Prev Next sparse_hessian.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Sparse Hessian: Example and Test
# include <cppad/cppad.hpp>
bool sparse_hessian(void)
{     bool ok = true;
     using CppAD::AD;
     using CppAD::NearEqual;
     size_t i, j, k, ell;
     typedef CPPAD_TESTVECTOR(AD<double>)               a_vector;
     typedef CPPAD_TESTVECTOR(double)                     d_vector;
     typedef CPPAD_TESTVECTOR(size_t)                     i_vector;
     typedef CPPAD_TESTVECTOR(bool)                       b_vector;
     typedef CPPAD_TESTVECTOR(std::set<size_t>)         s_vector;
     double eps = 10. * CppAD::numeric_limits<double>::epsilon();

     // domain space vector
     size_t n = 12;  // must be greater than or equal 3; see n_sweep below
     a_vector a_x(n);
     for(j = 0; j < n; j++)
          a_x[j] = AD<double> (0);

     // declare independent variables and starting recording
     CppAD::Independent(a_x);

     // range space vector
     size_t m = 1;
     a_vector a_y(m);
     a_y[0] = a_x[0]*a_x[1];
     for(j = 0; j < n; j++)
          a_y[0] += a_x[j] * a_x[j] * a_x[j];

     // create f: x -> y and stop tape recording
     // (without executing zero order forward calculation)
     CppAD::ADFun<double> f;
     f.Dependent(a_x, a_y);

     // new value for the independent variable vector, and weighting vector
     d_vector w(m), x(n);
     for(j = 0; j < n; j++)
          x[j] = double(j);
     w[0] = 1.0;

     // vector used to check the value of the hessian
     d_vector check(n * n);
     for(ell = 0; ell < n * n; ell++)
          check[ell] = 0.0;
     ell        = 0 * n + 1;
     check[ell] = 1.0;
     ell        = 1 * n + 0;
     check[ell] = 1.0 ;
     for(j = 0; j < n; j++)
     {     ell = j * n + j;
          check[ell] = 6.0 * x[j];
     }

     // -------------------------------------------------------------------
     // second derivative of y[0] w.r.t x
     d_vector hes(n * n);
     hes = f.SparseHessian(x, w);
     for(ell = 0; ell < n * n; ell++)
          ok &=  NearEqual(w[0] * check[ell], hes[ell], eps, eps );

     // --------------------------------------------------------------------
     // example using vectors of bools to compute sparsity pattern for Hessian
     b_vector r_bool(n * n);
     for(i = 0; i < n; i++)
     {     for(j = 0; j < n; j++)
               r_bool[i * n + j] = false;
          r_bool[i * n + i] = true;
     }
     f.ForSparseJac(n, r_bool);
     //
     b_vector s_bool(m);
     for(i = 0; i < m; i++)
          s_bool[i] = w[i] != 0;
     b_vector p_bool = f.RevSparseHes(n, s_bool);

     hes = f.SparseHessian(x, w, p_bool);
     for(ell = 0; ell < n * n; ell++)
          ok &=  NearEqual(w[0] * check[ell], hes[ell], eps, eps );

     // --------------------------------------------------------------------
     // example using vectors of sets to compute sparsity pattern for Hessian
     s_vector r_set(n);
     for(i = 0; i < n; i++)
          r_set[i].insert(i);
     f.ForSparseJac(n, r_set);
     //
     s_vector s_set(m);
     for(i = 0; i < m; i++)
          if( w[i] != 0. )
               s_set[0].insert(i);
     s_vector p_set = f.RevSparseHes(n, s_set);

     // example passing sparsity pattern to SparseHessian
     hes = f.SparseHessian(x, w, p_set);
     for(ell = 0; ell < n * n; ell++)
          ok &=  NearEqual(w[0] * check[ell], hes[ell], eps, eps );

     // --------------------------------------------------------------------
     // use row and column indices to specify upper triangle of
     // non-zero elements of Hessian
     size_t K = n + 1;
     i_vector row(K), col(K);
     hes.resize(K);
     k = 0;
     for(j = 0; j < n; j++)
     {     // diagonal of Hessian
          row[k] = j;
          col[k] = j;
          k++;
     }
     // only off diagonal non-zero elemenet in upper triangle
     row[k] = 0;
     col[k] = 1;
     k++;
     ok &= k == K;
     CppAD::sparse_hessian_work work;

     // can use p_set or p_bool.
     size_t n_sweep = f.SparseHessian(x, w, p_set, row, col, hes, work);
     for(k = 0; k < K; k++)
     {     ell = row[k] * n + col[k];
          ok &=  NearEqual(w[0] * check[ell], hes[k], eps, eps );
     }
     ok &= n_sweep == 2;

     // now recompute at a different x and w (using work from previous call
     w[0]       = 2.0;
     x[1]       = 0.5;
     ell        = 1 * n + 1;
     check[ell] = 6.0 * x[1];
     s_vector   not_used;
     n_sweep    = f.SparseHessian(x, w, not_used, row, col, hes, work);
     for(k = 0; k < K; k++)
     {     ell = row[k] * n + col[k];
          ok &=  NearEqual(w[0] * check[ell], hes[k], eps, eps );
     }
     ok &= n_sweep == 2;



     return ok;
}

Input File: example/sparse/sparse_hessian.cpp