
NLPAPI: An API to Nonlinear Programming
Problems. User’s Guide

Michael E. Henderson
IBM Research Division

T. J. Watson Research Center
Yorktown Heights, NY 10598
mhender@watson.ibm.com

June 30, 2003

1 Introduction

This API provides a way to create and access Nonlinear Programming Prob-
lems of the form

minimize O(x) Objective Function
subject to :

li ≤ xi ≤ ui Simple Bounds
ci(x) = 0 Equality Constraints
Li ≤ ci(x) ≤ Ui Inequality Constraints

The API began as an interface to the LANCELOT optimization code.
LANCELOT is a Fortran program that solves nonlinear optimization prob-
lems using a trust region method. It has its own input description language
called SIF, which is run through a program called the “SIF Decoder”, which
produces a set of Fortran subroutines and data files. These are compiled and
linked against a supplied main program, which reads the data files and calls
the subroutines in order to solve the problem, then writes the solution to a
file. Parameters controlling the execution are read from another file.

We wanted to use LANCELOT on a problem whose constraints involved
functions that were computed by an external code (a circuit simulator), and

1

so could not be expressed in the SIF language. There is a hook to allow
”external” functions in SIF, and this worked, but was awkward. I designed
this API to replace the SIF decoder. It allows the user to build up a problem
with a sequence of subroutine calls, to which the user may pass pointers to
those external routines. The user may also set LANCELOT’s parameters,
and then invoke LANCELOT to solve the problem.

LANCELOT is documented in the book “LANCELOT: a Fortran Package
for Large-Scale Nonlinear Optimization (Release A)”, by A. R. Conn, N. I.
M. Gould and Ph. L. Toint, Springer Series in Computational Mathematics,
Volume 17, Springer Verlag (Heidelberg, New York), ISBN 3-540-55470-X,
1992. This document only covers the API.

The project has grown somewhat, into an API which can be used to define
a nonlinear program that might be presented to any solver. In fact, we have
so far only used LANCELOT and IPOPT, but a CUTE interface is in the
works, and that will allow a number of solvers to be used.

The CUTE environment is documented in the paper “CUTE: Constrained
and Unconstrained Testing Environment”, by I. Bongartz, A. R. Conn, Nick
Gould, and Ph. L. Toint, ACM Transactions on Mathematical Software, Vol.
21, No. 1, March 1995, Pages 123–160. A web page on a follow-on called
”CUTEr” is available at http://hsl.rl.ac.uk/cuter-www/.

2 Overview

The API deals with minimization (or maximization) problems of the form

minimize O(x)subject to :
li ≤ xi ≤ ui ci(x) = 0 Li ≤ ci(x) ≤ Ui

To define the problem the user creates an NLProblem that holds all of the
information defining the problem. The problem is initially empty, and the
user provides a function for the objective, and adds equality and inequality
constraints. Each of these, the objective and the constraints involve scalar
valued functions of the problem variables x.

2.1 Functions

The NLPAPI provides three methods of defining these functions. They may
be defined by an expression in a string (easy for small problems, but slow and

2

cumbersome for large problems), by subroutines which evaluate the function
(good for medium sized problems), and finally in LANCELOT’s group par-
tially separable form (designed for handling large problems, but needlessly
complicated for small problems).

2.2 Defining functions by means of an expression in a
string

The user can define a function by means of a string containing an expression.
For example

"(x1-x2)**2+(x1+x2-10)**2/9+(x3-5)**2"

Since unknowns (in this case x1, x2 and x3) may appear in any order, a
second string is used which declares what the argument of the function is.
That is,

F("[x1,x2,x3]") = "(x1-x2)**2+(x1+x2-10)**2/9+(x3-5)**2"

This list of variable names is a comma separated list of identifiers, delimited
by square brackets. Finally, since typically not all problem variables will
appear in the expression, there must be a mapping from the problem variables
to the identifiers. This is done with an array of integers, v which lists the nv

variables whose values are substituted for the variables "[x1,x2,x3]". For
example

nv=3;v[0]=0;v[1]=10;v[2]=9;

would indicate that to evaluate this function the idenitifier x1 is assigned to
the value of the first problem variable (note that we start counting at zero),
x2 the value of the x10, and x2 to x9. The problem variables may appear in
any order, and may even appear more than once.

To set the objective to this function would require code looking somthing
like:

int v[3];

3

P=NLCreateProblem(...);

v[0]=0;v[1]=10;v[2]=9;

NLPSetObjectiveByString(P,"Obj",3,v,

"[x1,x2,x3]","(x1-x2)**2+(x1+x2-10)**2/9+(x3-5)**2");

(The NLPSetObjectiveByString is described more completely below.)

2.3 Defining functions by means of subroutines

Functions may also be defined by providing subroutines which evaluate the
functions and optionaly it’s fist and second derivatives. (Some solvers provide
differencing or updates for estimating derivatives.) The subroutines (e.g. F,
dF and ddF) are called back when the objective is evaluated. The arguments
the the subroutines are:

double F(int nv, double *x, void *data)

int nv The number of entries in x, as provided by

the user in the SetObjective call.

double *x An array with the values of the coordinates

of x.

void *data The data pointer provided by the user in the

SetObjective call.

double dF(int i, int nv, double *x, void *data);

double ddF(int i, int j, int nv, double *x, void *data);

and all return a scalar result. dF evaluates the partial derivative ∂F/∂xi,
and ddF evaluates the second partial derivatives ∂2F/∂xi∂xj.

The data variable allows the user to associate a data block with the
objective, that is passed to the functions when they are evaluated. The
freedata routine is called when the problem is free’d, so that the data block
can be released. The array v lists the nv problem variables on which the
objective (or constraint, since the same form is used for those) depends.This
allows a simple form of sparsity).

4

The correspondance between the arguments of F and the problem variable
is handled in the same way as for the expression. So to set the objective this
way would require code:

v[0]=0;v[1]=10;v[2]=9;

rc=NLPSetObjective(P,name,3,v,F,dF,ddF,data,freedata);

2.4 Defining functions in group partially separable form

And the last option for defining a function is in group partially separable
form. This represents the function as the sum of a number of groups –

f(x) =
ng∑
i=1

1

si

gi(
nei∑
j=1

wijfij(Reij)+ < ai,x > −bi)

The gi : IR→ IR are called group functions, si the group scale, and the argu-
ment of the group function is called the group element. The group element
consists of three parts. The fij : IReij → IR are called nonlinear elements,
< ai,x > is the linear element, and bi is called the constant element. Note
that the constant element appears with a minus sign.

The objective function is created when the problem is created. Constraint
functions are created by routines like NLPAddNonlinearEqualityConstraint.
When the function is first created it consists of a single trivial group (i.e. the
group function is the identity, the group scale is 1, there are no nonlinear
elements, and the linear and constant elements are zero).

The group functions gi and element functions fij may be defined by
string or subroutine in the same way as an entire function. (The secret
is that those routines define a trivial group with a single nonlinear ele-
ment!) This is done with the NLPCreateGroupFunction, NLPCreateGroup-
FunctionByString, and NLPCreateElementFunction, and NLPCreateElement-

FunctionByString routines. A nonlinear element associates a range trans-
formation R and selection of element variables e from the problem variables
with an element function.

The basic procedure for defining a function this way is add the required
number of groups, then to set the group scales and group functions, the
linear and constant elements, and finally to add a set of nonloinear elements
(though the order isn’t important). The groups are referred to by the order
in which they were added to the function.

5

The code for the example is a little more complicated using this method

P=NLCreateProblem(...);

g=NLCreateGroupFunction(P,"L2",gSq,dgSq,ddgSq,NULL,NULL);

f=NLCreateElementFunction(P,"fSq",1,NULL,fSq,dfSq,ddfSq,NULL,NULL);

The objective function (x1 − x2)
2 + (x1 + x2 − 10)2 + (x3 − 5)2, consists

of three groups, all with the same group function, but different linear parts.
(x1 − x2)

2:

group=NLPAddGroupToObjective(P,"OBJ1","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,1.);

rc=NLVSetC(a,10,-1.);

rc=NLVSetC(a,9,0.);

rc=NLPSetObjectiveGroupA(P,group,a);

NLFreeVector(a);

(x1 + x2 − 10)2:

group=NLPAddGroupToObjective(P,"OBJ2","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,1.);

rc=NLVSetC(a,10,1.);

rc=NLVSetC(a,9,0.);

rc=NLPSetObjectiveGroupScale(P,group,9.);

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,10.);

NLFreeVector(a);

(x3 − 5)2:

group=NLPAddGroupToObjective(P,"OBJ3","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,0.);

rc=NLVSetC(a,10,0.);

6

rc=NLVSetC(a,9,1.);

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,5.);

NLFreeVector(a);

2.5 Solving a Problem

To invoke a solver the user creates a solver, e.g. an NLLancelot data struc-
ture. This has a set of parameters and a routines for invoking the solver.
Default values are assigned to the parameters controlling the solver, and the
user can set parameters as needed.

3 The API

The API consists of two main pieces: routines for defining the problem, and
routines for setting up a solver and solving a problem.

3.1 Defining The Nonlinear Optimization Problem

To begin the user creates a problem –

#include <NLPAPI.h>

NLProblem P;

P=NLCreateProblem("MyProblem",1004);

The first argument is a name that is assigned to the problem. The second is
the number of variables in the problem.

Each variable has a name, and may have simple bounds. The default for
variable names is "X%d". So in the example, the default is "X1", ... "X1004".
The names can be changed, and simple bounds imposed with the routines:

int i;

double u,l;

rc=NLPSetVariableName(P,550,"V");

rc=NLPSetSimpleBounds(P,i,l,u);

7

rc=NLPSetLowerSimpleBound(P,i,l);

rc=NLPSetUpperSimpleBound(P,i,u);

3.1.1 The Objective

Each problem has an objective function. This can be set with the NLPSet-

Objective or NLPSetObjectiveByString routine, or can be built as the sum
of a number of groups.

NLProblem P;

char name[]="Obj";

int v[];

double (*F)(int,double*,void*);

double (*dF)(int,int,double*,void*);

double (*ddF)(int,int,int,double*,void*);

void *data;

void (*freedata)(void*);

v[0]=0;v[1]=45;v[2]=9;

rc=NLPSetObjective(P,name,3,v,F,dF,ddF,data,freedata);

The subroutines F, dF and ddF are called back when the objective is
evaluated. The arguments to F are:

double F(int nv, double *x, void *data)

int nv The number of entries in x, as provided by

the user in the SetObjective call.

double *x An array with the values of the coordinates

of x.

void *data The data pointer provided by the user in the

SetObjective call.

The data variable allows the user to associate a data block with the objective,
that is passed to the functions when they are evaluated. The freedata

routine is called when the problem is free’d, so that the data block can be
released. The array v lists the nv problem variables on which the objective

8

(or constraint, since the same form is used for those) depends.This allows a
simple form of sparsity).

dF evaluates the partial derivatives of f, and has an additional integer
argument (the first argument), which indicates which partial derivative to
return. ddF evaluates the second partial derivatives, and has two additional
integer arguments (the first two).

Alternatively, the user can define the objective by means of a string con-
taining an expression:

NLPSetObjectiveByString(P,name,nv,v,

"[x1,x2,x3]",

"(x1-x2)**2+(x1+x2-10)**2/9+(x3-5)**2");

In this case the array v lists the nv variables whose values are substituted for
the variables "[x1,x2,x3]". So in the last string x1 is the value of the first
problem variable. x1 is the value of the 46th problem variable, and so on.

Finally, the objective may be defined via LANCELOT’s Group Partial
Separable form. When the problem is first created the objective has a sin-
gle group with trivial group function, no nonlinearelements, and linear and
constant elements both zero. Additional groups ban be added using the
NLPAddGroupToObjective routine. Each group has a group function gi, a
group scale si, a linear element, ai.x, a constant element bi, and a nonlinear
element Ni(x). (See the sections below on “Groups”).

O(x) =
∑ 1

si

gi(Ni(x) + ai.x− bi)

The various pieces are added or set with the routines

NLPSetObjectiveGroupFunction

NLPSetObjectiveGroupScale

NLPSetObjectiveGroupA

NLPSetObjectiveGroupB

NLPAddNonlinearElementToObjectiveGroup

The nonlinear element is itself composed of a sum of element functions:

N(x) =
∑

wifi(
∑

Rijej)

9

for a more complete description see the section below on nonlinear elements.
The main advantage of this form is that the derivatives of the objective

(and other functions) can be expressed in terms of the derivatives of simpler
functions. This is a convenience, but if the derivatives are approximated by
differencing it can also substantially reduce the number of operations needed
to approximate the derivatives of the objective.

The objective can be evaluated using the routines:

double o;

NLVector v,g;

NLMatrix H;

o=NLPEvaluateObjective(P,v);

g=NLCreate...Vector(...);

NLPEvaluateGradientOfObjective(P,v,g);

H=NLCreate...Matrix(...);

NLPEvaluateHessianOfObjective(P,v,H);

The idea here is that the user creates either a sparse or dense vector, and
passes it to the routine which computes the gradient, which fills in the ap-
propriate values, or a matrix in one of several formats, and passes it to the
routine which evaluates the Hessian. (See the sections below on vectors and
matrices.)

3.1.2 Inequality Constraints

A problem may have a number of inequality constraints. They are handled
almost exactly as the objective was handled, but have in addition upper and
lower bounds. Inequality constraints are added with the NLPAddInequality-
Constraint or NLPAddInequalityConstraintByString routine, or can be
built as the sum of a number of groups.

NLProblem P;

char name[]="InEq0";

double l,u;

int nv;

10

int v[3];

double (*F)(int,double*,void*);

double (*dF)(int,int,double*,void*);

double (*ddF)(int,int,int,double*,void*);

void *data;

void (*freedata)(void*);

nv=3;v[0]=3;v[1]=10;v[2]=9;

l=1.;u=10.;

rc=NLPAddInequalityConstraint(P,name,l,u,nv,v,F,dF,ddF,

data,freedata);

The data variable allows the user to associate a data block with the con-
straint, that is passed to the functions when they are evaluated. The freedata
routine is called when the problem is free’d, so that the data block can be
released. The array v lists the nv variables on which the function depends.

Alternatively, the user can define the constraint by means of a string
containing an expression:

rc=NLPAddInequalityConstraintByString(P,name,l,u,nv,v,

"[x1,x2,x3]","48-x1**2-x2**2-x3**2");

The array v lists the nv variables whose values are substituted for the vari-
ables "[x1,x2,x3]".

When the constraint is first created it has a single, empty group. Addi-
tional groups can be added using the NLPAddGroupToInequalityConstraint
routine. Each group has a group function, a scale, a linear element, a con-
stant element, and a set of nonlinear elements. (See the section below on
“Groups”).

NLPAddNonlinearInequalityConstraint(P,name);

NLPAddLinearInequalityConstraint(P,name,a,b);

NLPSetInequalityConstraintBounds

NLPSetInequalityConstraintUpperBound

NLPSetInequalityConstraintLowerBound

11

NLPSetInequalityConstraintGroupFunction

NLPSetInequalityConstraintGroupScale

NLPSetInequalityConstraintGroupA

NLPSetInequalityConstraintGroupB

NLPAddNonlinearElementToInequalityConstraintGroup

Inequality constraints can be evaluated using the routines:

int c;

double o;

NLVector v,g;

NLMatrix H;

o=NLPEvaluateInequalityConstraint(P,c,v);

g=NLCreate...Vector(...);

NLPEvaluateGradientOfInequalityConstraint(P,c,v,g);

H=NLCreate...Matrix(...);

NLPEvaluateHessianOfInequalityConstraint(P,c,v,H);

3.1.3 Equality Constraints

Equality constraints are handled exactly as the inequality constraints are
handled, but without the upper and lower bounds. Equality constraints are
added with the NLPAddEqualityConstraint or NLPAddEqualityConstraint-
ByString routine, or can be built as the sum of a number of groups.

NLProblem P;

char name[]="Eq0";

double l,u;

int nv;

int *v;

double (*F)(int,double*,void*);

double (*dF)(int,int,double*,void*);

double (*ddF)(int,int,int,double*,void*);

12

void *data;

void (*freedata)(void*);

nv=3;v[0]=3;v[1]=10;v[2]=9;

l=1.;u=10.;

rc=NLPAddEqualityConstraint(P,name,nv,v,F,dF,ddF,

data,freedata);

The data variable allows the user to associate a data block with the con-
straint, that is passed to the functions when they are evaluated. The freedata
routine is called when the problem is free’d, so that the data block can be
released. The array v lists the nv variables on which the function depends.

Alternatively, the user can define the constraint by means of a string
containing an expression:

rc=NLPAddEqualityConstraintByString(P,name,nv,v,

"[x1,x2,x3]",

"48-x1**2-x2**2-x3**2");

Again, the array v lists the nv variables whose values are substituted for the
variables "[x1,x2,x3]".

When the constraint is first created it has a single, empty group. Addi-
tional groups are added using the NLPAddGroupToEqualityConstraint rou-
tine. Each group has a group function, a scale, a linear element, a con-
stant element, and a set of nonlinear elements. (See the section below on
“Groups”).

NLPAddNonlinearEqualityConstraint(P,name);

NLPAddLinearEqualityConstraint(P,name,a,b);

NLPSetEqualityConstraintGroupFunction

NLPSetEqualityConstraintGroupScale

NLPSetEqualityConstraintGroupA

NLPSetEqualityConstraintGroupB

NLPAddNonlinearElementToEqualityConstraintGroup

13

Equality constraints can be evaluated using the routines:

int c;

double o;

NLVector v,g;

NLMatrix H;

o=NLPEvaluateEqualityConstraint(P,c,v);

g=NLCreate...Vector(...);

NLPEvaluateGradientOfEqualityConstraint(P,c,v,g);

H=NLCreate...Matrix(...);

NLPEvaluateHessianOfEqualityConstraint(P,c,v,H);

3.1.4 Transformations of the Problem

Several common operations on problems are provided. They are not nec-
essary, but may be of help. A sophisticated user may of course write their
own.

The first operation simply creates a copy of the problem:

NLProblem Q;

Q=NLCopyProblem(P);

The other transformations below change the problem, so a copy can be useful
to compare results.

Next there is a transformation which looks for simple bounds where the
upper and lower bounds are identical, and adds a linear equality constraint
which requires that the variable take that value, and removes the simple
bounds.

NLEliminateFixedVariables(P);

This is useful for interior point techniques, which replace simple bounds by
log barriers, and have problems dealing with identical bounds.

14

Inequalities are sometimes dealt with by introducing extra variables called
slacks. That is,

l ≤ f(x) ≤ u

is replaced by an equality constraint and simple bounds on the slack –

f(x)− s = 0
0 ≤ s ≤ u− l

These operations take a problem with inequality and equality constraints and
convert it to a problem with only equality constraints –

NLPConvertToEqualityAndBoundsOnly(P);

Finally, equalities are sometimes eliminated by introducing a quadratic
penalty and Lagrange multipliers. That is,

minimize O(x)
subjectto f(x) = 0

becomes

minimize O(x) +
1

2µ
f 2(x)− λf(x)

In the limit of small penalty parameter µ, and minimizing w.r.t. both x and
λ, the solution of this problem is the same as the solution of the original
problem.

This is a little complicated, because of the group structure. In fact, the
terms added to the objective are

minimize O(x) +
1

2µ

∑
i

(fi(x)− µλi)
2

Notice that this perserves the group structure (see the floowing sections) if
the constraint has only one group and the trivial group function. This is
required to use this transformation. If this is true the groups added to the
objective get a group function g(x) = x2, inherit the nonlinear and linear
elements of the constraint. The constant element of the group is increased
by µλi, and the group scale is squared and then multiplied by 2µ. This
means that when the penalty parameter µ or the Lagrange multipliers (λi’s)
are changed we must know which groups in the objective are penalties, and

15

or each, what the original constant element and group scale were. Therefore
the routine which creates the terms in the objective requires arrays that it
can store this information in –

int g[nc]; /* the ids of the added groups */

double mu;

double l[nc]; /* Lagrange multipliers */

double b[nc]; /* Constant elements */

double s[nc]; /* Group scales */

nc=NLPGetNumberOfEqualityConstraints(P);

NLCreateAugmentedLagrangian(P, mu,l, g,b,s);

NLSetLambaAndMuInAugmentedLagrangian(P, nc, mu,l, g,b,s);

3.1.5 Groups

In LANCELOT, functions are made of a sum of groups. Each group is a
scaled scalar function of a nonlinear function of the problem variables. A
group is of the form ∑ 1

si

gi(Ni(x) + ai.x− bi)

When a group is created the group function gi is the identity, and the group
scale is 1. In addition, there are no nonlinear elements (the Ni(x)), and the
linear element ai.x and the constant element bi are zero.

The user creates a group when he adds a constraint, or when he adds
a group to the objective or constraint. The groups are associated with a
constraint or the objective, so the user sets, e.g. group 3 in the objective,
or group 2 in equality constraint 10, and so on. The group scale, linear and
constant elements are set with routines

int g;

int c;

NLGroupFunction gf;

double s;

NLVector a;

double b;

16

NLPSetObjectiveGroupFunction(g,gf);

NLPSetEqualityConstraintGroupFunction(c,g,gf);

NLPSetInequalityConstraintGroupFunction(c,g,gf);

NLPSetObjectiveGroupScale(g,s);

NLPSetEqualityConstraintGroupScale(c,g,s);

NLPSetInequalityConstraintGroupScale(c,g,s);

NLPSetObjectiveGroupA(g,a);

NLPSetEqualityConstraintGroupA(c,g,a);

NLPSetInequalityConstraintGroupA(c,g,a);

NLPSetObjectiveGroupB(g,b);

NLPSetEqualityConstraintGroupB(c,g,b);

NLPSetInequalityConstraintGroupB(c,g,b);

The NLVector data structure is described below (dense or spares vectors).
The NLGroupFunction data structure represents a scalar function (with first
and second derivatives). It can be created by passing routines, or by way of
a string.

NLGroupFunction g;

NLProblem P;

double (*G)(double,void*);

double (*dG)(double,void*);

double (*ddG)(double,void*);

void *data;

void (*freedata)(void*);

gf=NLCreateGroupFunction(P,"type",G,dG,ddG,

data,freedata);

The type is a string associated with the group. G,dG, and ddG are functions
which evaluate the group function, and its first and second derivatives. If
dG and/or ddG is NULL centered differencing is used. The data is a block
of memory passed to the functions (so that the same G etc. can be used in

17

different GroupFunctions), and freedata is a routine that is called when the
GroupFunction is freed.

A second method of creating a group function is ”ByString”. For example:

g=NLCreateGroupFunctionByString(P,"type",

"s","sin(s)*cos(2*s)");

Each ”CreateGroupFunction” should be matched with a ”NLFreeGroup-
Function” later on in the users code. Reference counting is used, so a group
function that is passed to Set...GroupFunction can be safely ”Free’d” imme-
diately afterward.

3.1.6 Nonlinear Elements

Nonlinear elements are scalar valued functions of a subset of the problem
variables. A group has a list of nonlinear elements whose values are summed,
then added to the value of the linear and constant elements to give the
argument to the group function. Each nonlinear element is of the form:

N(x) =
∑

i

wifi(
∑
j

Rijej)

The element weight wi is a scalar (default is wi = 1). The element function
fi is a scalar valued function of a set of internal variables, which are a linear
combination of the element variables ej (a subset of the problem variables).
The range transformation Rij relates element variables to internal variables.

An element function is created with one of the routines:

NLElementFunction ef;

NLMatrix R;

double (*F)(int,double*,void*);

double (*dF)(int,int,double*,void*);

double (*ddF)(int,int,int,double*,void*);

void *data;

void (*freedata)(void*);

NLMatrix ddF0;

ef=NLCreateElementFunction(P,"etype",n,R,F,dF,ddF,

data,freedata);

18

ef=NLCreateElementFunctionWithInitialHessian(P,"etype",

n,R,F,dF,ddF,

data,freedata,

ddF0);

ef=NLCreateElementFunctionByString(P,"etype",n,R,

"[x,y,z,w]",

"x**2+y**2-z*w");

Here, n is the number of element variables, R the range transformation (or
NULL), F, dF, and ddF are routines which evalute F and its derivatives (ddF
may be NULL). If ddF is NULL, ddF0 gives an initial guess at the Hessian
which is then updated using rank one updates. Note that the updates are
done on the derivatives w.r.t. the internal variables, and that the derivatives
are derivatives w.r.t the internal variables.

NLMatrices, which are used to represent the range transformation and
the initial Hessian are described below.

A nonlinear element is created with the routine:

NLNonlinearElement N;

NLElementFunction ef;

int *vars;

N=NLCreateNonlinearElement(P,"type",ef,vars);

the vars array gives a list of the problem variables (by number, starting with
0!) which become the element variables.

A nonlinear element can be added to a group using the appropriate rou-
tine:

int c;

int g;

double w;

NLNonlinearElement N;

NLPAddNonlinearElementToObjectiveGroup(P,g,w,N):

19

NLPAddNonlinearElementToEqualityConstraintGroup(P,c,g,w,N):

NLPAddNonlinearElementToInequalityConstraintGroup(P,c,g,w,N):

where of course, w is the element weight.
Each ”NLCreateElementFunction...” and ”NLCreateNonlinearElement...”

should be paired with a ”NLFreeElementFunction” and ”NLFreeNonlinearEle-
ment” (see Memory Management below).

3.1.7 Vectors

The NLVector is a data structure for ... vectors! There are two “types” of
vector currently supported: sparse and dense. Sparse vectors are stored as
a list of non-zero coordinates, dense vectors as a contiguous array of coordi-
nates. They are created using the routines:

NLVector NLCreateVector(int n);

NLVector NLCreateVectorWithSparseData(int n,int nz,

int *el,double *vl);

NLVector NLCreateDenseVector(int n);

NLVector NLCreateVectorWithFullData(int n,double *vl);

NLVector NLCreateDenseWrappedVector(int n,double *data);

The first two create sparse vectors (n is the dimension of the vector, nz the
number of nonzeroes, and the coordinate el[i] is given by vl[i]). The third
routine creates a vector whose coordinates are all zero. The fourth routine
creates a dense vector, and the coordinates in vl are copied into a new array.
The dense wrapped vector stores a pointer to the data array. This allows the
user to change the vector by changing the data array.

Access to the vector is provided through routines like:

c=NLVGetC(v,i);

NLVSetC(v,i,c);

these have high overhead, so I’d recommend instead that you use a wrapped
dense vector, or do your manipulations before creating the vector. Internal
routines access the data directly when they can, so avoid the overhead.

20

3.1.8 Matrices

NLMatrices are similar to the NLVectors. There are dense matrices, and two
kinds of sparse matrices currently supported,

int n,m;

double *data;

NLMatrix NLCreateMatrix(n,m);

NLMatrix NLCreateMatrixWithData(n,m,data);

NLMatrix NLCreateDenseWrappedMatrix(n,m,data);

NLMatrix NLCreateSparseMatrix(n,m);

NLMatrix NLCreateWSMPSparseMatrix(n);

The first three constructors are for dense matrices (i.e. range transforma-
tions). The first creates and n × m matrix with zero elements. The send
copies the array data into the matrix, and the third uses a pointer to the
data array (so that changing data changes the elements of the array). The
dense matrices are stored by column, à la FORTRAN, so that element i, j is
located in entry data[i + n ∗ j].

The first sparse format (NLCreateSparseMatrix) stores a list of elements,
together with the associated row and column. The second sparse format
stores the matrix as sparse rows. Access to the vector is provided through
routines like:

NLMatrix A;

Aij=NLMGetElement(A,i,j);

NLMSetElement(A,i,j,Aij);

for sparse formats setting an element creates a nonzero element (if Aij is
nonzero).

3.1.9 Memory Management

When the problem is no longer needed

NLFreeProblem(P);

21

releases the storage. It calls NLFree.. for all of the groups, element func-
tions, and so on which are stored in the problem. When the user creates
one of these data structures a ”reference count” associated with it is set to
”1”. When the problem stores a pointer to the data structure the reference
count is increased by one. The ”NLFree...” routines decreases the reference
count by one and if the count is zero, releases the memory used by the data
structure. For example:

g=NLCreateGroupFunction(...); ref count = 1

NLPSetObjectiveGroupFunction(...); ref count = 2

NLFreeGroupFunction(...); ref count = 1 not yet

NLFreeProblem(...); ref count = 0 DELETE g!

This ensures that memory is released, but not until everyone who is using it
is done with it. It relies on an “honor code”. If you decided to free the group
twice in the code segment above you could get some nice side effects.

3.1.10 Error Handling

Most routines return a return code that indicates whether the operation was
successful. If the routine creates or returns a data structure an invalid value
is returned if the routine is not successful. In addition a simple error handling
is also provided.

int NLGetNErrors();

returns the total number of errors that have occured, and

void NLClearErrors();

resets the count. Individual errors can be examined with the routines

int NLGetErrorSev(int n);

char *NLGetErrorRoutine(int n);

char *NLGetErrorMsg(int n);

int NLGetErrorLine(int n);

char *NLGetErrorFile(int n);

22

The severity is 4, 8 or 12, the Routine is the routine which issued the error,
and the line and file give the line of source code where it was issued. The
message usually gives information about what caused the error (usually an
invalid argument to the routine).

4 Solving a Nonlinear Optimization Problem

Solver with LANCELOT

The LANCELOT Nonlinear Optimization Problem Solver consists of a pa-
rameter list. The problem solver is created by a subroutine call, and has a set
of default parameters, which can be modified. The user invokes LANCELOT
by passing a problem (see above) and a starting guess. The same problem
solver may be used on different problems, and several problem solver may be
created.

NLLancelot L=NLCreateLancelot();

Various parameters, like how much to print to the screen, are given defaults
that can be queried or set via additional subroutine calls. For example

void LNSetPrintLevel(Lancelot,int);

gives the value for the PRINT-LEVEL line in the SPEC.SPC file.
When the ”LNMinimize” or ”LNMaximize” routine is called, a SPEC.SPC

file containing the current parameters is dumped, as well as an OUTSDIF.d file
containing information about the problem. A global variable is set to point to
the problem being solved, and the Lancelot main program is invoked. This
calls back to ELFUNS, GROUPS, etc., which refer to the problem referenced
by the global pointer to provide information to Lancelot. When Lancelot
terminates the SOLUTION.d file is read to get the solution, which is sent back
to the user.

LNMinimize(L,P,v0,v);

23

5 Example

We will develop the code for creating and solving HS65. HS65 is the problem:

minimize

(x1 − x2)
2 + (x1 + x2 − 10)2/9 + (x3 − 5)2

subject to
−4.5 ≤ x1 ≤ 4.5
−4.5 ≤ x2 ≤ 4.5
−5. ≤ x3 ≤ 5.
48− x2

1 − x2
2 − x2

3 ≥ 0

First we do this using the SetObjective/AddConstraint routines, then in
group partially separable form.

5.1 Using the SetObjective/AddConstraint routines

This should be fairly clear. First we include the NLPAPI header file and
declare some variables –

#include <NLPAPI.h>

int main(int argc, char *argv[])

{

NLProblem P;

int v[3];

Then we create the problem, giving it the name "HS65" –

P=NLCreateProblem("HS65",3);

and change the names of the varables (although these are the default names
anyway) and set the bounds on the variables.

NLPSetVariableName(P,0,"X1");

NLPSetSimpleBounds(P,0,-4.5,4.5);

NLPSetVariableName(P,1,"X2");

24

NLPSetSimpleBounds(P,1,-4.5,4.5);

NLPSetVariableName(P,2,"X3");

NLPSetSimpleBounds(P,2,-5.,5.);

Next we specify the objective function (which in this case depends on all
three problem variables)

v[0]=0;v[1]=1;v[2]=2;

NLPSetObjectiveByString(P,"Obj",3,v,

"[x1,x2,x3]","(x1-x2)**2+(x1+x2-10)**2/9+(x3-5)**2");

and add an inequality constraint

v[0]=0;v[1]=1;v[2]=2;

NLPAddInequalityConstraintByString(P,"I1",0.,1.e40,3,v,

"[x1,x2,x3]","48-x1**2-x2**2-x3**2");

And that’ all there is to it.
If instead we had subroutines to evaluate the objective (o and do and ddo

to evaluate the first and second derivatives) and constraint (c, dc and ddc)
the code would change slightly:

v[0]=0;v[1]=1;v[2]=2;

NLPSetObjectiveByString(P,"Obj",3,v,o,do,ddo,NULL,NULL):

NLPAddInequalityConstraintByString(P,"I1",0.,1.e40,3,v,

c,dc,ddc,NULL,NULL);

5.2 Using the AddGroup routines

This approach uses the same definition as the SIF file for HS65 would. The
objective consists of three groups with the same group function, none has any
nonlinear elements, and the first has no constant part to the linear element.

So we will define one LNGroupFunction, passing it routines which square
the argument and evaluate the derivatives. We need one LNElementFunction,
for the single non-linear element in the constraint. This evaluates the same

25

function as the group function, but element functions, unlike groups, which
take a scalar argument, take a vector as argument.

First we include the API prototypes:

#include <NLPAPI.h>

Then define two sets of three functions, which will be used for the group and
element functions and their derivatives.

double gSq(double x){return(x*x);}

double dgSq(double x){return(2*x);}

double ddgSq(double x){return(2);}

double fSq(int n,double *x){return(x[0]*x[0]);}

double dfSq(int i,int n,double *x){return(2*x[0]);}

double ddfSq(int i,int j,int n,double *x){return(2);}

The main program and declarations –

int main(int argc,char *argv[])

{

NLProblem P;

NLGroupFunction g;

NLElementFunction f;

NLNonlinearElement ne;

int group;

NLVector a;

double x0[3];

NLLancelot Lan;

double x[3];

int constraint;

int element;

int v[1];

int i;

int rc;

We are now ready to create the problem and a group and element function

P=NLCreateProblem("HS65",3);

g=NLCreateGroupFunction(P,"L2",gSq,dgSq,ddgSq,NULL,NULL);

f=NLCreateElementFunction(P,"fSq",1,NULL,fSq,dfSq,ddfSq,NULL,NULL);

26

Note that for NLCreateElementFunction the number of internal variables
is passed (i.e. the actual number of unknowns used by the function), as
well as a “range transformation”, which by default is the identity. The last
two arguments allow data to be passed to the element function. The second
argument is an ”element function type”, and should be unique to the element
function.

The objective function (x1 − x2)
2 + (x1 + x2 − 10)2 + (x3 − 5)2, consists

of three groups, all with the same group function, but different linear parts.
(x1 − x2)

2:

group=NLPAddGroupToObjective(P,"OBJ1","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,1.);

rc=NLVSetC(a,1,-1.);

rc=NLVSetC(a,2,0.);

rc=NLPSetObjectiveGroupA(P,group,a);

NLFreeVector(a);

(x1 + x2 − 10)2:

group=NLPAddGroupToObjective(P,"OBJ2","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,1.);

rc=NLVSetC(a,1,1.);

rc=NLVSetC(a,2,0.);

rc=NLPSetObjectiveGroupScale(P,group,9.);

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,10.);

NLFreeVector(a);

(x3 − 5)2:

group=NLPAddGroupToObjective(P,"OBJ3","L2");

rc=NLPSetObjectiveGroupFunction(P,group,g);

a=NLCreateVector(3);

rc=NLVSetC(a,0,0.);

rc=NLVSetC(a,1,0.);

rc=NLVSetC(a,2,1.);

27

rc=NLPSetObjectiveGroupA(P,group,a);

rc=NLPSetObjectiveGroupB(P,group,5.);

NLFreeVector(a);

Next come bounds on the variables:

rc=NLPSetSimpleBounds(P,0,-4.5,4.5);

rc=NLPSetSimpleBounds(P,1,-4.5,4.5);

rc=NLPSetSimpleBounds(P,2,-5.,5.);

And finally the single nonlinear inequality constraint, which is the trivial
group with three nonlinear elements. The default bounds on the constraint
are 0 on the left, and ∞ on the right, so we need not change the bounds.

constraint=NLPAddNonlinearInequalityConstraint(P,"C1");

rc=NLPSetInequalityConstraintB(P,constraint,-48.);

v[0]=0;

ne=NLCreateNonlinearElement(P,"Sq1",f,v);

element=NLPAddNonlinearElementToInequalityConstraint

(P,constraint,-1.,ne);

NLFreeNonlinearElement(P,ne);

v[0]=1;

ne=NLCreateNonlinearElement(P,"Sq2",f,v);

element=NLPAddNonlinearElementToInequalityConstraint

(P,constraint,-1.,ne);

NLFreeNonlinearElement(P,ne);

v[0]=2;

ne=NLCreateNonlinearElement(P,"Sq3",f,v);

element=NLPAddNonlinearElementToInequalityConstraint

(P,constraint,-1.,ne);

NLFreeNonlinearElement(P,ne);

5.3 Invoking LANCELOT to solve the problem

No matter which method was used to define the problem, the invocation of
LANCELOT (Oh great and powerful LANCELOT, we pray that you find a
solution ...) is the same. First we call the constructor for the NLLancelot

28

object, then set the initial guess and ask for the minimization to be per-
formed.

Lan=NLCreateLancelot();

x0[0]=-5.;

x0[1]=5.;

x0[2]=0.;

rc=LNMinimize(Lan,P,x0,(double*)NULL,x);

The rest of the example simply prints the solution

printf("Solution is (");

for(i=0;i<3;i++)

{

if(i>0)printf(",");

printf("%lf",x[i]);

}

printf(")\n");

and any errors that may have occured. I’ve embedded a couple, just to be
tricky. We can test for an error with the return codes, or with the LNGetError
function.

printf("There were %d errors\n",NLGetNErrors());

if(NLError())

{

for(i=0;i<NLGetNErrors();i++)

{

printf(" %d line %d, file %s, Sev: %d\n",i,

NLGetErrorLine(i),NLGetErrorFile(i),NLGetErrorSev(i));

printf(" Routine: \"%s\"\n",NLGetErrorRoutine(i));

printf(" Msg: \"%s\"\n",NLGetErrorMsg(i));

}

}

And the final step, which really should be done, is to return all the memory
used to the system.

NLClearErrors();

29

NLFreeGroupFunction(g);

NLFreeElementFunction(f);

NLFreeLancelot(Lan);

NLFreeProblem(P);

return(0);

}

The program produced the following output –

objective function value = 9.53528856489003D-01

X0000001 3.65046233137863D+00

X0000002 3.65046219722889D+00

X0000003 4.62041670283010D+00

C1 0.00000000000000D+00

Solution is (3.650460,3.650460,4.620420)

There were 0 errors

30

