR projects

17



Group Two – Use COIN-OR Libraries

Examples folder – this is what is in ApplicationTempates

https://projects.coin-or.org/CoinBazaar/wiki/
Projects/ApplicationTemplates

Objective: Provide code to illustrate the projects in CoinAll.

Objective Part II: Help Visual Studio users – configured project
files are available.

Documentation also provided!

https://projects.coin-or.org/svn/OS/trunk/OS/doc/
UsingCoinAll.pdf

18

https://projects.coin-or.org/CoinBazaar/wiki/Projects/ApplicationTemplates
https://projects.coin-or.org/CoinBazaar/wiki/Projects/ApplicationTemplates
https://projects.coin-or.org/svn/OS/trunk/OS/doc/UsingCoinAll.pdf
https://projects.coin-or.org/svn/OS/trunk/OS/doc/UsingCoinAll.pdf


Group Two – Use COIN-OR Libraries

The examples folder illustrates:

I How to take derivates using algorithmic differentiation
(CppAD). Useful when using nonlinear solvers.

I How to access numerous COIN-ALL solvers directly from
code.

I How to build a model instance from code.

I How to access results (e.g. primal and dual solution
information) from a solver.

I How to pass options to a solver using code.

I How to access and use the decomposition solver (Dip)

I How to access and use the branch-cut-price solver (Bcp)

I How to add cut generators from Cgl to Cbc.

19



Group Three – Use Project Source Code

I Try out new ideas – don’t reinvent the wheel.

I Access to the source code allows a user to make contributions
to the project.

I If the application does not behave as expected access to the
source code allows a user to find bugs and suggest fixes.

I Access to the source code is educational. Implementation
details of algorithms are typically not part of journal articles.

I The ability to duplicate results is crucial and helps promote
high-quality research.

20



Group Three – Use Project Source Code

Option 1: Get the latest release at:
http://www.coin-or.org/download/source/.

Then do the Unix two-step:

I configure

I make

Option 2: Do an svn checkout. Live life in the fast lane – get a
trunk version of a project.

21

http://www.coin-or.org/download/source/


Group Three – Use Project Source Code

Option 1: Get the latest release at
http://www.coin-or.org/download/source/. Do the Unix
two-step: configure and make.

Option 2: Do an svn checkout.

Need Binary Source Archive Subversion

Solve a problem X
Link to a library X
Modify/use code X X
Project management X

22

http://www.coin-or.org/download/source/


To Do:

Help graciously accepted:

I Adding more examples

I Document on how to use the examples

I The Wiki page

23



To Do:

Installers!!!

What else? Ideas?

Yet again, a COIN-OR server running solvers?

24


