L. T. Biegler.
Nonlinear Programming: Concepts, Algorithms and Applications to Chemical Processes
SIAM, Philadelphia (2010)

F. E. Curtis, J. Huber, O. Schenk, A. Wächter.
A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations.
Mathematical Programming, 136(1):209-227, 2012
doi: 10.1007/s10107-012-0557-4.
preprint at

R. Fourer, D. M. Gay, and B. W. Kernighan.
AMPL: A Modeling Language For Mathematical Programming.
Thomson Publishing Company, Danvers, MA, USA, 1993.

O. Schenk, A. Wächter, and M. Hagemann.
Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization.
Computational Optimization Applications, 36(2-3):321-341, 2007
doi: 10.1007/s10589-006-9003-y.

W. Hock and K. Schittkowski.
Test examples for nonlinear programming codes.
Lecture Notes in Economics and Mathematical Systems, 187, 1981.
doi: 10.1007/978-3-642-48320-2.

J. Nocedal, A. Wächter, and R. A. Waltz.
Adaptive barrier strategies for nonlinear interior methods.
SIAM Journal on Optimization, 19(4):1674-1693, 2008.
doi: 10.1137/060649513.
preprint at

H. Pirnay, R. López-Negrete, and L. T. Biegler.
Optimal Sensitivity based on IPOPT.
Mathematical Programming Computations, 4(4):307-331, 2012.
doi: 10.1007/s12532-012-0043-2.
preprint at

A. Wächter.
An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, January 2002.
available at

A. Wächter.
Short Tutorial: Getting Started With Ipopt in 90 Minutes.
In Combinatorial Scientific Computing (U. Naumann, O. Schenk, H. D. Simon, eds.), 2009.
urn: nbn:de:0030-drops-20890

A. Wächter and L. T. Biegler.
Line search filter methods for nonlinear programming: Local convergence.
SIAM Journal on Optimization, 16(1):32-48, 2005.
doi: 10.1137/S1052623403426544

A. Wächter and L. T. Biegler.
Line search filter methods for nonlinear programming: Motivation and global convergence.
SIAM Journal on Optimization, 16(1):1-31, 2005.
doi: 10.1137/S1052623403426556

A. Wächter and L. T. Biegler.
Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming.
Optimization Online, 2001.

A. Wächter and L. T. Biegler.
On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25-57, 2006.
doi: 10.1007/s10107-004-0559-y.
preprint at

V. M. Zavala and N. Chiang.
An Inertia-free Filter Line-search Algorithm for Large-scale Nonlinear Programming.
Preprint ANL/MCS-P5197-0914, Argonne National Laboratory, 2014.