![]() |
Prev | Next | multi_atomic_user |
atomic_user a_square_root
a_square_root(au, ay)
const ADvector& au
where
ADvector
is a
simple vector class
with elements
of type AD<double>
.
The size of
au
is three.
num_itr = size_t( Integer( au[0] ) )
for the number of Newton iterations in the computation of the square root
function. The component
au[0]
must be a
parameter
.
y_initial = au[1]
for the initial value of the Newton iterate.
y_squared = au[2]
for the value we are taking the square root of.
ADvector& ay
The size of
ay
is one and
ay[0]
is the square root of
y_squared
.
atomic_user
class.
// includes used by all source code in multi_atomic.cpp file # include <cppad/cppad.hpp> # include "multi_atomic.hpp" # include "team_thread.hpp" // namespace { using CppAD::thread_alloc; // fast multi-threading memory allocator using CppAD::vector; // uses thread_alloc class atomic_user : public CppAD::atomic_base<double> { public: // ctor atomic_user(void) : CppAD::atomic_base<double>("atomic_square_root") { } private: // forward mode routine called by CppAD virtual bool forward( size_t p , size_t q , const vector<bool>& vu , vector<bool>& vy , const vector<double>& tu , vector<double>& ty ) { # ifndef NDEBUG size_t n = tu.size() / (q + 1); size_t m = ty.size() / (q + 1); assert( n == 3 ); assert( m == 1 ); # endif // only implementing zero order forward for this example if( q != 0 ) return false; // extract components of argument vector size_t num_itr = size_t( tu[0] ); double y_initial = tu[1]; double y_squared = tu[2]; // check for setting variable information if( vu.size() > 0 ) { if( vu[0] ) return false; vy[0] = vu[1] || vu[2]; } // Use Newton's method to solve f(y) = y^2 = y_squared double y_itr = y_initial; for(size_t itr = 0; itr < num_itr; itr++) { // solve (y - y_itr) * f'(y_itr) = y_squared - y_itr^2 double fp_itr = 2.0 * y_itr; y_itr = y_itr + (y_squared - y_itr * y_itr) / fp_itr; } // return the Newton approximation for f(y) = y_squared ty[0] = y_itr; return true; } }; }