--- Job ex1243 Start 09/02/08 15:19:57 GAMS Rev 228 Copyright (C) 1987-2008 GAMS Development. All rights reserved *** License File has expired 1 days ago Licensee: Stefan Vigerske G071106/0001CB-LNX Humboldt University Berlin, Numerical Mathematics DC5918 --- Starting compilation --- ex1243.gms(296) 2 Mb --- Starting execution: elapsed 0:00:00.005 --- ex1243.gms(291) 3 Mb --- Generating MINLP model m --- ex1243.gms(296) 5 Mb --- 97 rows 69 columns 329 non-zeroes --- 267 nl-code 36 nl-non-zeroes --- 16 discrete-columns --- ex1243.gms(296) 3 Mb --- Executing BONMIN: elapsed 0:00:00.009 GAMS/Bonmin MINLP Solver (Bonmin Library 0.99) written by P. Bonami List of user-set options: Name Value used bonmin.algorithm = B-BB yes ****************************************************************************** This program contains Ipopt, a library for large-scale nonlinear optimization. Ipopt is released as open source code under the Common Public License (CPL). For more information visit http://projects.coin-or.org/Ipopt ****************************************************************************** NLP0012I Num Status Obj It time NLP0013I 1 OPT 32203.37012239409 195 0.536034 NLP0013I 2 OPT 33458.60761047347 57 0.16001 NLP0013I 3 OPT 39511.21654862993 23 0.064004 NLP0013I 4 OPT 32901.98813156883 20 0.056003 NLP0013I 5 OPT 37579.89604915875 23 0.064004 NLP0013I 6 OPT 34754.16895660381 69 0.180011 NLP0013I 7 OPT 39776.42356612778 13 0.032002 NLP0013I 8 OPT 32876.18348649183 21 0.056004 NLP0013I 9 OPT 92883.34705006833 84 0.212013 NLP0013I 10 OPT 32376.07658061405 39 0.100006 NLP0013I 11 OPT 39656.00774251197 25 0.064004 NLP0013I 12 INFEAS 34151.01729616319 38 0.192012 NLP0013I 13 OPT 37064.48123346188 17 0.040002 NLP0013I 14 OPT 37064.48123346188 17 0.040002 NLP0013I 15 OPT 37433.54129005675 21 0.056004 NLP0013I 16 OPT 54496.40583695145 21 0.052003 NLP0013I 17 OPT 37119.0009264711 23 0.060004 NLP0013I 18 OPT 79254.58179136526 27 0.068004 NLP0013I 19 OPT 37065.09561945259 17 0.044003 NLP0013I 20 OPT 45010.68511924677 25 0.064004 Cbc0010I After 0 nodes, 1 on tree, 1e+50 best solution, best possible 37064.5 (1.62 seconds) NLP0012I Num Status Obj It time NLP0013I 21 OPT 37737.29459734922 27 0.068004 NLP0013I 22 OPT 45308.99896891799 14 0.032002 NLP0013I 23 OPT 45853.89391414615 19 0.052004 NLP0013I 24 OPT 51502.87837110698 27 0.072004 NLP0013I 25 OPT 45853.8938985971 21 0.056004 NLP0013I 26 OPT 111107.1609871556 24 0.064004 NLP0013I 27 INFEAS 111527.3549049135 66 0.244015 NLP0013I 28 OPT 115600.39786069 46 0.120008 NLP0013I 29 OPT 115600.39786069 46 0.120007 NLP0013I 30 OPT 115603.3017772552 32 0.084005 NLP0013I 31 OPT 121461.5616963292 60 0.140008 NLP0013I 32 OPT 120046.2365669401 124 0.30802 NLP0013I 33 OPT 127239.7019272122 41 0.104006 NLP0013I 34 OPT 284653.6307154451 80 0.196012 NLP0013I 35 OPT 120989.7019693189 151 0.440028 NLP0013I 36 OPT 123027.4567649295 29 0.076005 NLP0013I 37 OPT 124858.6821539334 27 0.072004 NLP0013I 38 OPT 54626.3173601596 26 0.068005 NLP0013I 39 OPT 181944.9241945175 67 0.220013 NLP0013I 40 OPT 186461.4037636282 25 0.060004 NLP0012I Num Status Obj It time NLP0013I 41 OPT 281397.9406404691 70 0.204013 NLP0013I 42 OPT 77532.94119288266 22 0.056004 NLP0013I 43 OPT 112909.1213771598 49 0.116007 NLP0013I 44 OPT 83402.50653716507 255 0.656041 NLP0012I Num Status Obj It time NLP0013I 1 OPT 83402.50641025804 17 0.044003 Cbc0004I Integer solution of 83402.5 found after 1115 iterations and 17 nodes (5.32 seconds) NLP0013I 45 OPT 182790.8606919503 23 0.064004 NLP0013I 46 OPT 79254.58178456208 93 0.256016 NLP0013I 47 OPT 87730.55912047708 24 0.060004 NLP0013I 48 OPT 182790.8606629803 24 0.064004 NLP0013I 49 OPT 101652.3502900088 29 0.080005 Cbc0001I Search completed - best objective 83402.50641025804, took 1308 iterations and 22 nodes (5.85 seconds) Cbc0032I Strong branching done 12 times (813 iterations), fathomed 0 nodes and fixed 2 variables Cbc0035I Maximum depth 6, 0 variables fixed on reduced cost Bonmin finished. Found feasible point. Objective function = 83402.506410. Resolve with fixed discrete variables to get dual values. NLP0012I Num Status Obj It time NLP0013I 1 OPT 83402.50641027578 18 0.048003 MINLP solution: 83402.50641 (22 nodes, 6.44 seconds) Best possible: 83402.50641 Absolute gap: 1.7739e-08 Relative gap: 2.1269e-13 GAMS/Bonmin finished. --- Restarting execution --- ex1243.gms(296) 0 Mb --- Reading solution for model m *** Status: Normal completion --- Job ex1243.gms Stop 09/02/08 15:20:04 elapsed 0:00:06.560