$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
Common Variables use by Multi-Threaded Newton Method

Purpose
This source code defined the common include files, defines, and variables that are used by the multi-newton method.

Source

# include <cmath>
# include <cstring>
# include "multi_newton.hpp"

namespace {

// number of threads, set by multi_newton_time.

// function we are finding zeros of, set by multi_newton_time
void (*fun_)(double x, double& f, double& df) = 0;

// convergence criteria, set by multi_newton_setup
double epsilon_ = 0.;

// maximum number of iterations, set by  multi_newton_setup
size_t max_itr_ = 0;

// length for all sub-intervals
double sub_length_ = 0.;

// structure with information for one thread
typedef struct {
// number of sub intervals (worker input)
size_t num_sub;
// beginning of interval (worker input)
double xlow;
// end of interval (worker input)
double xup;
// vector of zero candidates (worker output)
// after call to multi_newton_setup:    x.size() == 0
// after call to multi_newton_work:     x.size() is number of zeros
// after call to multi_newton_takedown: x.size() == 0
vector<double> x;
// false if an error occurs, true otherwise (worker output)
bool   ok;
} work_one_t;
// vector with information for all threads
// after call to multi_newton_setup:    work_all.size() == num_threads
// after call to multi_newton_takedown: work_all.size() == 0
// (use pointers instead of values to avoid false sharing)
vector<work_one_t*> work_all_;
}