Prev Next cppad_ode.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
CppAD Speed: Gradient of Ode Solution

Specifications
See link_ode .

Implementation
# include <cppad/cppad.hpp>
# include <cppad/speed/ode_evaluate.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cassert>

// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;

bool link_ode(
     size_t                     size       ,
     size_t                     repeat     ,
     CppAD::vector<double>      &x         ,
     CppAD::vector<double>      &jacobian
)
{
     // --------------------------------------------------------------------
     // check global options
     const char* valid[] = { "memory", "onetape", "optimize"};
     size_t n_valid = sizeof(valid) / sizeof(valid[0]);
     typedef std::map<std::string, bool>::iterator iterator;
     //
     for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
     {     if( itr->second )
          {     bool ok = false;
               for(size_t i = 0; i < n_valid; i++)
                    ok |= itr->first == valid[i];
               if( ! ok )
                    return false;
          }
     }
     // --------------------------------------------------------------------
     // optimization options: no conditional skips or compare operators
     std::string options="no_compare_op";
     // --------------------------------------------------------------------
     // setup
     assert( x.size() == size );
     assert( jacobian.size() == size * size );

     typedef CppAD::AD<double>       ADScalar;
     typedef CppAD::vector<ADScalar> ADVector;

     size_t j;
     size_t p = 0;              // use ode to calculate function values
     size_t n = size;           // number of independent variables
     size_t m = n;              // number of dependent variables
     ADVector  X(n), Y(m);      // independent and dependent variables
     CppAD::ADFun<double>  f;   // AD function

     // -------------------------------------------------------------
     if( ! global_option["onetape"] ) while(repeat--)
     {     // choose next x value
          uniform_01(n, x);
          for(j = 0; j < n; j++)
               X[j] = x[j];

          // declare the independent variable vector
          Independent(X);

          // evaluate function
          CppAD::ode_evaluate(X, p, Y);

          // create function object f : X -> Y
          f.Dependent(X, Y);

          if( global_option["optimize"] )
               f.optimize(options);

          // skip comparison operators
          f.compare_change_count(0);

          jacobian = f.Jacobian(x);
     }
     else
     {     // an x value
          uniform_01(n, x);
          for(j = 0; j < n; j++)
               X[j] = x[j];

          // declare the independent variable vector
          Independent(X);

          // evaluate function
          CppAD::ode_evaluate(X, p, Y);

          // create function object f : X -> Y
          f.Dependent(X, Y);

          if( global_option["optimize"] )
               f.optimize(options);

          // skip comparison operators
          f.compare_change_count(0);

          while(repeat--)
          {     // get next argument value
               uniform_01(n, x);

               // evaluate jacobian
               jacobian = f.Jacobian(x);
          }
     }
     return true;
}

Input File: speed/cppad/ode.cpp