$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
# include <cppad/cppad.hpp> bool EqualOpSeq(void) { bool ok = true; using CppAD::AD; using CppAD::EqualOpSeq; // domain space vector size_t n = 1; double x0 = 1.; CPPAD_TESTVECTOR(AD<double>) x(n); x[0] = x0; // declare independent variables and start tape recording CppAD::Independent(x); AD<double> a = 1. + x[0]; // this variable is 1 + x0 AD<double> b = 2. * x[0]; // this variable is 2 * x0 // both a and b are variables ok &= (a == b); // 1 + 1 == 2 * 1 ok &= ! EqualOpSeq(a, b); // 1 + x[0] != 2 * x[0] // range space vector size_t m = 1; CPPAD_TESTVECTOR(AD<double>) y(m); y[0] = a; // both y[0] and a are variables EqualOpSeq(y[0], a); // 2 * x[0] == 2 * x[0] // create f: x -> y and stop tape recording CppAD::ADFun<double> f(x, y); // both a and b are parameters (after the creation of f above) ok &= EqualOpSeq(a, b); // 1 + 1 == 2 * 1 return ok; }