![]() |
Prev | Next | eigen_array.cpp | Headings |
# include <cppad/cppad.hpp>
# include <cppad/example/cppad_eigen.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <Eigen/Dense>
bool eigen_array(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
using Eigen::Matrix;
using Eigen::Dynamic;
//
typedef Matrix< AD<double> , Dynamic, 1 > a_vector;
//
// some temporary indices
size_t i, j;
// domain and range space vectors
size_t n = 10, m = n;
a_vector a_x(n), a_y(m);
// set and declare independent variables and start tape recording
for(j = 0; j < n; j++)
a_x[j] = double(1 + j);
CppAD::Independent(a_x);
// evaluate a component wise function
a_y = a_x.array() + a_x.array().sin();
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// compute the derivative of y w.r.t x using CppAD
CPPAD_TESTVECTOR(double) x(n);
for(j = 0; j < n; j++)
x[j] = double(j) + 1.0 / double(j+1);
CPPAD_TESTVECTOR(double) jac = f.Jacobian(x);
// check Jacobian
double eps = 100. * CppAD::numeric_limits<double>::epsilon();
for(i = 0; i < m; i++)
{ for(j = 0; j < n; j++)
{ double check = 1.0 + cos(x[i]);
if( i != j )
check = 0.0;
ok &= NearEqual(jac[i * n + j], check, eps, eps);
}
}
return ok;
}