Prev Next old_usead_2.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Using AD to Compute Atomic Function Derivatives

Deprecated 2013-05-27
This example has been deprecated because it is easier to use the checkpoint class instead.

Purpose
Consider the case where an inner function is used repeatedly in the definition of an outer function. In this case, it may reduce the number of variables size_var , and hence the required memory.
# include <cppad/cppad.hpp>

namespace { // Begin empty namespace
     using CppAD::AD;
     using CppAD::ADFun;
     using CppAD::vector;

     // ----------------------------------------------------------------------
     // ODE for [t, t^2 / 2 ] in form required by Runge45
     class Fun {
     public:
          void Ode(
               const AD<double>           &t,
               const vector< AD<double> > &z,
               vector< AD<double> >       &f)
          {     assert( z.size() == 2 );
               assert( f.size() == 2 );
               f[0] =  1.0;
               f[1] =  z[0];
          }
     };

     // ----------------------------------------------------------------------
     // Create function that takes on Runge45 step for the ODE above
     ADFun<double>* r_ptr_;
     void create_r(void)
     {     size_t n = 3, m = 2;
          vector< AD<double> > x(n), zi(m), y(m), e(m);
          // The value of x does not matter because the operation sequence
          // does not depend on x.
          x[0]  = 0.0;  // initial value z_0 (t) at t = ti
          x[1]  = 0.0;  // initial value z_1 (t) at t = ti
          x[2]  = 0.1;  // final time for this integration
          CppAD::Independent(x);
          zi[0]         = x[0];  // z_0 (t) at t = ti
          zi[1]         = x[1];  // z_1 (t) at t = ti
          AD<double> ti = 0.0;   // t does not appear in ODE so does not matter
          AD<double> tf = x[2];  // final time
          size_t M      = 3;     // number of Runge45 steps to take
          Fun F;
          y             = CppAD::Runge45(F, M, ti, tf, zi, e);
          r_ptr_        = new ADFun<double>(x, y);
     }
     void destroy_r(void)
     {     delete r_ptr_;
          r_ptr_ = CPPAD_NULL;
     }

     // ----------------------------------------------------------------------
     // forward mode routine called by CppAD
     bool solve_ode_forward(
          size_t                   id ,
          size_t                    k ,
          size_t                    n ,
          size_t                    m ,
          const vector<bool>&      vx ,
          vector<bool>&            vy ,
          const vector<double>&    tx ,
          vector<double>&          ty
     )
     {     assert( id == 0 );
          assert( n == 3 );
          assert( m == 2 );
          assert( k == 0 || vx.size() == 0 );
          bool ok = true;
          vector<double> xp(n), yp(m);
          size_t i, j;

          // check for special case
          if( vx.size() > 0 )
          {     //Compute r, a Jacobian sparsity pattern.
               // Use reverse mode because m < n.
               vector< std::set<size_t> > s(m), r(m);
               for(i = 0; i < m; i++)
                    s[i].insert(i);
               r = r_ptr_->RevSparseJac(m, s);
               std::set<size_t>::const_iterator itr;
               for(i = 0; i < m; i++)
               {     vy[i] = false;
                    for(itr = s[i].begin(); itr != s[i].end(); itr++)
                    {     j = *itr;
                         assert( j < n );
                         // y[i] depends on the value of x[j]
                         // Visual Studio 2013 generates warning without bool below
                         vy[i] |= bool( vx[j] );
                    }
               }
          }
          // make sure r_ has proper lower order Taylor coefficients stored
          // then compute ty[k]
          for(size_t q = 0; q <= k; q++)
          {     for(j = 0; j < n; j++)
                    xp[j] = tx[j * (k+1) + q];
               yp    = r_ptr_->Forward(q, xp);
               if( q == k )
               {     for(i = 0; i < m; i++)
                         ty[i * (k+1) + q] = yp[i];
               }
# ifndef NDEBUG
               else
               {     for(i = 0; i < m; i++)
                         assert( ty[i * (k+1) + q] == yp[i] );
               }
# endif
          }
          // no longer need the Taylor coefficients in r_ptr_
          // (have to reconstruct them every time)
          r_ptr_->capacity_order(0);
          return ok;
     }
     // ----------------------------------------------------------------------
     // reverse mode routine called by CppAD
     bool solve_ode_reverse(
          size_t                   id ,
          size_t                    k ,
          size_t                    n ,
          size_t                    m ,
          const vector<double>&    tx ,
          const vector<double>&    ty ,
          vector<double>&          px ,
          const vector<double>&    py
     )
     {     assert( id == 0 );
          assert( n == 3 );
          assert( m == 2 );
          bool ok = true;
          vector<double> xp(n), w( (k+1) * m ), dw( (k+1) * n );

          // make sure r_ has proper forward mode coefficients
          size_t i, j, q;
          for(q = 0; q <= k; q++)
          {     for(j = 0; j < n; j++)
                    xp[j] = tx[j * (k+1) + q];
# ifdef NDEBUG
               r_ptr_->Forward(q, xp);
# else
               vector<double> yp(m);
               yp = r_ptr_->Forward(q, xp);
               for(i = 0; i < m; i++)
                    assert( ty[i * (k+1) + q] == yp[i] );
# endif
          }
          for(i = 0; i < m; i++)
          {     for(q = 0; q <=k; q++)
                    w[ i * (k+1) + q] = py[ i * (k+1) + q];
          }
          dw = r_ptr_->Reverse(k+1, w);
          for(j = 0; j < n; j++)
          {     for(q = 0; q <=k; q++)
                    px[ j * (k+1) + q] = dw[ j * (k+1) + q];
          }
          // no longer need the Taylor coefficients in r_ptr_
          // (have to reconstruct them every time)
          r_ptr_->capacity_order(0);

          return ok;
     }
     // ----------------------------------------------------------------------
     // forward Jacobian sparsity routine called by CppAD
     bool solve_ode_for_jac_sparse(
          size_t                               id ,
          size_t                                n ,
          size_t                                m ,
          size_t                                p ,
          const vector< std::set<size_t> >&     r ,
          vector< std::set<size_t> >&           s )
     {     assert( id == 0 );
          assert( n == 3 );
          assert( m == 2 );
          bool ok = true;

          vector< std::set<size_t> > R(n), S(m);
          for(size_t j = 0; j < n; j++)
               R[j] = r[j];
          S = r_ptr_->ForSparseJac(p, R);
          for(size_t i = 0; i < m; i++)
               s[i] = S[i];

          // no longer need the forward mode sparsity pattern
          // (have to reconstruct them every time)
          r_ptr_->size_forward_set(0);

          return ok;
     }
     // ----------------------------------------------------------------------
     // reverse Jacobian sparsity routine called by CppAD
     bool solve_ode_rev_jac_sparse(
          size_t                               id ,
          size_t                                n ,
          size_t                                m ,
          size_t                                p ,
          vector< std::set<size_t> >&           r ,
          const vector< std::set<size_t> >&     s )
     {
          assert( id == 0 );
          assert( n == 3 );
          assert( m == 2 );
          bool ok = true;

          vector< std::set<size_t> > R(p), S(p);
          std::set<size_t>::const_iterator itr;
          size_t i;
          // untranspose s
          for(i = 0; i < m; i++)
          {     for(itr = s[i].begin(); itr != s[i].end(); itr++)
                    S[*itr].insert(i);
          }
          R = r_ptr_->RevSparseJac(p, S);
          // transpose r
          for(i = 0; i < m; i++)
               r[i].clear();
          for(i = 0; i < p; i++)
          {     for(itr = R[i].begin(); itr != R[i].end(); itr++)
                    r[*itr].insert(i);
          }
          return ok;
     }
     // ----------------------------------------------------------------------
     // reverse Hessian sparsity routine called by CppAD
     bool solve_ode_rev_hes_sparse(
          size_t                               id ,
          size_t                                n ,
          size_t                                m ,
          size_t                                p ,
          const vector< std::set<size_t> >&     r ,
          const vector<bool>&                   s ,
          vector<bool>&                         t ,
          const vector< std::set<size_t> >&     u ,
          vector< std::set<size_t> >&           v )
     {     // Can just return false if not use RevSparseHes.
          assert( id == 0 );
          assert( n == 3 );
          assert( m == 2 );
          bool ok = true;
          std::set<size_t>::const_iterator itr;

          // compute sparsity pattern for T(x) = S(x) * f'(x)
          vector< std::set<size_t> > S(1);
          size_t i, j;
          S[0].clear();
          for(i = 0; i < m; i++)
               if( s[i] )
                    S[0].insert(i);
          t = r_ptr_->RevSparseJac(1, s);

          // compute sparsity pattern for A(x)^T = U(x)^T * f'(x)
          vector< std::set<size_t> > Ut(p), At(p);
          for(i = 0; i < m; i++)
          {     for(itr = u[i].begin(); itr != u[i].end(); itr++)
                    Ut[*itr].insert(i);
          }
          At = r_ptr_->RevSparseJac(p, Ut);

          // compute sparsity pattern for H(x)^T = R^T * (S * F)''(x)
          vector< std::set<size_t> > R(n), Ht(p);
          for(j = 0; j < n; j++)
               R[j] = r[j];
          r_ptr_->ForSparseJac(p, R);
          Ht = r_ptr_->RevSparseHes(p, S);

          // compute sparsity pattern for V(x) = A(x) + H(x)^T
          for(j = 0; j < n; j++)
               v[j].clear();
          for(i = 0; i < p; i++)
          {     for(itr = At[i].begin(); itr != At[i].end(); itr++)
                    v[*itr].insert(i);
               for(itr = Ht[i].begin(); itr != Ht[i].end(); itr++)
                    v[*itr].insert(i);
          }

          // no longer need the forward mode sparsity pattern
          // (have to reconstruct them every time)
          r_ptr_->size_forward_set(0);

          return ok;
     }
     // ---------------------------------------------------------------------
     // Declare the AD<double> routine solve_ode(id, ax, ay)
     CPPAD_USER_ATOMIC(
          solve_ode                 ,
          CppAD::vector             ,
          double                    ,
          solve_ode_forward         ,
          solve_ode_reverse         ,
          solve_ode_for_jac_sparse  ,
          solve_ode_rev_jac_sparse  ,
          solve_ode_rev_hes_sparse
     )
} // End empty namespace

bool old_usead_2(void)
{     bool ok = true;
     using CppAD::NearEqual;
     double eps = 10. * CppAD::numeric_limits<double>::epsilon();

     // --------------------------------------------------------------------
     // Create the ADFun<doulbe> r_
     create_r();

     // --------------------------------------------------------------------
     // domain and range space vectors
     size_t n = 3, m = 2;
     vector< AD<double> > au(n), ax(n), ay(m);
     au[0]         = 0.0;        // value of z_0 (t) = t, at t = 0
     ax[1]         = 0.0;        // value of z_1 (t) = t^2/2, at t = 0
     au[2]         = 1.0;        // final t
     CppAD::Independent(au);
     size_t M      = 2;          // number of r steps to take
     ax[0]         = au[0];      // value of z_0 (t) = t, at t = 0
     ax[1]         = au[1];      // value of z_1 (t) = t^2/2, at t = 0
     AD<double> dt = au[2] / double(M);  // size of each r step
     ax[2]         = dt;
     for(size_t i_step = 0; i_step < M; i_step++)
     {     size_t id = 0;               // not used
          solve_ode(id, ax, ay);
          ax[0] = ay[0];
          ax[1] = ay[1];
     }

     // create f: u -> y and stop tape recording
     // y_0(t) = u_0 + t                   = u_0 + u_2
     // y_1(t) = u_1 + u_0 * t + t^2 / 2   = u_1 + u_0 * u_2 + u_2^2 / 2
     // where t = u_2
     ADFun<double> f;
     f.Dependent(au, ay);

     // --------------------------------------------------------------------
     // Check forward mode results
     //
     // zero order forward
     vector<double> up(n), yp(m);
     size_t q  = 0;
     double u0 = 0.5;
     double u1 = 0.25;
     double u2 = 0.75;
     double check;
     up[0]     = u0;
     up[1]     = u1;
     up[2]     = u2;
     yp        = f.Forward(q, up);
     check     = u0 + u2;
     ok       &= NearEqual( yp[0], check,  eps, eps);
     check     = u1 + u0 * u2 + u2 * u2 / 2.0;
     ok       &= NearEqual( yp[1], check,  eps, eps);
     //
     // forward mode first derivative w.r.t t
     q         = 1;
     up[0]     = 0.0;
     up[1]     = 0.0;
     up[2]     = 1.0;
     yp        = f.Forward(q, up);
     check     = 1.0;
     ok       &= NearEqual( yp[0], check,  eps, eps);
     check     = u0 + u2;
     ok       &= NearEqual( yp[1], check,  eps, eps);
     //
     // forward mode second order Taylor coefficient w.r.t t
     q         = 2;
     up[0]     = 0.0;
     up[1]     = 0.0;
     up[2]     = 0.0;
     yp        = f.Forward(q, up);
     check     = 0.0;
     ok       &= NearEqual( yp[0], check,  eps, eps);
     check     = 1.0 / 2.0;
     ok       &= NearEqual( yp[1], check,  eps, eps);
     // --------------------------------------------------------------------
     // reverse mode derivatives of \partial_t y_1 (t)
     vector<double> w(m * q), dw(n * q);
     w[0 * q + 0]  = 0.0;
     w[1 * q + 0]  = 0.0;
     w[0 * q + 1]  = 0.0;
     w[1 * q + 1]  = 1.0;
     dw        = f.Reverse(q, w);
     // derivative of y_1(u) = u_1 + u_0 * u_2 + u_2^2 / 2,  w.r.t. u
     // is equal deritative of \partial_u2 y_1(u) w.r.t \partial_u2 u
     check     = u2;
     ok       &= NearEqual( dw[0 * q + 1], check,  eps, eps);
     check     = 1.0;
     ok       &= NearEqual( dw[1 * q + 1], check,  eps, eps);
     check     = u0 + u2;
     ok       &= NearEqual( dw[2 * q + 1], check,  eps, eps);
     // derivative of \partial_t y_1 w.r.t u = u_0 + t,  w.r.t u
     check     = 1.0;
     ok       &= NearEqual( dw[0 * q + 0], check,  eps, eps);
     check     = 0.0;
     ok       &= NearEqual( dw[1 * q + 0], check,  eps, eps);
     check     = 1.0;
     ok       &= NearEqual( dw[2 * q + 0], check,  eps, eps);
     // --------------------------------------------------------------------
     // forward mode sparsity pattern for the Jacobian
     // f_u = [   1, 0,   1 ]
     //       [ u_2, 1, u_2 ]
     size_t i, j, p = n;
     CppAD::vectorBool r(n * p), s(m * p);
     // r = identity sparsity pattern
     for(i = 0; i < n; i++)
          for(j = 0; j < p; j++)
               r[i*n +j] = (i == j);
     s   = f.ForSparseJac(p, r);
     ok &= s[ 0 * p + 0] == true;
     ok &= s[ 0 * p + 1] == false;
     ok &= s[ 0 * p + 2] == true;
     ok &= s[ 1 * p + 0] == true;
     ok &= s[ 1 * p + 1] == true;
     ok &= s[ 1 * p + 2] == true;
     // --------------------------------------------------------------------
     // reverse mode sparsity pattern for the Jacobian
     q = m;
     s.resize(q * m);
     r.resize(q * n);
     // s = identity sparsity pattern
     for(i = 0; i < q; i++)
          for(j = 0; j < m; j++)
               s[i*m +j] = (i == j);
     r   = f.RevSparseJac(q, s);
     ok &= r[ 0 * n + 0] == true;
     ok &= r[ 0 * n + 1] == false;
     ok &= r[ 0 * n + 2] == true;
     ok &= r[ 1 * n + 0] == true;
     ok &= r[ 1 * n + 1] == true;
     ok &= r[ 1 * n + 2] == true;

     // --------------------------------------------------------------------
     // Hessian sparsity for y_1 (u) = u_1 + u_0 * u_2 + u_2^2 / 2
     s.resize(m);
     s[0] = false;
     s[1] = true;
     r.resize(n * n);
     for(i = 0; i < n; i++)
          for(j = 0; j < n; j++)
               r[ i * n + j ] = (i == j);
     CppAD::vectorBool h(n * n);
     h   = f.RevSparseHes(n, s);
     ok &= h[0 * n + 0] == false;
     ok &= h[0 * n + 1] == false;
     ok &= h[0 * n + 2] == true;
     ok &= h[1 * n + 0] == false;
     ok &= h[1 * n + 1] == false;
     ok &= h[1 * n + 2] == false;
     ok &= h[2 * n + 0] == true;
     ok &= h[2 * n + 1] == false;
     ok &= h[2 * n + 2] == true;

     // --------------------------------------------------------------------
     destroy_r();

     // Free all temporary work space associated with old_atomic objects.
     // (If there are future calls to user atomic functions, they will
     // create new temporary work space.)
     CppAD::user_atomic<double>::clear();

     return ok;
}

Input File: example/deprecated/old_usead_2.cpp