Prev Next double_sparse_jacobian.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Double Speed: Sparse Jacobian

Specifications
See link_sparse_jacobian .

Implementation
# include <cppad/utility/vector.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/speed/sparse_jac_fun.hpp>

// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;

bool link_sparse_jacobian(
     size_t                           size     ,
     size_t                           repeat   ,
     size_t                           m        ,
     const CppAD::vector<size_t>&     row      ,
     const CppAD::vector<size_t>&     col      ,
           CppAD::vector<double>&     x        ,
           CppAD::vector<double>&     jacobian ,
           size_t&                    n_sweep  )
{
     if(global_option["onetape"]||global_option["atomic"]||global_option["optimize"]||global_option["boolsparsity"])
          return false;
     // -----------------------------------------------------
     // setup
     using CppAD::vector;
     size_t i;
     size_t order = 0;          // order for computing function value
     size_t n     = size;       // argument space dimension
     vector<double> yp(m);      // function value yp = f(x)

     // ------------------------------------------------------
     while(repeat--)
     {     // choose a value for x
          CppAD::uniform_01(n, x);

          // computation of the function
          CppAD::sparse_jac_fun<double>(m, n, x, row, col, order, yp);
     }
     for(i = 0; i < m; i++)
          jacobian[i] = yp[i];

     return true;
}

Input File: speed/double/sparse_jacobian.cpp