Prev Next reverse_two.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Second Order Reverse ModeExample and Test
# include <cppad/cppad.hpp>
namespace { // ----------------------------------------------------------
// define the template function reverse_two_cases<Vector> in empty namespace
template <typename Vector>
bool reverse_two_cases(void)
{     bool ok = true;
     using CppAD::AD;
     using CppAD::NearEqual;
     double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

     // domain space vector
     size_t n = 2;
     CPPAD_TESTVECTOR(AD<double>) X(n);
     X[0] = 0.;
     X[1] = 1.;

     // declare independent variables and start recording
     CppAD::Independent(X);

     // range space vector
     size_t m = 1;
     CPPAD_TESTVECTOR(AD<double>) Y(m);
     Y[0] = X[0] * X[0] * X[1];

     // create f : X -> Y and stop recording
     CppAD::ADFun<double> f(X, Y);

     // use zero order forward mode to evaluate y at x = (3, 4)
     // use the template parameter Vector for the vector type
     Vector x(n), y(m);
     x[0]  = 3.;
     x[1]  = 4.;
     y     = f.Forward(0, x);
     ok    &= NearEqual(y[0] , x[0]*x[0]*x[1], eps99, eps99);

     // use first order forward mode in x[0] direction
     // (all second order partials below involve x[0])
     Vector dx(n), dy(m);
     dx[0] = 1.;
     dx[1] = 1.;
     dy    = f.Forward(1, dx);
     double check = 2.*x[0]*x[1]*dx[0] + x[0]*x[0]*dx[1];
     ok   &= NearEqual(dy[0], check, eps99, eps99);

     // use second order reverse mode to evalaute second partials of y[0]
     // with respect to (x[0], x[0]) and with respect to (x[0], x[1])
     Vector w(m), dw( n * 2 );
     w[0]  = 1.;
     dw    = f.Reverse(2, w);

     // check derivative of f
     ok   &= NearEqual(dw[0*2+0] , 2.*x[0]*x[1], eps99, eps99);
     ok   &= NearEqual(dw[1*2+0] ,    x[0]*x[0], eps99, eps99);

     // check derivative of f^{(1)} (x) * dx
     check = 2.*x[1]*dx[1] + 2.*x[0]*dx[1];
     ok   &= NearEqual(dw[0*2+1] , check, eps99, eps99);
     check = 2.*x[0]*dx[1];
     ok   &= NearEqual(dw[1*2+1] , check, eps99, eps99);

     return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool reverse_two(void)
{     bool ok = true;
     ok &= reverse_two_cases< CppAD::vector  <double> >();
     ok &= reverse_two_cases< std::vector    <double> >();
     ok &= reverse_two_cases< std::valarray  <double> >();
     return ok;
}

Input File: example/general/reverse_two.cpp