CppAD: A C++ Algorithmic Differentiation Package  20171217
template<class Base >
 void CppAD::local::forward_erf_op ( size_t p, size_t q, size_t i_z, const addr_t * arg, const Base * parameter, size_t cap_order, Base * taylor )
inline

Forward mode Taylor coefficient for result of op = ErfOp.

The C++ source code corresponding to this operation is

```     z = erf(x)
```
Template Parameters
 Base base type for the operator; i.e., this operation was recorded using AD< Base > and computations by this routine are done using type Base.
Parameters
 p lowest order of the Taylor coefficients that we are computing. q highest order of the Taylor coefficients that we are computing. i_z variable index corresponding to the last (primary) result for this operation; i.e. the row index in taylor corresponding to z. The auxillary results are called y_j have index i_z - j. arg arg[0]: is the variable index corresponding to x. arg[1]: is the parameter index corresponding to the value zero. [2]: is the parameter index correspodning to the value 2 / sqrt(pi). parameter parameter[ arg[1] ] is the value zero, and parameter[ arg[2] ] is the value 2 / sqrt(pi). cap_order maximum number of orders that will fit in the `taylor` array. taylor Input: taylor [ arg[0] * cap_order + k ] for k = 0 , ... , q, is the k-th order Taylor coefficient corresponding to x. Input: taylor [ i_z * cap_order + k ] for k = 0 , ... , p - 1, is the k-th order Taylor coefficient corresponding to z. Input: taylor [ ( i_z - j) * cap_order + k ] for k = 0 , ... , p-1, and j = 0 , ... , 4, is the k-th order Taylor coefficient corresponding to the j-th result for z. Output: taylor [ (i_z-j) * cap_order + k ], for k = p , ... , q, and j = 0 , ... , 4, is the k-th order Taylor coefficient corresponding to the j-th result for z.
Checked Assertions
• NumArg(op) == 3
• NumRes(op) == 5
• q < cap_order
• p <= q
• std::numeric_limits<addr_t>::max() >= i_z + 2

Definition at line 96 of file erf_op.hpp.

Referenced by forward1sweep().