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Motivation



Motivation

We consider a specific application and then describe the more
generic problem.

1. Study current Bearcat Transportation System

I North Route – day

I East Route – day

I Southwest Route – day

2. Make recommendations:

I determine an assignment of stops/pickups to a route

I determine the order of the stops/pickups – i.e. the bus route



Motivation

Criteria or metrics for route evaluation:

1. Students left waiting

2. Length of route

I shorter routes imply shorter ride times for students

I shorter routes also imply more frequent pickups and therefore
less wait time at stops

I shorter routes can reduce students left waiting due to demand
smoothing

3. Even better – demand-weighted length of route – longer
routes ideally have fewer students



Motivation

Route Evaluation – Example 1

I two routes with hubs at nodes 1 and 2

I nodes 3, 4, 5, and 6 have student demands of 7, 1, 1, and 1,
respectively
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Motivation
Route Evaluation – Example 2

I two routes with hubs at nodes 1 and 2

I nodes 3, 4, 5, and 6 have student demands of 7, 1, 1, and 1,
respectively
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Motivation

Solution 1

Route 1 Route 2 Total
Miles 8 2 10
Number of Students 9 1 10

Distance × Demand 72 2 74

Solution 2

Route 1 Route 2 Total
Miles 2 9 11
Number of Students 7 3 10

Distance × Demand 14 27 41

In the real Bearcat case we can shorten both total distance and
demand-weighted distance.



Generic Model

For any path i1, i2, . . . , im, let

Λ(i1, i2, . . . , im) = c(i1,i2) + · · ·+ c(im−1,im)

denote the length of the path and

Ω(i1, i2, . . . , im) = di1 + · · ·+ dim

the total demand associated with the nodes on the path.

The path is a simple path if it is a path and no nodes are repeated.
A simple cycle is a simple path except that the first and last node
are identical.



Generic Model

The Demand Weighted Vehicle Routing Problem (DWVRP) is to
find:

1. A simple cycle (route) k , ik1 , ik2 , . . . , k, for each hub
k = 1, . . . ,K such that every demand node {K + 1, . . . , n} is
assigned to exactly one cycle, and

2.

K∑
k=1

Λ(k , ik1 , ik2 , . . . , k)Ω(k , ik1 , ik2 , . . . , k) (1)

is minimized. We assume that at least one node from the set
{K + 1, . . . , n} is assigned to each route, i.e. there are no
empty routes.



Generic Model
Variables:

xkij is 1 if arc (i , j) is assigned to the hub k tour, 0 if not
zki is 1 if node i is assigned to the hub k tour, 0 if not

Assign each node to a route:∑
k∈H

zki = 1, ∀i ∈ N

zkk = 1, ∀k ∈ H

Standard assignment constraints:∑
j 6=i

xkij = zki , ∀i ∈ N, ∀k ∈ H

∑
j 6=i

xkji = zki , ∀i ∈ N, ∀k ∈ H

Cannot exceed vehicle capacity:∑
i

dikzki ≤ Qk , ∀k ∈ H



Generic Model

Tour breaking constraints:

XT = {xkij |
∑
i∈M
j∈M

xkij ≤ |M| − 1, ∀M ⊂ H, k ∈ H} (2)

Minimize demanded weighted distance:

min
∑
k∈H

(
∑
i∈H

dizki )(
∑
(i ,j)

cijxkij)

 (3)

Constraints are linear, but objective function has terms dicijzkixij .

We have a nonconvex quadratic integer programming
problem.



Solution Approaches

1. Solve with a nonlinear integer programming code such as
COIN-OR Bonmin and not worry about local optima.

2. Quadratic convex reformulation techniques. Hammer and
Rubin (1970) – adding the term M(x2

i − xi ) for sufficiently
large M makes the model convex. Billionnet, Elloumi, and
Plateau (2009) have improved on the continuous relaxation
but require solving a semidefinite optimization problem. Use
COIN-OR Csdp.

3. Global optimization techniques. Could use the COIN-OR
Couenne. The problem is that the relaxation used gives very
bad lower bounds.

4. Give a linear programming reformulation in auxiliary
variables.



Solution Approaches – Use Auxiliary Variables

Key Idea: Apply dynamic programming algorithm (Christofides,
Mingozzi, and Toth (1981) ) to an easier, approximate problem.

In this relaxation we still minimize the demand-weighted distance.

K∑
k=1

Λ(k , ik1 , ik2 , . . . , k)Ω(k, ik1 , ik2 , . . . , k) (4)

However, we relax requirements that 1) every node be assigned to
a route, and that 2) the routes are simple cycles. Instead we
minimize (4) subject to the constraint

K∑
k=1

Ω(k, ik1 , ik2 , . . . , k) =
n∑

k=K+1

dk (5)

which says that the sum of the demands on each route must equal
the total demand in the system.



Solution Approaches – Use Auxiliary Variables

Rather than actually solve the dynamic program, do the following:

I Write a linear program that is “equivalent” to the dynamic
programming Bellman equations.

I Vertices of this linear program correspond to solutions of the
relaxed dynamic programming problem.

I “Link” the dynamic programming variables with the xkij

variables through a linear transformation (x = Tz)

I Add the assignment constraints

We end up with a linear integer program that solves the original
problem. Not only that, but the linear relaxation is very tight!



Solution Approaches

We started with:

min f (x)

Model 1 Ax ≥ b

x ≥ 0

and by using dynamic programming, ended up with a
reformulaiton:

min c>z

Model 2 Bx + Dz ≥ d

x , z ≥ 0

How do we compare the quality of the formulations?



Solution Approaches

1. First try to compare over a common variable space. Define

Px = {x |Ax ≥ b, x ≥ 0}.

Px is the feasible region of Model 1. Next define

Qx = {x | ∃ z 3 z ≥ 0, Bx + Dz ≥ d , x ≥ 0}

Qx is the projection of the feasible region of Model 2 into the
variable space of Model 1.

Px ? Qx

2. How do we compare objective functions values? If there exists
(x , z) such that x ∈ Px ∩ Qx what is

f (x) ? c>z



Solving the Auxiliary Variable Model
Here is the model we want to solve using COIN-OR software:

min c>z

Model 2 Bx + Dz ≥ d

x , z ≥ 0

Direct Approach: Use COIN-OR Cbc or SYMPHONY. Problem
– millions of variables, constraints, and nonzeros. Could not even
solve the LP relaxation.
Column Generation Approach: Try COIN-OR Dip – there is a
problem, Dip wants to apply column generation to

zIP = min{c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Zn}

and solve the related problem zD , defined by

zD = min{c>x |A′x ≥ b′, x ∈ P, x ∈ Rn}.

P = conv({x ∈ Zn |A′x ≥ b′})



Solving the Auxiliary Variable Model

ckp = demand-weighted cost of cycle p (distance times
demand) on route k

nkpi = number of times cycle p on route k is incident to node
i

Pk = number of cylces from hub k to node k

min
K∑

k=1

Pk∑
p=1

ckpθkp

FM(θ)
K∑

k=1

Pk∑
p=1

nkpiθkp = 1, i = K + 1, . . . , n

Pk∑
p=1

θkp = 1, k = 1, . . . ,K

θkp ∈ {0, 1}, k = 1, . . . ,K , p = 1, . . . ,Pk



Solving the Auxiliary Variable Model

Summary of COIN-OR software usage:

I Use Cbc to solve to find an initial feasible solution by solving
a generalized assignment problem

I Use Clp to solve the restricted master each time a new
column enters (problem with using a warm start with Osi)

I Use Cbc to solve the restricted master for an integer solution
to give an upper bound

I Use Clp (use ClpNetworkMatrix) for the separation problem
that finds violated subtour constraints

I Use Clp for the separation problem that finds a cut in a new
class of cuts identified for this problem

Branch and bound – home grown, hope to incorporate within
COIN-OR Alps. The relaxations are so tight very little
enumeration required.



Computational Results

Table: Solution Results For 2009 Student Demand Data

LP IP Integrality Number Number Total CPU
Problem Value Value Gap (%) Nodes Columns Seconds

y2009p40-25-25-25 96.62 96.62 0.00 0 628 17.28
y2009p50-25-25-25 116.37 116.51 0.12 2 980 30.53
y2009p60-25-25-25 143.93 144.28 0.24 2 1042 37.20
y2009p70-25-25-25 185.75 185.75 0.00 0 620 7.38
y2009pmean-25-25-25 195.73 195.73 0.00 0 469 3.42
y2009p95-140-140-140 373.75 373.75 0.00 2 1109 1251.28



Computational Results

Table: Solution Results for 2010 Student Demand Data

LP IP Integrality Number Number Total CPU
Problem Value Value Gap (%) Nodes Columns Seconds

y2010p75-40-40-40 206.93 206.93 0.00 0 653 59.72
y2010p80-40-40-40 238.26 238.39 0.05 2 818 54.92
y2010p85-40-40-40 270.68 270.68 0.00 0 536 17.97
y2010p90-40-40-40 328.73 333.43 1.43 18 1871 25.51
y2010p90-40-40-60 318.71 333.43 4.62 144 8340 499.39
y2010p90-40-60-40 318.28 320.22 0.61 6 1443 76.71
y2010p90-60-40-40 313.54 313.54 0.00 0 444 19.64
y2010p92-40-40-60 353.22 370.32 4.84 124 6772 248.86
y2010p92-40-60-40 348.07 364.49 4.72 150 9938 396.86
y2010p92-60-40-40 338.03 338.03 0.00 0 453 9.07
y2010p90-60-20-20-40 290.08 290.87 0.27 4 759 44.98
y2010p95-150-150-150 385.51 388.57 0.79 4 1069 1378.60



Implementation

Input parameters:

I distances – pretty easy, use Google Maps

I student demand – what is the demand at each node? Let me
explain:

1. y2009p70-25-25-25 – year 2009 data, 70th percentile nonzero
demand, bus capacity of 25 on each route

2. y2010p95-150-150-150 – year 2010 data, 95th percentile
nonzero demand, bus capacity of 150 of each route

Note: there are no 150 seat buses (80 seats is the max), the
idea is solve the unconstrained problem.



Implementation

Model Recommendation Evaluation using distance metric.

Baseline Recommendation

East 2.7 miles 2.5 miles
North 4.3 miles 3.3 miles
Southwest 2.3 miles 2.3 miles

Total 9.3 miles 8.1 miles

Savings: 12.9%



Implementation

Model Recommendation Evaluation using demand-weighted
distance metric.

Problem: What is demand? The number of students at stop
varies throughout the day. Here are demand-weighted distances
based on three percentiles (November, 2010 data).

Demand Baseline Recommendation

75th percentile 234 student miles 207 student miles
80th percentile 269 student miles 238 student miles
85th percentile 306 student miles 271 student miles



Implementation
Model Recommendation Evaluation using demand-weighted
distance metric. Here is a comparison of demand-weighted
distances based on 599 November, 2010 scenarios.



Implementation

Model Recommendation Evaluation using demand-weighted
distance metric.

I 419/599 scenarios result in a demand-weighted decrease of
10% or more

I 275/599 scenarios result in a demand-weighted decrease of
12% or more

I 75/599 scenarios result in a demand-weighted decrease of
15% or more

Note: the modification never does worse!



Implementation

Model Recommendation Evaluation based on students left
waiting. Here is a comparison of demand-weighted distances based
on November, 2010 scenarios.

Case 1: We run all 599 demand scenarios with a bus capacity of
60 on North, 40 on East, and 40 on Southwest. Both solutions
have identical results!

In two of the 599 scenarios students are left waiting. In scenario
308, two students left behind on North route, in scenario 341, five
students left behind on Southwest route.



Implementation

Model Recommendation Evaluation based on students left
waiting. Here is a comparison of demand-weighted distances based
on November, 2010 scenarios.

Case 2: We run all 599 demand scenarios with a bus capacity of
60 on North, 20 on East, and 40 on Southwest. Both solutions
have identical results except for one scenario.

Scenario Baseline Recommendation
8 3 3

10 1 1
14 14 14
15 14 15
44 3 3

243 1 1
346 1 1



Implementation

Some real problems:

I one-way streets (actually not a problem with Google maps)

I narrow streets

I left turns with no light or stop sign

I turnaround problem



Duplication of Results

All of the code and data sets (2009, 2010) are available at

https://projects.coin-or.org/svn/OS/trunk/OS/
applications/columnGen

See also:

https://projects.coin-or.org/OS

Optimization Services project has solver interfaces for COIN-OR
solvers Bonmin, Clp, Cbc, Couenne, DyLP, Ipopt, and
SYMPHONY.

The paper is available at:

http://faculty.chicagobooth.edu/kipp.martin/root/
bearcat.pdf

https://projects.coin-or.org/svn/OS/trunk/OS/applications/columnGen
https://projects.coin-or.org/svn/OS/trunk/OS/applications/columnGen
https://projects.coin-or.org/OS
http://faculty.chicagobooth.edu/kipp.martin/root/bearcat.pdf
http://faculty.chicagobooth.edu/kipp.martin/root/bearcat.pdf


Formulation Comparison
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Figure: The nine city problem fractional solution illustrating Qx ⊂ Px .



Formulation Comparison

I The fractional solution must be the convex combination of
extreme point solutions that correspond to route two cycles of
length one and a route one cycle of length six so that the sum
of demands is exactly seven.

I There is no other possibility because on route two there can
be no cycles less than length one or greater than length one
(in an extreme point solution, the hub node is never be visited
more than once)

I If the route two solution has a cycle of length one then the
route one cycle must be length six in every extreme point
solution. However, in the figure there are no paths of length
six that begin with arc (1, 3) and return to the origin.
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