Prev Next Index-> contents reference index search external Up-> CppAD AD ADValued unary_standard_math exp exp.cpp ADValued-> Arithmetic unary_standard_math binary_math CondExp Discrete numeric_limits atomic unary_standard_math-> acos asin atan cos cosh exp log log10 sin sinh sqrt tan tanh abs acosh asinh atanh erf expm1 log1p sign exp-> exp.cpp exp.cpp Headings

$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
The AD exp Function: Example and Test
 # include <cppad/cppad.hpp> # include <cmath> bool exp(void) { bool ok = true; using CppAD::AD; using CppAD::NearEqual; double eps = 10. * std::numeric_limits<double>::epsilon(); // domain space vector size_t n = 1; double x0 = 0.5; CPPAD_TESTVECTOR(AD<double>) ax(n); ax[0] = x0; // declare independent variables and start tape recording CppAD::Independent(ax); // range space vector size_t m = 1; CPPAD_TESTVECTOR(AD<double>) ay(m); ay[0] = CppAD::exp(ax[0]); // create f: x -> y and stop tape recording CppAD::ADFun<double> f(ax, ay); // check value double check = std::exp(x0); ok &= NearEqual(ay[0], check, eps, eps); // forward computation of first partial w.r.t. x[0] CPPAD_TESTVECTOR(double) dx(n); CPPAD_TESTVECTOR(double) dy(m); dx[0] = 1.; dy = f.Forward(1, dx); ok &= NearEqual(dy[0], check, eps, eps); // reverse computation of derivative of y[0] CPPAD_TESTVECTOR(double) w(m); CPPAD_TESTVECTOR(double) dw(n); w[0] = 1.; dw = f.Reverse(1, w); ok &= NearEqual(dw[0], check, eps, eps); // use a VecAD<Base>::reference object with exp CppAD::VecAD<double> v(1); AD<double> zero(0); v[zero] = x0; AD<double> result = CppAD::exp(v[zero]); ok &= NearEqual(result, check, eps, eps); return ok; } 
Input File: example/general/exp.cpp