--- Job spectra2 Start 09/03/08 09:31:16 GAMS Rev 228 Copyright (C) 1987-2008 GAMS Development. All rights reserved *** License File has expired 2 days ago Licensee: Stefan Vigerske G071106/0001CB-LNX Humboldt University Berlin, Numerical Mathematics DC5918 --- Starting compilation --- spectra2.gms(294) 2 Mb --- Starting execution: elapsed 0:00:00.036 --- spectra2.gms(289) 3 Mb --- Generating MINLP model m --- spectra2.gms(294) 5 Mb --- 73 rows 70 columns 409 non-zeroes --- 2,985 nl-code 240 nl-non-zeroes --- 30 discrete-columns --- spectra2.gms(294) 3 Mb --- Executing BONMIN: elapsed 0:00:00.041 GAMS/Bonmin MINLP Solver (Bonmin Library 0.99) written by P. Bonami List of user-set options: Name Value used bonmin.algorithm = B-BB yes ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Common Public License (CPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** NLP0012I Num Status Obj It time NLP0013I 1 OPT 8.424062567780835 28 0.056004 NLP0013I 2 OPT 8.604494085493045 33 0.064004 NLP0013I 3 OPT 9.861234888647187 24 0.048003 NLP0013I 4 OPT 9.364325281762133 33 0.064004 NLP0013I 5 OPT 10.05302099337726 23 0.040002 NLP0013I 6 OPT 9.267471153968517 66 0.124007 NLP0013I 7 OPT 10.25579725241356 9 0.016001 NLP0013I 8 OPT 8.643426992906871 54 0.108007 NLP0013I 9 OPT 10.36904016897098 7 0.016001 NLP0013I 10 OPT 8.44405387231169 64 0.128008 NLP0013I 11 OPT 10.40481446152882 24 0.044002 NLP0013I 12 OPT 8.424064056939477 22 0.040002 NLP0013I 13 OPT 10.4239368500238 22 0.044003 Cbc0010I After 0 nodes, 1 on tree, 1e+50 best solution, best possible 8.42406 (0.75 seconds) NLP0013I 14 OPT 9.364325281762133 33 0.064004 NLP0013I 15 OPT 10.20773382944846 31 0.060004 NLP0013I 16 OPT 14.44881423335536 44 0.096006 NLP0013I 17 OPT 12.13781002699222 31 0.060004 NLP0013I 18 OPT 12.13781002699222 31 0.060003 NLP0013I 19 OPT 12.35717431092614 69 0.140009 NLP0013I 20 OPT 12.85338749491648 64 0.132008 NLP0012I Num Status Obj It time NLP0013I 21 OPT 14.14755778355933 59 0.124007 NLP0013I 22 OPT 12.36066987376545 59 0.120007 NLP0013I 23 OPT 14.35312967151781 66 0.132008 NLP0013I 24 OPT 12.85338749491648 64 0.136008 NLP0013I 25 OPT 12.86830360038657 61 0.132008 NLP0013I 26 OPT 14.75144884935043 31 0.060004 NLP0013I 27 OPT 14.29735458064429 31 0.060004 NLP0013I 28 OPT 53.51060653499393 54 0.112007 NLP0013I 29 OPT 16.24797713352099 66 0.140009 NLP0013I 30 OPT 14.72809771287736 28 0.056003 NLP0013I 31 OPT 14.14755778355933 59 0.128008 NLP0013I 32 OPT 15.59152483658243 31 0.060004 NLP0013I 33 OPT 16.02226796265215 59 0.128008 NLP0013I 34 OPT 14.08278751113606 31 0.060004 NLP0013I 35 OPT 15.52675460127359 31 0.060004 NLP0013I 36 OPT 17.4773771116089 31 0.056003 NLP0013I 37 OPT 54.74000625151351 47 0.096006 NLP0013I 38 OPT 60.29007401183888 54 0.116007 NLP0013I 39 OPT 56.66754085705402 57 0.112007 NLP0013I 40 OPT 15.95749759033574 30 0.056004 NLP0012I Num Status Obj It time NLP0013I 41 OPT 17.61889608877417 48 0.096006 NLP0012I Num Status Obj It time NLP0013I 1 OPT 17.61888535654642 38 0.072004 Cbc0004I Integer solution of 17.6189 found after 654 iterations and 16 nodes (3.51 seconds) NLP0013I 42 OPT 16.9459954775298 30 0.056004 NLP0013I 2 OPT 16.94599526647641 36 0.072004 Cbc0004I Integer solution of 16.946 found after 684 iterations and 17 nodes (3.64 seconds) NLP0013I 43 OPT 14.44881423335536 44 0.096006 NLP0013I 44 OPT 14.79598071247957 53 0.108007 NLP0013I 45 OPT 15.41132090674025 44 0.092006 NLP0013I 46 OPT 15.89278029152559 45 0.092006 NLP0013I 47 OPT 17.8434029195423 46 0.092006 NLP0013I 48 OPT 55.10603235528376 46 0.096006 NLP0013I 49 OPT 16.32352402752062 43 0.092006 NLP0013I 50 OPT 16.54288786332826 48 0.096006 NLP0013I 51 OPT 17.03910129253412 44 0.084006 NLP0013I 52 OPT 18.33327160915704 46 0.092006 NLP0013I 53 OPT 18.26850115091775 45 0.096006 NLP0013I 54 OPT 11.19606001158669 33 0.060003 NLP0013I 55 OPT 12.64002691687994 32 0.064004 NLP0013I 56 OPT 14.59064919118458 67 0.136009 NLP0013I 57 OPT 14.81001361973951 59 0.120007 NLP0013I 58 OPT 15.30622704228977 44 0.088006 NLP0013I 59 OPT 16.6003973344203 58 0.116007 NLP0013I 60 OPT 16.53562679671261 65 0.132008 NLP0012I Num Status Obj It time NLP0013I 61 OPT 16.6841996473347 32 0.064004 NLP0013I 3 OPT 16.68419939540878 38 0.072004 Cbc0004I Integer solution of 16.6842 found after 1481 iterations and 34 nodes (5.56 seconds) NLP0013I 62 OPT 18.00719322183919 65 0.136009 NLP0013I 63 OPT 51.85327886468831 43 0.084005 NLP0013I 64 OPT 13.07077026287751 32 0.064004 NLP0013I 65 OPT 13.29013434086989 30 0.060004 NLP0013I 66 OPT 13.78634761148692 42 0.088005 NLP0013I 67 OPT 13.93492024954818 46 0.096006 NLP0013I 68 OPT 15.25791401265098 43 0.080005 NLP0013I 69 OPT 15.08051790057752 29 0.056004 NLP0013I 70 OPT 15.22909047724883 59 0.120008 NLP0013I 4 OPT 15.22909047460382 36 0.060004 Cbc0004I Integer solution of 15.2291 found after 1870 iterations and 43 nodes (6.41 seconds) NLP0013I 71 OPT 16.55208431406849 29 0.056003 NLP0013I 72 OPT 15.01574734282376 32 0.056004 NLP0013I 73 OPT 15.16432017661495 30 0.060004 NLP0013I 5 OPT 15.16431993875139 36 0.068004 Cbc0004I Integer solution of 15.1643 found after 1961 iterations and 46 nodes (6.66 seconds) NLP0013I 74 OPT 16.48731411306292 31 0.060004 NLP0013I 75 OPT 10.05302099337726 23 0.044002 NLP0013I 76 OPT 10.89642957581545 62 0.124008 NLP0013I 77 OPT 12.82650576318605 64 0.124008 NLP0013I 78 OPT 13.04587028455099 31 0.060004 NLP0013I 79 OPT 13.54208364228109 38 0.080005 NLP0013I 80 OPT 15.20347164719589 31 0.056004 NLP0012I Num Status Obj It time NLP0013I 81 OPT 14.5305814858912 44 0.092005 NLP0013I 82 OPT 14.8362539343427 30 0.060004 NLP0013I 83 OPT 16.49764185803863 30 0.056004 NLP0013I 84 OPT 15.82475175355363 42 0.084005 NLP0013I 85 OPT 14.77148409150313 60 0.116007 NLP0013I 86 OPT 16.43287182019661 30 0.056003 NLP0013I 87 OPT 15.75998201671906 66 0.132008 NLP0013I 88 OPT 15.13750937681486 60 0.120007 NLP0013I 89 OPT 15.35687386818912 44 0.092006 NLP0013I 90 OPT 17.08248698368159 47 0.104006 NLP0013I 91 OPT 11.88475567799136 23 0.044003 NLP0013I 92 OPT 12.10412010512409 59 0.116007 NLP0013I 93 OPT 12.60033359926602 25 0.048003 NLP0013I 94 OPT 12.74890612984295 63 0.128008 NLP0013I 95 OPT 16.70029791343814 61 0.112007 NLP0013I 96 OPT 14.70635735971883 55 0.116007 NLP0013I 97 OPT 14.07189997917183 53 0.112007 NLP0013I 98 OPT 16.0293512348615 48 0.096006 NLP0013I 99 OPT 18.02329174104031 47 0.096006 NLP0013I 100 OPT 13.89450382496526 59 0.120008 NLP0012I Num Status Obj It time NLP0013I 101 OPT 14.04307645255866 32 0.060004 NLP0013I 6 OPT 14.04307641514845 36 0.068004 Cbc0004I Integer solution of 14.0431 found after 3219 iterations and 74 nodes (9.26 seconds) NLP0013I 102 OPT 15.36607028955969 59 0.112007 NLP0013I 103 OPT 13.82973328122132 20 0.036002 NLP0013I 104 OPT 13.97830682910527 44 0.092005 NLP0013I 7 OPT 13.97830587929603 36 0.068005 Cbc0004I Integer solution of 13.9783 found after 3342 iterations and 77 nodes (9.58 seconds) NLP0013I 105 OPT 15.30129970430878 23 0.044003 NLP0013I 106 OPT 17.88631198132396 43 0.088005 NLP0013I 107 OPT 15.89237135463393 46 0.15201 Cbc0001I Search completed - best objective 13.97830587929603, took 3454 iterations and 80 nodes (9.87 seconds) Cbc0032I Strong branching done 13 times (1124 iterations), fathomed 0 nodes and fixed 0 variables Cbc0035I Maximum depth 6, 0 variables fixed on reduced cost Bonmin finished. Found feasible point. Objective function = 13.978306. Resolve with fixed discrete variables to get dual values. NLP0012I Num Status Obj It time NLP0013I 1 OPT 13.97830587929603 35 0.064004 MINLP solution: 13.97830588 (80 nodes, 10 seconds) Best possible: 13.97830588 Absolute gap: 0 Relative gap: 0 GAMS/Bonmin finished. --- Restarting execution --- spectra2.gms(294) 0 Mb --- Reading solution for model m *** Status: Normal completion --- Job spectra2.gms Stop 09/03/08 09:31:26 elapsed 0:00:10.194