$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$

Syntax
y = - x

Purpose
Computes the negative of x .

Base
The operation in the syntax above must be supported for the case where the operand is a const Base object.

x
The operand x has one of the following prototypes       const AD<Base>               &x      const VecAD<Base>::reference &x 
y
The result y has type       AD<Base> y  It is equal to the negative of the operand x .

Operation Sequence
This is an AD of Base atomic operation and hence is part of the current AD of Base operation sequence .

Derivative
If $f$ is a Base function , $$\D{[ - f(x) ]}{x} = - \D{f(x)}{x}$$

Example
The file unary_minus.cpp contains an example and test of this operation.