$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
 # include <cppad/cppad.hpp> # include <complex> // define abbreviation for double precision complex typedef std::complex<double> Complex; namespace { // a unary bool function with Complex argument static bool IsReal(const Complex &x) { return x.imag() == 0.; } // a binary bool function with Complex arguments static bool AbsGeq(const Complex &x, const Complex &y) { double axsq = x.real() * x.real() + x.imag() * x.imag(); double aysq = y.real() * y.real() + y.imag() * y.imag(); return axsq >= aysq; } // Create version of IsReal with AD<Complex> argument // inside of namespace and outside of any other function. CPPAD_BOOL_UNARY(Complex, IsReal) // Create version of AbsGeq with AD<Complex> arguments // inside of namespace and outside of any other function. CPPAD_BOOL_BINARY(Complex, AbsGeq) } bool BoolFun(void) { bool ok = true; CppAD::AD<Complex> x = Complex(1., 0.); CppAD::AD<Complex> y = Complex(1., 1.); ok &= IsReal(x); ok &= ! AbsGeq(x, y); return ok; }