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1 Introduction

Multifario (MF) is a package for continuing solution manifolds of nonlinear
systems of equations. The algorithm is described in some detail in the paper:

Henderson, M. E., ”Multiparameter Continuation: Computing
Implicitly Defined Surfaces”, International Journal of Bifurcation
and Chaos, Vol. 12, No. 3 (2002) pp. 451–476.

This document is a reference to the implementation that was used for the
examples in that paper. An example, of a clamped rod, has been submitted
for publication –

Henderson, M. E., Neukirch, S., ”Classification of the spatial equi-
libria of the clamped elastica: numerical continuation of the solu-
tion set”, submitted to International Journal of Bifurcation and
Chaos.

A preprint of this last can be found at

http://lcvmsun9.epfl.ch/~neukirch/publi.html
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1.1 Overview

The continuation algorithm takes an implicitly defined manifold M (i.e.
points which lie in IRn and satisfy a system of equations F (u) = 0), and
computes an atlas of charts which cover the component of M which is con-
nected to a point u0 by paths entirely in Ω (a finite subset of IRn).

The continutaion is based on the following loop, which is the basic flow
of any continuation method:

1. Let m = 0, M0 = ∅.

2. Build a neighborhood of M about um.

3. Merge the neighborhood into Mm.

4. Select a new point um+1 in Ω which is near the boundary of Mm.

5. Incrementm and repeat until there are no points left near the boundary
and in Ω.

Of course, the manifold must be stored in such a way that a point near the
boundary can be found, and which can be extended by adding neighborhoods.
The data structure used is an “atlas of charts”, with each chart being a
mapping of a polyhedral domain in the tangent space onto the manifold.
The only point stored is the center of the chart, but the chart mapping can
be evaluated at any point in the polyhedral domain to get whatever point is
needed.

The code is organized very much in this same way. There are several
data structures, with routines to build and access them. One represents
the Implicitly Defined Manifold, and with it the user provides a means of
solving the equations F (u) = 0. Another represents the Atlas of Charts, and
contains the code to find a point on the boundary and extend the atlas by
adding a chart. Then there are several smaller data structures for vectors,
matrices, and providing norms and inner products. And finally, there is a
Continuation Method, which allows the various parameters of the algorithm
to be changed, and provides a routine to compute an Atlas of Charts from
an Implicitly Defined Manifold.
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1.2 Software Architecture

This code is what is sometimes called a framework. It does not attempt to
provide “the best” iterative solver for solving nonlinear systems, or “the best“
collection of inflated systems, singular point detection method or branch
switching algorithm. These are all dependant on the particular problem
being solved. Instead it provides a “Continuation Method”, that can be used
with any iterative solver, singular point detection and so forth. The idea is
that the code can be packaged with particular solvers etc. for different broad
classes of problem. For example, AUTO for dynamical systems, or LOCA
for PDE’s.

At the heart is a data structure for storing and manipulating an “atlas
of charts”. Each chart of a basis for the tangent space of the manifold at
the center of the chart, and a polyhedral domain in the tangent space. The
manifold is constructed by adding charts to an atlas and updating the poly-
hedral domains in such a way that the orthogonal projection of the domains
onto the manifold are a good approximation to a tiling of the manifold.

The continuation algorithm requires an initial solution and methods to
project a point near M onto M and to compute the tangent space of M at
a point. These and the other basic operations have been partitioned among
several basic objects, which serve to hide the details of one of several imple-
mentations of the object from the code, presenting a uniform interface to the
functions the object provides. The basic objects correspond to the objects
in the definition of the connected component of M that we are computing:

MFImplicitMF Represents M , Provides the equations and methods for
projecting a point onto the manifold, finding the tangent space, and
estimating the curvature.

MFNRegion Represents Ω. Provides a method for testing a point for being
inside or out.

MFNVector Represents u, a vector in some n-dimensional space. Provides
access to individual coordinates and methods for addition and scalar
multiplication.

MFNSpace Represents the embedding space (in which the n-vectors live).
Provides inner product, distance, direction, etc. We did this to support
user defined norms and such things as periodic variables, e.g. if the
solution includes a parameter which is an angle, or is symmetric.
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MFAtlas Represents a collection of charts. Each chart has a center (a point
on the manifold), a tangent space, radius, and a list of neighboring
charts.

MFContinuationMethod The algorithm for continuation. Provides a rou-
tine which computes an MFAtlas from an MFImplicitMF, an MFNRe-
gion and a number of initial points (MFNVector’s). Currently there is
only one algorithm (mine), but the idea is that there could be several,
each with its own parameters and so forth. Also, there could be several
problems being solved, using different parameters for the algorithm.

1.3 Create/Free – reference counting

Instances of these objects are created with routines (constructors or “ctors”)
like MFCreateNCube, which creates an MFNRegion. The user interacts with
the object through “member functions” like MFNRegionInterior(Omega,u),
which tests if u is in Omega. When no longer needed, the instance is released
with a corresponding routine like MFFreeNRegion (a desctructor, or dtor).

Reference counting is used, so that routines may store pointers to objects
and have their deletion defered until the pointer is no longer needed. The
ctor returns an object with a reference count of one. The destructor (the Free
routine) subtracts one from the reference count, and if the reference count is
zero the space allocated to the object is released. When an object is passed to
a subroutine, and that subroutine stores a pointer to the object, the reference
count is increased by one. The destructor for the object which stored the
pointer must then invoke the dtor for the stored object. If everyone follows
the rules, there are no memory leaks, and objects remain in memory until
they are no longer needed.

1.4 Base classes – choosing the constructor

The MFImplicitMF, MFNRegion, MFNSpace, and MFNVector objects are
base classes. That is, they don’t represent a single data structure for storing
the object they represent, but could be one of several. The user choses which
data structure by choosing the constructor that is called to create an instance
of the object. The constructor calls e.g. MFCreateNVectorBaseClass(), then
fills in various routines that ”Set” a pointer to the data structure that im-
plements the object (e.g. MFNVectorSetData), and routines to perform the
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operations on the object. When the user calls, e.g. MFNVAdd, to add two
vectors, the routine supplied in the ctor is called ad passed the data pointers
for the two vectors to add and the data pointer for the vector where the result
is to be placed. Note that binary operations like ”add” pretty much have to
be passed three vectors of the same type (one is for the result). Otherwise
there are up to three different ”add” routines that could be used. One would
be chosen, and would have to use routines that are common to all vectors to
get and set the components of the other two vectors.

1.5 Read/Write

All classes provide a ”Write” and a ”Read” routine. The idea is that the
entire data structure can be written to disk, then read in by another program
and completely reconstructed. The difficult part is reading back in user
implementations of the base classes. The base class writes the Id of the class
to disk, then calls the ”Write” routine to allow the class to write it’s data.
When being read, however, the Id indicates what the class is, but the base
class has no idea what ctor to call based on that string. For now the ”Read”
routine is not stored as a pointer in the class, but is a bare subroutine, and
the base class ”Read” has a case statement that decides, based on the Id,
which ctor to call. In the future I should have some way of registering a ctor
for a given Id. But then I need to call something to cal the routine that does
the registers ... Dynamic loading might do be a way to do it, but supporting
DLL’s across a range of platforms doesn’t look like fun. Static initializers in
C++ would work as well, but then the user would have to give up the ”main”
program, and I would resort to a C++ main program that calls something
Kludgy like ”MF Main”. Bleech.

So write works if classes that inmplement the base classes provide a rea-
sonable ”WriteData” routine, but the ”Read” requires editing the base class
code to make an entry to the case statement.

1.6 Print

Most routines have a ”Print”, e.g. MFPrintNVector(FILE*,MFNVector).
This does it’s best to give a formatted representation of the object, and can
be helpful in debugging. The Print routines are declared in the MFPrint.h
header file.
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2 Installation

The IMF’s provided with the distribution require Lapack, and the makefile
assumes that it is available in a library called liblapack.a . The blas will also
be required. To install:

1. edit the file share/config.site to give local lib and include dirs where
Linpack and Lapack can be found.

2. run the configure script ”./configure”

3. create the libraries (installed in lib) ”make”

4. create the utilities (installed in bin) ”make utilities”

5. create the examples (installed in bin) ”make examples”

The documentation is in Doc/MF.tex

3 Examples

Several example programs are provided.

ComputeLine A rather trivial example: computes a line segment (n = 1,
k = 1). Uses the NSpace manifold.

ComputePlane Computes a plane (n = 2, k = 2). Uses the MFNSpace
manifold. (Euclidean n-space).

ComputePlaneClip Computes a plane (n = 2, k = 2). Uses the MFNSpace
manifold. (Euclidean n-space). Shows how to use the ”clipping” of the
chart polyhedra to make the result look nicer.

Compute3Space Computes the interior of a cube (n = 3, k = 3). Uses the
NSpace manifold.

Compute4Space Computes the interior of a hypercube (n = 4, k = 4).
Uses the NSpace manifold.

ComputeCircle Computes a circle (n = 2, k = 1). Uses the String interface
to the MFAlgebraic manifold.
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ComputeSphere Computes a sphere (n = 3, k = 2). Uses the String
interface to the MFAlgebraic manifold.

ComputeSphereSub Computes a sphere (n = 3, k = 2). Uses the Sub-
routine interface to the MFAlgebraic manifold. Uses two initial points,
and limits the continuation to 100 charts. Also override the projection
used for writing the output to the plotfile.

ComputeTorus Computes a torus (n = 3, k = 2). Uses the String interface
to the MFAlgebraic manifold.

ComputeGenusTwo Computes a genus two surface (n = 3, k = 2). Uses
the String interface to the MFAlgebraic manifold. Shows how to use
MFIMFProject to projection an initial point near M onto M.

ComputeSpherePacking Computes a set of spheres of dimension n lying
on and covering the surface of a unit sphere (k = n− 1).

ComputeTranscritical Computes a pair of intersecting surfaces (n = 3,
k = 2). Demonstrates the detection of singular lines and continuing
through them.

ComputeCusp Computes the complex cusp u(u2 − λ) = µ (n = 4, k = 2).
Demonstrates the detection of singular lines and continuing through
them.

ComputeTaylor24 Computes a model of mode interactions – a pair of
cubic equations (n = 4, k = 2). Uses the String interface to the
MFAlgebraic manifold. Has several sheets bifurcating from a trivial
sheet.

ComputeTaylorA Computes a model of (2,4) mode interactions from John
Bolstad’s Taylor-Couette code – a pair of cubic equations (n = 4, k =
2). Uses the String interface to the MFAlgebraic manifold. Has several
sheets bifurcating from a trivial sheet.

ComputeDomokos Computes the equilibrium configurations of a clamped
elastica, from the paper:

Domokos, G. ”Global Description of Elastic Bars”. ZAMM
– Z. angew. Math. Mech. 74 (1994) 4, T 289–T291.
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Uses the MFTPBVP manifold, with k = 1. Demonstrates secondary
bifurcation from a sequence of pitchfork bifurcations from a trivial
branch.

ComputeRod Computes the equilibrium configurations of a clamped elas-
tica. Uses the MFTPBVP manifold.

To build the examples run “make examples”. For example, to run Compute-
Sphere use the command “bin/ComputeSphere ¿ Sphere.out” (the output
is currently a bit too verbose for stdout). This produces a text file called
Sphere.plotfile, which can be rendered, or converted to a file that can be
rendered. (See the next Section.)

4 Utilities

The output of the examples is a plotfile. The plotfile is a set of polyhedra in
n-space representing the polyhedra in the tangent spaces. The centerfile is a
list of the points ui (the centers of the polyhedra).

The user can also get the output in the form of an atlas file, which is a
full blown dump of the atlas data structure, or as a centerfile (just the points
ui). More on this later.

I usually use Open DataExplorer (www.opendx.org) to interact with the
results. I also have used Pov-Ray (a nice, free ray-tracer), and a z-buffer
renderer that I wrote a long time ago (called ”sh”) which is included in this
distribution. This last produces a tiff file (if you have libtiff – www.libtiff.org),
or a postscript file.

Several postprocessing programs are provided for drawing atlas files, and
converting plotfiles to DX, POV-Ray or VBM files:

DrawPlotfile Creates a Tiff or Postscript file with a rendering of a plotfile.

PlotfileToDX Creates a DataExplorer (available at www.opendx.org) file
from the plotfile. A sample DX net is included (genericDXNet.net and
genericDXNet.cfg) that imports a .dx file generated by PlotfileToDX
and renders it.

PlotfileToVBM Creates a VBM (available from Randy Paffenroth) file
from the plotfile.
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PlotfileToPOV Creates a POV-Ray (available at www.povray.org) file from
the plotfile. A sample .pov control file (genericPOVRay.pov) is included
which sets up a camera and colors and renders a .pov file generated by
PlotfileToPOV.

DrawAtlas Creates a Tiff-file (by choice if libtiff – www.libtiff.org is avail-
able) or a Postscript file (if it isn’t) with a rendering of an atlas file.

DrawAtlasTS Creates a Tiff or Postscript file with a rendering of an atlas
file (with charts drawn in the tangent spaces, faster than DrawAtlas).

DrawDual Creates a Tiff or Postscript file with a rendering of the dual
triangulation of the atlas file.

DualToDX Creates a DataExplorer file with the dual triangulation of the
atlas file.

To create an image of the sphere run “bin/DrawPlotfile Sphere”. This
looks in the current directory for a file called “Sphere.view” which contains
a viewpoint and extent for the picture to be drawn. If the file can’t be found
defaults are used. Several options are available to the Draw commands.
“bin/DrawPlotfile -help” will print a description of the options.

5 Example – computing a sphere, the string

interface to MFAlgebraic manifolds

You probably want to begin by modifying one of the provided examples.
Below we dissect the ComputeSphere example, which should be enough to
get you started. This example illustrates most of the routines needed to find
a representation of an implicitly defined manifold as an atlas of charts. It can
be found in src/ComputeSphere.c. A slightly different version, which uses
subroutines to define the sphere can be found in in src/ComputeSphereSub.c.

First we include the header file which defines the interfaces to the Atlas
and other objects, and declare various variables.

01 #include <MFAtlas.h>

02

03 int main(int argc, char *argv[])

04 {

9



Figure 1: The output from the ComputeSphere example.
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05 MFImplicitMF M;

06 MFNRegion Omega;

07 MFAtlas A;

08 MFNVector u0;

09 MFContinuationMethod H;

10

Next an MFImplicitMF object, which describes the problem, is created in
lines 11–12 (below). The corresponding “free” is below at line 34. The
“Algebraic” manifold is created using the ctor which takes an expression
giving n−k functions defining the function F . The first argument is a list of
variables, and the second is a list of functions. The ctor counts the number
of variables to determine n, and the number of functions to get n − k and
thus k.

11 M=MFIMFCreateAlgebraicExpression("[x,y,z]",

12 "[x**2+y**2+z**2-1.]");

The region of interest Ω, is created at line 13. The corresponding “free” is
below at line 35. In this case I’ve chosen a cube centered at the origin if
radius 1.1 (i.e. the coordinates of the corners are (±1.1,±1.1,±1.1).

13 Omega=MFNRegionCreateHyperCube(3,1.1);

14

The initial point u0 is created at line 15 and the coordinates are set in lines
16–18 to those of the initial point (0, 1, 0). The vector is “free’d” below at
line 36.

15 u0=MFCreateNVector(3);

16 MFNVSetC(u0,0, 0.);

17 MFNVSetC(u0,1, 1.);

18 MFNVSetC(u0,2, 0.);

With these objects we have provided enough information to create the man-
ifold. Before that we choose which algorithm to use by creating H at line 20.
It is “free’d” at line 37. In lines 21–27 we set some parameters that control
how the algorithm works. Line 21 sets “epsilon”, which is the maximum
allowed distance between the tangent space and the manifold, which controls
the accuracy and the size of the chart domains. At line 22 we say that the
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algorithm should continue until the entire manifold is computed (the first
time it might be wise to set a moderate number of charts, so that you don’t
wait forever to get a result). At line 23 we ask for some output (to stdout)
indicating the progress of the computation. Line 24 says to “page out” charts
once they are no longer needed. For the sphere this is probably silly, but for
large problems the memory required to store all charts is large. At line 25
we ask that the output be in the form of a “plotfile” on disk, and at line 26
we say that we don’t want the chart centers in a disk file. And in line 27 we
give a prefix for files (e.g. the plotfile will be Sphere.plotfile).

19

20 H=MFCreateHendersonsMethod();

21 MFHendersonsMethodSetEpsilon(H,.1);

22 MFHendersonsMethodSetMaxCharts(H,-1);

23 MFHendersonsMethodSetVerbose(H,1);

24 MFHendersonsMethodSetPage(H,1);

25 MFHendersonsMethodSetDumpToPlotFile(H,1);

26 MFHendersonsMethodSetDumpToCenterFile(H,0);

27 MFHendersonsMethodSetFilename(H,"Sphere");

Finally at line 29 the manifold is passed to the routine, MFComputeAtlas,
which creates and returns an Atlas, which is “free’d” below at line 33.

28

29 A=MFComputeAtlas(H,M,Omega,u0);

Since the output is being written to a plotfile as we go along we don’t do
anything with the Atlas, just close it (line 31), which makes sure that all of
the polyhedra have been written to the plotfile.

30

31 MFCloseAtlas(H,A);

And finally, we free all the objects we Create’d. Note that MFComputeAtlas
creates an atlas and returns it, so that must be free’d as well.

32

33 MFFreeAtlas(A);

34 MFFreeImplicitMF(M);

35 MFFreeNRegion(Omega);
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36 MFFreeNVector(u0);

37 MFFreeHendersonsMethod(H);

38

39 return 0;

40 }

Of course, when main ends all the storage is free’d anyway, but this is a good
habit.

6 Example – solving a two point boundary

value problem, the MFTPBVP manifold

Below we dissect the ComputeDomokos example, which should be enough to
get you started with the TPBVP solver. The ComputeRod is more realistic,
but the solution has sheets with symmetries, and the example separates these
by controlling crossings of the planes of symmetry. The problem is from the
paper

Domokos, G. ”Global Description of Elastic Bars”. ZAMM – Z.
angew. Math. Mech. 74 (1994) 4, T 289–T291.

and is a noninear eigenvalue problem – a two-point boundary value problem
for three functions (α(x),M(x), y(x)) and two parameters (H, V ). There are
four boundary conditions, so we expect the solutions to be curves (and they
are).

α′ = M
M ′ = −H sinα+ V cosα
y′ = sinα

α(0) = α(1) = 0
y(0) = y(1) = 0

When V = 0 there is a trivial solution (α(x) = 0,M(x) = 0, y(x) = 0), and
a linear analysis indicates bifurcations from the trivial solution.

First we include the header file which defines the interfaces to the Atlas
and other objects, and declare various variables.

01 #include <MFAtlas.h>

02 #include <math.h>
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03 int MFDomokosProjectToDraw(MFNVector,double*,void*);

04 void MFTPBVPSetStability(MFImplicitMF,MFNVector,MFNKMatrix,

void*);

05 int MFStopTPBVP(MFImplicitMF,MFNVector,MFNKMatrix,MFNVector,

MFNKMatrix,void*);

06 #define PI 3.14159265358979323846264338327950288

07

08 #define NX 100

09

10 int main(int argc, char *argv[])

11 {

12 int i,j,n;

13 MFImplicitMF M;

14 MFNRegion Omega;

15 MFAtlas S;

16 MFNVector ug;

17 MFNVector u0;

18 MFNKMatrix Tan;

19 MFContinuationMethod H;

20 double p0[2];

21 double p1[2];

22 double *r0;

23 double dr;

24 double xy0[3];

25 int nx=NX;

26 int np=2;

27 int nu=3;

28 int nbc=4;

29 int nic=0;

30 int k;

Next an MFImplicitMF object, which describes the problem, is created. The
corresponding “free” is below at line 66. The “TPBVP” manifold is cre-
ated using the ctor which takes subroutines giving 4 functions defining the
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boundary value problem. This is of the form

u′ = f(t, u, p, u0, p0)
a(u(0), u(1), p, u0(0), u0(1), p0) = 0∫ 1

0
l(t, u(t), p, u0(t), p0)d t+m(p, p0) = 0

The routines are passed as triples (except for m), of the routine to evaluate
the function, and it’s derivatives w.r.t. u and the parameters p. The pair u0
and p0 are a nearby function and parameter (for imposing phase constraints).

31 k=nu+np-nbc-nic;

32 M=MFIMFCreateTPBVP(k,nx,nu,np,f,fu,fl,nbc,a,au,al,nic,

l,lu,ll,m,ml);

33 MFIMFSetR(M,6./(4*PI*PI));

34 MFIMFSetProjectForDraw(M,MFDomokosProjectToDraw);

35 MFIMFSetSetStability(M,MFTPBVPSetStability);

36 MFIMFSetStop(M,MFStopTPBVP);

The call to MFIMFSetR defines a maximum radius, which is needed on the
trivial branch (where the curvature is zero, which would give an infinite ra-
dius). The call to MFIMFSetProjectForDraw provides a routine (MFDomokos-
ProjectToDraw), which projects the full solution into a smaller space for
the Plotfile. The routines MFIMFSetSetStability and MFIMFSetStop are a
clumsy way of stating that bifurcations are to be located. By default the
MFTPBVP does not do this.

The region of interest Ω, is created at line 39. The corresponding “free”
is below at line 67. The MFNRegionCreateTPBVP is just an interval on each
of the parameters (p0, p1), and on the norm of u, (−200, 200).

37 p0[0]= -600./(4*PI*PI); p1[0]=600./(4*PI*PI); /* H */

38 p0[1]= -20.; p1[1]=20.; /* V */

39 Omega=MFNRegionCreateTPBVP(nx,nu,np,p0,p1,-200.,200.);

Next an initial point u0 is created. This is done by defining a mesh in the
array r0, (lines 40–42) and solving the initial value problem to get a guess at
a solution ug (line 48). The routine MFTPBVPIntegrateForInitialSolution
solves the initial value problem. Its arguments are xy0, the initial conditions,
p0 the parameters, and the mesh r0.

Once we have a guess we find the tangent space at the guess, and project
the guess to get the initial point u0. The vector is “free’d” below at line 68.
The guess is “free’d” at line 52, and the tangent at line 5 at line.
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40 r0=(double*)malloc((nx+1)*sizeof(double));

41 dr=1./(nx-2);

42 for(i=0;i<nx+1;i++)r0[i]=(i-.5)*dr;

43 xy0[0]=0.;

44 xy0[1]=0.;

45 xy0[2]=0.;

46 p0[0]=1.15;

47 p0[1]=0.;

48 ug=MFTPBVPIntegrateForInitialSolution(M,xy0,p0,r0);

49 Tan=MFIMFTangentSpace(M,ug);

50 u0=MFCreateNVector(n);

51 MFFreeNKMatrix(Tan);

52 MFFreeNVector(ug);

With these objects we have provided enough information to create the
manifold. Before that we choose which algorithm to use by creating H at
line 53. It is “free’d” at line 69. In lines 45–62 we set some parameters
that control how the algorithm works. Line 54 sets “epsilon”, which is the
maximum allowed distance between the tangent space and the manifold,
which controls the accuracy and the size of the chart domains. The DotMin

set at line 55 says that branches whose dot product of tangents is bigger
than this number are the same (bifurcating branchs make an angle bigger
than the arccos of the dotmin). At line 56 we say that the algorithm should
continue until the entire manifold is computed (the first time it might be
wise to set a moderate number of charts, so that you don’t wait forever to
get a result). At line 57 we ask for some output (to stdout) indicating the
progress of the computation. Line 58 says to “page out” charts once they
are no longer needed. For the sphere this is probably silly, but for large
problems the memory required to store all charts is large. At line 59 we ask
that the output be in the form of a “plotfile” on disk, and at line 60 we say
that we don’t want the chart centers in a disk file. At line 61 we ask that
for 50 times when we rnu out of manifold we invoke the branch switcher to
move on to another branch. (50 is just a large enough number – we want
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them all.) Fnally in line 62 we give a prefix for files (e.g. the plotfile will be
Domokos.plotfile).

53 H=MFCreateHendersonsMethod();

54 MFHendersonsMethodSetEpsilon(H,.03);

55 MFHendersonsMethodSetDotMin(H,.9);

56 MFHendersonsMethodSetMaxCharts(H,-1);

57 MFHendersonsMethodSetVerbose(H,1);

58 MFHendersonsMethodSetPage(H,1);

59 MFHendersonsMethodSetDumpToPlotFile(H,1);

60 MFHendersonsMethodSetDumpToCenterFile(H,0);

61 MFHendersonsMethodSetBranchSwitch(H,50);

62 MFHendersonsMethodSetFilename(H,"Domokos");

Finally at line 63 the manifold is passed to the routine, MFComputeAtlas,
which creates and returns an Atlas, which is “free’d” below at line 33.

63 S=MFComputeAtlas(H,M,Omega,u0);

Since the output is being written to a plotfile as we go along we don’t do
anything with the Atlas, just close it (line 64), which makes sure that all of
the polyhedra have been written to the plotfile.

64 MFCloseAtlas(H,S);

And finally, we free all the objects we Create’d. Note that MFComputeAtlas
creates an atlas and returns it, so that must be free’d as well.

65 MFFreeAtlas(S);

66 MFFreeImplicitMF(M);

67 MFFreeNRegion(Omega);

68 MFFreeNVector(u0);

69 MFFreeHendersonsMethod(H);

70 return 0;

71 }
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Of course, when main ends all the storage is free’d anyway, but this is a good
habit.

Finally, there are the routines defining the problem and the projection.
These could be in a separate library, or in the same file. The differential
equation –

void f(double r,int nu,double *u,int np,double *p,

double *u0,double *l0,double *f)

{

f[0]=2*PI*u[1];

f[1]=-p[0]*sin(2*PI*u[0])+p[1]*cos(2*PI*u[0]);

f[2]=sin(2*PI*u[0]);

return;

}

void fu(double r,int nu,double *u,int np,double *p,

double *u0,double *l0,double *fu)

{

int i;

for(i=0;i<nu*nu;i++)fu[i]=0.;

fu[0+nu*1]=2.*PI;

fu[1+nu*0]=-2*PI*p[0]*cos(2*PI*u[0])-2*PI*p[1]*sin(2*PI*u[0]);

fu[2+nu*0]=2*PI*cos(2*PI*u[0]);

return;

}

void fl(double r,int nu,double *u,int np,double *p,

double *u0,double *l0,double *fl)

{

int i;

for(i=0;i<nu*np;i++)fl[i]=0.;

fl[1+nu*0]=-sin(2*PI*u[0]);

fl[1+nu*1]= cos(2*PI*u[0]);

return;

}
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void a(int nbc,int nu,double *uL,double *uR,int np,double *p,

double *u0L,double *u0R,double *l0,double *a)

{

a[0]=uL[0];

a[1]=uR[0];

a[2]=uL[2];

a[3]=uR[2];

return;

}

void au(int nbc,int nu,double *uL,double *uR,int np,double *p,

double *u0L,double *u0R,double *l0,double *au)

{

int i;

for(i=0;i<nbc*2*nu;i++)au[i]=0.;

au[0+nbc*(0+0*nu)]=1.;

au[1+nbc*(0+1*nu)]=1.;

au[2+nbc*(2+0*nu)]=1.;

au[3+nbc*(2+1*nu)]=1.;

return;

}

void al(int nbc,int nu,double *uL,double *uR,int np,double *p,

double *u0L,double *u0R,double *l0,double *al)

{

int i;

for(i=0;i<nbc*np;i++)al[i]=0.;

return;

}

The routines for the integral constraints aren’t really needed (we could pass
NULL’s), since there are no integral equations.

Finally there’s the projection. The protocol here is that it is called first
with NULL arguments, which is a signal to return the length required in x

for the projected point.

int MFDomokosProjectToDraw(MFNVector u, double *x, void *d)
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{

int nx=NX;

int np=2;

int nu=3;

if(x==(double*)NULL)return 3;

x[0]=MFNV_C(u,nx*nu);

x[1]=MFNV_C(u,nx*nu+1);

x[2]=MFNV_C(u,1);

return 3;

}

To run this example, use something like

bin/ComputeDomokos > Domokos.out

To create an image of the bifurcation diagram run “bin/DrawPlotfile
Domokos”. This looks in the current directory for a file called “Domokos.view”
which contains a viewpoint and extent for the picture to be drawn. If the file
can’t be found defaults are used. Several options are available to the Draw
commands. “bin/DrawPlotfile -help” will print a description of the options.

7 Implicit Manifolds Provided

I’ve written a couple of continuation codes for my own use over the years. I
intentionally decided not to do that this time, since some very good ones are
already out there. The idea was to provide only the core of a continuation
code, and use those other codes to do the projections, tangent calculations
and singular point detection and branch switching. Like all good dreams this
one was a little optimistic. So I’ve implemented a couple of solvers so that
I have something to play with, and have written interfaces to AUTO and
LOCA, available at

http://www.sourceforge.net/projects/auto2000/

and http://www.cs.sandia.gov/projects/loca/
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Figure 2: The output from the ComputeDomokos example.
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What the implementations below are missing (and AUTO and LOCA pro-
vide) is singular point detection and branch switching, and a way of writing
those related systems so that bifurcating branches of different type may be
followed (e.g. periodic motions from steady state, homoclinic from periodic,
etc.). I’m working on it though.

MFAlgebraicMF – an algebraic system defined by strings or subroutines
The ComputeSphere example in the previous section shows how to use
the ctor with strings. There’s a version of the example using the ctor
that passes subroutines in the ComputSubroutine example.

MFTPBVP – a Two Point Boundary Value Problem defined by subroutines.
For now see the ComputeRod example. I’m trying to find a cleaner
example.

8 MFImplicitMF – an Implicitly Defined Man-

ifold

The Implicit manifold has a fairly complicated interface, and is where most of
the work in a continuation method is performed. Below M is of type MFIm-
plicitMF, u and v are of type MFNVector, and Phi is of type MFNKMatrix,

int MFIMF N(M); – Returns the dimension of the space in which the man-
ifold is embedded.

int MFIMF K(M); – Returns the dimension of the manifold.

int MFIMFProject(M,u0,Phi,u); – Returns a point u on the manifold which
is the projection of u0 orthogonal to the columns of the matrix Phi. If
the projection fails a ”0” is returned, otherwise the result is ”1”.

MFNKMatrix MFIMFTangentSpace(M,u); – Returns a matrix whose columns
form an orthonormal basis for the tangent space of M at the point u.

MFNKMatrix MFIMFTangentSpaceWithGuess(M,u,Phi0); – Returns a ma-
trix whose columns form an orthonormal basis for the tangent space
of M at the point u. The user provides a guess at the tangent space
in the matrix Phi0. Some approaches to finding the tangent space can
take advantage of this guess.
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double MFIMFScale(M,u,Phi); – Returns a radius for the ball at a point
u, at which the columns of the matrix Phi give an o.n. basis for the
tangent space. The idea is that for points in the tangent space that
are closer to the origin then R the project will not fail and the distance
between the point in the tangent space (u+ Φs) and the projection is
within ε.

MFNSpace MFIMFNSpace(M); – Returns the space in which the manifold
is embedded.

void MFIMFEvaluate(M,u,MFNVector F); – This routine is not needed for
the continuation, but if it is present it evaluates F (u) and returns it in
the first n− k coordinates of the vector F.

void MFIMFApplyJacobian(M,u,Phi,Psi); – This routine is also not needed
for the continuation, but if it is present it evaluates Fu(u), applies it
to the columns of the matrix Phi and returns each result in the corre-
sponding column of the matrix Psi. Note that Phi is not necessarily a
basis for the null space of the Jacobian.

void MFIMFApplySecDer(M,u,MFNVector phi0,MFNVector phi1,MFNVector
psi); – This routine is also not needed for the continuation, but if it is
present it evaluates Fuu(u), applies it to the vectors phi0 and phi1 and
returns result in psi, that is

ψ = Fuu(u)φ0φ1, or in tensor notation ψi = F i
,j,kφ

j
0φ

k
0.

int MFIMFStop(M,u0,Phi0,u1); – Determines if the continuation should
move from u0 to u1. This is the way singular points are detected. It is
really a second way to limit the extent of the manifold (the first way
being Ω).

int MFIMFProjectToSave(M,u,double *y); – Provides a projection tha tis
used to save a point to disk. The idea is that the entire MFNVector
may be more than is needed.

This and the following projections use the protocol that if they are
called with either u or y is NULL (zero), they return the number of
coordinates in the projection. If u and y are non-NULL, y will be of
that length.
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int MFIMFProjectToDraw(M,u,double *y); – Provides a projection that is
used to save a point to plotfile.

int MFIMFProjectToBB(M,u,double *y); – Provides a projection that is
used to store a point in a hierarchical bounding box during the compu-
tation. Points that are well separated should project to well separated
points, and the smaller the dimension the less work.

void MFIMFSetStability(M,u,Phi); – Sets the “index” of a vector with tan-
gent space Phi. This is sufficient information to detect bifurcations.

int MFIMFSingular(M,u,Phi,v); – Finds a singular vector at a bifurcation
point. The null space of the Jacobian will typically be of dimension
k + 1, and the returned vector is expected to be that one which is
orthogonal to the k-dimensional space spanned by the columns of Phi.

void MFFreeImplicitMF(M); – Releases the storage associated with the
MFImplicitMF object.

9 MFNRegion – a subset of n-space

These are subsets of the embedding space which restrict the part of the
manifold that is to be computed. The Region has only a test routine, which
indicates if an NVector is in the region or not.

MFNRegion MFNRegionCreateRectangle(x0,y0,x1,y1); – Creates a 2-dimensional
rectangular region. The arguments are all double’s.

MFNRegion MFNRegionCreateCube(x0,y0,z0,x1,y1,z1); – Creates a 3-dimensional
rectangular region. The arguments are all double’s.

MFNRegion MFNRegionCreateHyperCube(int n,double R); – Creates a re-
gion which is the interior of a n-dimensional hypercube centered at the
origin and sides of length 2R.

MFNRegion MFNRegionCreateHyperCubeByCorners(int n,ll,ur); – Cre-
ates a region which is the interior of a n-dimensional hypercube with
corners ll (lower left) and ur (upper right). Both corners are MFNVec-
tor’s.
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int MFNRegionInterior(MFNRegion,MFNVector); – Returns 1 if the point
is in the region, otherwise returns 0.

void MFFreeNRegion(MFNRegion); – Release a reference to the region.
When the reference count goes to zero the storage associated with the
object is free’d.

10 MFNSpace – an n-dimensional embedding

space

The manifold is embedded in an n-dimensional space. Rather than assume
that this is IRn we allow the user to supply a way to measure distance and
to specify the vector from one point to another. This allows the embedding
space to be, for example, periodic, or to have a norm which weights some
directions more heavily than others. below space is of type MFNSpace.

Normally a user does not need to create an n-space – they are created
when an implicitly defined manifold is created.

double MFNSpaceInner(space,u0,u1); – Computes the inner product of the
two MFNVector’s u0 and u1.

double MFNSpaceDistance(space,u0,u1); – Computes the distance between
the two MFNVector’s u0 and u1.

void MFNSpaceDirection(space,u0,u1,du); – Computes the unit vector du
pointing from u0 to u1. The MFNVector du must be created by the
user (use MFCloneNVector(u0)).

void MFNSpaceAdd(space,u0,u1,sum); – Computes the sum of from u0 and
u1. The MFNVector sum must be created by the user (use MFCloneN-
Vector(u0)).

void MFNSpaceScale(space,double s,u,v); – Multiplies u by the scalar s and
puts the result in v. The MFNVector v must be created by the user
(use MFCloneNVector(u)).

void MFFreeNSpace(space); – Release a reference to the NSpace. When the
reference count goes to zero the storage associated with the object is
free’d. An NSpace created with an MFImplicitMF is Free’d when the
manifold is Free’d.
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11 MFNVector – a point in the embedding

space

These are points lying in the embedding space. Again, the interface is quite
a bit simpler than the IMF.

MFNVector MFCreateNVector(int); – Creates and returns an N vector of
the given length. This ctor creates a vector stored as an array of dou-
bles. It should be Free’d with the MFFreeNVector routine when it is
no longer needed.

MFNVector MFCreateNVectorWithData(int,double*); – Creates and re-
turns an N vector of the given length, with coordinates copied from
the array. This ctor creates a vector stored as an array of doubles. It
should be Free’d with the MFFreeNVector routine when it is no longer
needed.

MFNVector MFCloneNVector(MFNVector u); – Creates and returns an N
vector of the same length and coordinates as u. Note: this is a ”deep”
copy, so changing a coordinate of the cloned vector does not change the
corresponding coordinate of the original. This is a ctor, and the new
vector should be Free’d with the MFFreeNVector routine when it is no
longer needed.

int MFNV NC(MFNVector); – Returns the number of coordinates of an
NVector (i.e. n).

double MFNV C(MFNVector,int); – Returns the specified coordinate of an
NVector.

void MFNVSetC(MFNVector,int,double); – Changes the specified coordi-
nate of an NVector.

void MFNVAdd(a,b,c); – Adds two NVectors c=a+b. c must have been
created by the user.

void MFNVDiff(MFNVector,MFNVector,MFNVector); – takes the differ-
ence of two NVectors c=a-b. c must have been created by the user.

char *MFNVType(MFNVector); – Returns a string indicating the type of
vector. A Dense vector has the type ”DENSE”.
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void MFFreeNVector(MFNVector); – Release a reference to the NVector.
When the reference count goes to zero the storage associated with the
object is free’d.

12 MFKVector – a point in the tangent space

These are points lying in the tangent space of the manifold. They are stored
as a vector of doubles. The user normally would not need to use these objects.

MFKVector MFCreateKVector(int); – Creates and returns an K vector of
the given length. This ctor creates a vector stored as an array of dou-
bles. It should be Free’d with the MFFreeKVector routine when it is
no longer needed.

MFKVector MFCreateKVectorWithData(int,double*); – Creates and re-
turns an K vector of the given length, with coordinates copied from
the array. This ctor creates a vector stored as an array of doubles. It
should be Free’d with the MFFreeKVector routine when it is no longer
needed.

int MFKV NC(MFKVector); – Returns the number of coordinates of an
KVector (i.e. k).

double MFKV C(MFKVector,int); – Returns the specified coordinate of an
KVector.

void MFKVSetC(MFKVector,int,double); – Changes the specified coordi-
nate of an KVector.

void MFKVAdd(a,b,c); – Adds two KVectors c=a+b. c must have been
created by the user.

void MFKVDiff(MFKVector,MFKVector,MFKVector); – Takes the differ-
ence of two KVectors c=a-b. c must have been created by the user.

void MFKVScale(double,MFKVector); – Multiplies a KVector by a scalar
(in place).

void MFKVScaleMul(double,MFKVector,MFKVector); – Multiplies a KVec-
tor by a scalar and returns the result in a vector supplied by the user.
The result vector must have been allocated by the user.
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double MFKVDot(MFKVector,MFKVector); – Returns the inner product
of two KVectors (Euclidean).

double MFKVNorm(MFKVector); – Returns the norm of a KVector (Eu-
clidean).

void MFFreeKVector(MFKVector); – Release a reference to the KVector.
When the reference count goes to zero the storage associated with the
object is free’d.

13 MFNKMatrix – a basis for the tangent

space

These are used to store an orthonormal basis for the tangent space of the
manifold, though they can be used as general matrices. They are stored as
a list of the columns of the matrix as NVectors.

MFKKMatrix MFCreateNKMatrix(int k,MFNVector *cols); – Creates and
returns an n × k matrix of k columns, and copies (by cloning), the
given columns into the matrix. The NKMatrix should be Free’d with
the MFFreeNKMatrix routine when it is no longer needed.

MFNKMatrix MFCreateNKMatrixWithData(int,int,double*); – Creates and
returns an n × k matrix of k columns, and copies, the given elements
into the matrix (by creating a dense NVecto for each column). The
NKMatrix should be Free’d with the MFFreeNKMatrix routine when
it is no longer needed.

MFNKMatrix MFCloneNKMatrix(MFNKMatrix); – Creates and returns
an n × k matrix which is a copy of the one passed. Note: this is
a ”deep” copy, so changing an element of the cloned matrix does not
change the corresponding coordinate of the original. This is a ctor, and
the new matrix should be Free’d with the MFFreeNKMatrix routine
when it is no longer needed.

int MFNKMatrixK(MFNKMatrix); – Returns the number of columns in
the matrix.
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int MFNKMatrixN(MFNKMatrix); – Returns the length of the columns in
the matrix.

MFNVector MFMColumn(MFNKMatrix,int); – Returns the requested col-
umn.

void MFNKMSetC(MFNKMatrix,int i,int j,double); – Changes the ith ele-
ment of jth column to the given value.

void MFMSetColumn(MFNKMatrix,int j,MFNVector c); – Replaces the jth
column of the matrix with the vector c. You are on your honor to make
sure the new column is the same type as the others in the matrix.

void MFGramSchmidt(MFNSpace,MFNKMatrix); – Performs a Gram-Schmidt
orthogonalization on the matrix (the space is needed for the inner prod-
ucts!).

void MFFreeNKMatrix(MFNKMatrix); – Release a reference to the NKMa-
trix. When the reference count goes to zero the storage associated with
the object is free’d.

14 MFChart – a small piece of a manifold

MFChart MFCreateChart(MFImplicitMF M,MFNVector u,MFNKMatrix
TS, double R); – Creates a new chart.

MFImplicitMF M The manifold on which the chart lies.

MFNVector u The center of the chart.

MFNKMatrix TS An orthonormal basis for the tangent space of the
matrix.

double R The radius of the domain of the chart.

The polyhedron of the chart is initially a hypercube centered at the
origin with halfside R.

void MFSubtractHalfSpaceFromChart(MFChart,int,MFKVector n,double d0);
– This is the core operation of the continuation method. It updates the
chart’s polyhedron, subtracting the half space s.n < d0.
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MFPolytope MFChartPolytope(MFChart); – Returns the Polyhedron asso-
ciated with a chart.

MFNVector MFChartCenter(MFChart); – Returns the center of a chart.

MFNKMatrix MFChartTangentSpace(MFChart); – Returns an o.n. basis
for the tangent space of the manifold at the center of a chart.

double MFChartRadius(MFChart); – Returns the radius of a chart.

int MFChartEvaluate(MFChart,MFKVector s,MFNVector u); – Projects a
point in the domain of the chart onto the manifold. The NVector u
must have been allocated by the user and should be the same type as
the chart center.

int MFChartInterior(MFChart,MFKVector); – Tests to see if a point is
interior to the polyhedron of a chart.

int MFChartHasBoundary(MFChart); – Tests to see if all vertices of the
polyhedron of a chart have radius less than the radius of the chart.

int MFChartK(MFChart); – Returns the dimension of the manifold of a
chart.

int MFChartN(MFChart); – Returns the dimension of the embedding space
of a chart.

void MFChartProjectIntoTangentSpace(MFChart,MFNVector u,MFKVector
s); – Projects a point in the embedding space orthogonally onto the tan-
gent space of the manifold at the center of a chart. The KVector s must
have been allocated by the user.

void MFChartPointInTangentSpace(MFChart,MFKVector s,MFNVector u);
– Returns the point in the embedding space corresponding to the first
order Taylor series approximation to the manifold. The NVector u must
have been allocated by the user and should be the same type as the
chart center.

void MFFreeChart(MFChart); – Release a reference to the Chart. When
the reference count goes to zero the storage associated with the object
is free’d.
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15 MFContinuationMethod – an algorithm

for computing an atlas of charts for a man-

ifold

A continuation method is an “algorithm” - that is is has a number of internal
parameters and provides a method for “doing” something. In the present case
that something is computing an Atlas of charts which cover some part of an
implicitly defined manifold. Currently there is only one ContinuationMethod
(mine!), but when I get some spare time, a grad student, or a vounteer, I’d
like to cast the other algorithms in this frame. In the following description –

MFContinuationMethod H;

MFAtlas A;

MFImplicitMF M;

MFRegion Omega;

MFAtlas MFComputeAtlas(H,M,Omega,u0); – Returns an atlas computed
using the given algorithm, with starting point u0 (an MFNVector).

MFAtlas MFComputeAtlasWithTangent(H,M,Omega, MFNVector u0, MFNKMa-
trix Phi0); – Returns an atlas computed using the given algorithm,
with starting point u0 (an MFNVector), and tangent space Phi0 (an
MFNKMatrix). (This is useful for starting at bifurcation points where
the tangent space is not unique).

MFAtlas MFComputeAtlasMultiple(H,M,Omega, int m,u0); – Returns an
atlas computed using the given algorithm, with starting points u0[] (an
array of m MFNVectors).

MFAtlas MFComputeAtlasMultipleWithTangents(H,M,Omega, int m, MFN-
Vector *u0, MFNKMatrix *Phi0); – Returns an atlas computed using
the given algorithm, with starting points u0[] (an array of m MFNVec-
tors) and corresponding tangent spaces Phi0[] (an array of m MFNKMa-
trix’s).
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void MFExtendAtlas(A,H,M,Omega,u0); – Same as MFComputeAtlas, but
begins with a previously computed atlas. The manifold must be the
same, but the Continuation Method might be different, as well as the
region Omega.

void MFExtendAtlasMultiple(A,H,M,Omega, int m,u0); – Same as MF-
ComputeAtlasMultiple, but begins with a previously computed atlas.
The manifold must be the same, but the Continuation Method might
be different, as well as the region Omega.

void MFExtendAtlasWithTangent(A,H,M,Omega, MFNVector u0,MFNKMatrix
Phi0); – Same as MFComputeAtlasWithTangent, but begins with a
previously computed atlas. The manifold must be the same, but the
Continuation Method might be different, as well as the region Omega.

void MFExtendAtlasMultipleWithTangents(A,H,M,Omega, int m, MFN-
Vector *u0, MFNKMatrix *Phi0); – Same as MFComputeAtlasWith-
Tangents, but begins with a previously computed atlas. The manifold
must be the same, but the Continuation Method might be different, as
well as the region Omega. All of the routines described above call this
one.

void MFFlushAtlas(H,A); – Allows the continuation method to perform any
pending tasks.

void MFCloseAtlas(H,A); – Allows the continuation method to perform any
pending tasks and end the continuation.

Turning now to the parameters that are specific to my algorithm –

MFContinuationMethod MFCreateHendersonsMethod(); – Creates a con-
tinuation method with default values for the parameters.

void MFHendersonsMethodSetVerbose(H,int); – Sets a flag indicating how
much output the user wants to see on stdout. Zero is minimal, a higher
number is more. The current setting can be retreived using the routine
MFHendersonsMethodGetVerbose.

void MFHendersonsMethodSetMaxCharts(H,int); – Sets the maximum num-
ber of charts that willbe computed. A -1 indicates no limit. The current
setting can be retreived using the routine MFHendersonsMethodGet-
MaxCharts.
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void MFHendersonsMethodSetMinR(H,int); – Sets the minimum chart ra-
dius. Must be positive. A chart with radius below this limit is treated
as if it is interior. The current setting can be retreived using the routine
MFHendersonsMethodGetMinR.

void MFHendersonsMethodSetMaxR(H,int); – Sets the maximum chart ra-
dius. Must be positive. No chart is larger than this. The current setting
can be retreived using the routine MFHendersonsMethodGetMaxR.

void MFHendersonsMethodSetEpsilon(H,double); – Sets the maxumum al-
lowed distance over a chart between the first order approximation and
the manifold. Must be positive. The current setting can be retreived
using the routine MFHendersonsMethodGetEpsilon.

void MFHendersonsMethodSetPage(H,int); – Sets a flag indicating whether
to page out charts to a plotfile or centerfile as the continuation pro-
gresses. Page in doesn’t work yet, so the MFAtlas that is returned
is missing the centers and tangentspaces of the charts that have been
paged out. MFCloseAtlas causes the remaining charts to be paged out.
The current setting can be retreived using the routine MFHendersons-
MethodGetPage.

void MFHendersonsMethodSetPageEvery(H,int); – Sets a flag indicating
how often charts are checked and paged out. The current setting can
be retreived using the routine MFHendersonsMethodGetPageEvery.

void MFHendersonsMethodSetDumpToPlotFile(H,int); – Sets a flag indi-
cating whether charts being paged out are written to a plotfile. The cur-
rent setting can be retreived using the routine MFHendersonsMethod-
GetDumpToPlotFile.

void MFHendersonsMethodSetDumpToCenterFile(H,int); – Sets a flag in-
dicating whether charts being paged out are written to a centerfile.
The current setting can be retreived using the routine MFHendersons-
MethodGetDumpToCenterFile.

void MFHendersonsMethodSetCheckPoint(H,int); – Sets a flag indicating
the atlas is to be written to disk (as an atlasfile), as the continua-
tion progresses. The current setting can be retreived using the routine
MFHendersonsMethodGetCheckPoint.
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void MFHendersonsMethodSetCheckPointEvery(H,int); – Set the interval
(in number of charts) between checkpoints. The current setting can be
retreived using the routine MFHendersonsMethodGetCheckPointEv-
ery.

void MFHendersonsMethodSetBranchSwitch(H,int); – Set a flag indicat-
ing whether the continuation is to attempt to cross singular curves.
The current setting can be retreived using the routine MFHendersons-
MethodGetBranchSwitch.

NOTE: I’m still working on this.

void MFHendersonsMethodSetFilename(H,char*); – Set the basename used
for writing plotfile, centerfiles, and atlasfiles. The current setting can
be retreived using the routine MFHendersonsMethodGetFilename.

void MFHendersonsMethodAddClipF(H,double (*)(MFNVector)); – This is
a “brute force” way of tidying up an atlas for rendering. The clipping
functions assign a scalar to each vertex in a chart polyhedron, and
before the chart is written to a plotfile a linear interpolant is used
to clip off the part of the polyhedron that has any positive clipping
function value. The functions may be nonlinear, but this procedure
won’t do what is intended unless there is only one change in sign on
any polyhedral edge.

Clipping functions are useful because I compute a covering, and so the
computed manifold extends slightly outside the region Omega. When
drawing the manifold it looks better to have smooth edges.

void MFHendersonsMethodClearClipF(H); – Resets the number of Clipping
Functions to zero.

void MFHendersonsMethodSetDumpToRestartFile(H,int); – Sets a flag in-
dicating whether a restart file is written as the continuation progresses.
Plotfiles do not contain points that lie on the manifold, and center-
files don’t have tangents (needed for branch switching) and can be too
large to be useful in extracting representative points on the manifold.
A restart file corresponds to AUTO’s labeled points, and contains a
representative sample of regular and singular points on the manifold.
The current setting can be retreived using the routineitemint MFHen-
dersonsMethodGetDumpToRestartFile.
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NOTE: I’m still working on this.

void MFHendersonsMethodSetDumpToRestartFileEvery(H,int); – Indicates
how dense the points in the restart file are. As charts are added each
is assigned a number, which is the minimum of the numbers assigned
to its neighbors, plus one. This is a rough indication of how many
charts separate it from a chart numbered 0. When a chat has a num-
ber greater than the number provided through this routine it is written
to the restart file and assigned the number 0. Singular points have their
own set of independant numbers. The current setting can be retreived
using the routine MFHendersonsMethodGetDumpToRestartFileEvery.

NOTE: I’m still working on this.

void MFFreeHendersonsMethod(H); – Release a reference to the Continua-
tionMethod. When the reference count goes to zero the storage asso-
ciated with the object is free’d.

16 Using an Atlas of Charts

An atlas is a set of charts, and is the data structure holding the results of a
continuation.

The following routines access the data structure (for more details, consult
the subroutine reference). The variable A is of type MFAtlas.

MFAtlas MFCreateAtlas(MFImplicitMF); – Creates an empty atlas rep-
resenting the manifold. The user would normally not use this ctor,
instead creating the atlas with MFComputeAtlas or its ilk.

int MFAtlasK(A); – Returns the dimension of the manifold corresponding
to the atlas.

int MFAtlasN(A); – Returns the dimension of the embedding space of the
manifold corresponding to the atlas.

int MFAtlasAddChart(A,MFNVector); – Adds a chart centered at the given
point to the atlas. The point is assumed to be on the manifold, MF-
TangentSpace is used to get the tangent space, and MFScale to get the
initial guess at the radius.
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int MFAtlasAddChartWithAll(A,u,Phi,double R); – Adds a chart centered
at the given point u with tangent space Phi, and radius R to the atlas.

MFImplicitMF MFAtlasMF(A); – Returns the manifold corresponding to
the atlas.

int MFAtlasNumberOfCharts(A); – Returns the number of charts in the
atlas.

double MFAtlasChartRadius(A,int chart); – Returns the radius of a chart
in the atlas.

MFNVector MFAtlasCenterOfChart(A,int chart); – Returns the center of a
chart in the atlas.

MFNKMatrix MFAtlasChartTangentSpace(A,int chart); – Returns the tan-
gent space of a chart in the atlas.

int MFAtlasIsPointInChart(A,int chart,MFKVector s); – Tests to see if the
point is in the domain of a chart in the atlas.

void MFAtlasEvaluateChart(A,int chart,MFKVector s,MFNVector u); – Projects
a point in the domain of a chart onto the manifold. The NVector u
must have been allocated by the user, and should have the same type
as the chart center.

int MFAtlasNumberOfChartsWithBoundary(A); – Returns the number of
charts on the boundary of the atlas.

int MFAtlasChartWithBoundary(A,int); – Returns the number of a chart
on the boundary of the atlas.

int MFAtlasPointOnBoundaryInsideRegion(A,Omega,u,double *delta); – Finds
a point on the boundary of the atlas. The chart it lies on is returned
by the routine, as well as the distance between the point and the tan-
gent space. The NVector u must have been allocated by the user, and
should have the same type as the chart center.

void MFFreeAtlas(A); – Release a reference to the Atlas. When the refer-
ence count goes to zero the storage associated with the object is free’d.
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17 Error handling

These routines provide a way of finding out what errors have occured in the
algorithm. The code attempts to indicate errors by returning results that are
out of range (i.e. a negative number for the radius if a chart doesn’t exist).
It is safer however, to check the number of errors.

int MFNErrors(void); – Returns the number of errors committed so far (or
since the last ClearErrors).

int MFErrorSev(int error); – Returns the severity of an error. 4=Warning,
8=severe, 12=terminal.

char *MFErrorRoutine(int error); – Returns the name of the routine in
which an error was issued.

char *MFErrorMsg(int error); – Returns the message associated with an
error.

int MFErrorLine(int error); – Returns the line number at which an error
was issued.

char *MFErrorFile(int); – Returns the name of the source file containing
the routine in which an error was issued.

int MFError(void); – Returns 1 if an error has occured, 0 otherwise.

void MFClearErrors(void); – Clear all errors.

18 Implementing an MFNVector

The MFNVector object is a base class for vectors in the embedding space.
Since the implementation depends heavily on the solver being used I’ve al-
lowed the user who is writing an interface to a solver to implement their own
MFNVector. All n-vectors in the continuation are created by cloning the
initial point or one of its clones (this is fun, eh?), so the solver can control
what type of vector it sees by requiring the user to create the starting point
as a particular type of vector.

MFNVector’s (and the other base classes described below) provide a ctor
for the base class, and a way of passing a data block (usually a C struct) to
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all of the member functions. So the user implements a member function that
looks like the base class member function with the extra argument, and in the
ctor for the new vector he creates the new vector with the ”CreateBaseClass”
ctor, and sets the data block and member functions by calling various ”Set”
routines.

The source for the dense vector class is a good place to look at an imple-
mentation (src/MFDenseNVector.c).

MFNVector MFCreateNVectorBaseClass(char *id); – This creates an empty
MFNVector and returns it to the user.

The ”id” is a character string that will be returned by the MFNVGetId
routine, and can be used to check the type of a vector for example,
before casting the data block to the struct used for this class.

char *MFNVGetId(MFNVector); – Returns the identification string of a
vector (i.e. the string passed to the base class ctor).

void MFNVectorSetData(MFNVector,void*); – Sets the data pointer.

void MFNVectorSetWriteData(MFNVector,void (*)(FILE*,void*)); – Sets
the routine used to write a vector to file.

void MFNVectorSetFreeData(MFNVector,void (*)(void*)); – Sets the rou-
tine that is called when the last reference to the vector is Free’d. Note
that the CreateBaseClass returns a vector with one reference.

void *MFNVectorGetData(MFNVector); – returns the data pointer of a
vector.

void MFNVectorSetClone(MFNVector,MFNVector (*)(void*)); – Sets the
routine used by the MFCloneNVector routine. I’d suggest that the
routine extract data from the data pointer and invoke one of the ctors.

void MFNVectorSetGetNC(MFNVector,int (*)(void*)); – Sets the routine
used to retrieve the dimension of the vector. The continuation does
not use this routine.

void MFNVectorSetGetC(MFNVector,double (*)(int,void*));– Sets the rou-
tine used to retrieve a coordinate. This is meant to be a fallback in
case a routine has to deal with a vector of unknown type. (Performance
suffers if used to access long vectors.)
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void MFNVectorSetSetC(MFNVector,void (*)(int,double,void*));– Sets the
routine used to change a coordinate. This is meant to be a fallback in
case a routine has to deal with a vector of unknown type. (Performance
suffers if used to access long vectors.)

void MFNVectorSetAdd(MFNVector,void (*)(void*,void*,void*)); – Sets
the routine used to add two vectors.

void MFNVectorSetDiff(MFNVector,void (*)(void*,void*,void*)); – Sets the
routine used to multiply a vector by a scalar.

void MFNVectorSetPrint(MFNVector,void (*)(FILE*,void*)); – Sets the
routine used to print a readable version of a vector.

19 Implementing an MFNSpace

The MFNSpace base class represents the embedding space. The ctor for an
MFImplicitMF usually creates the space.

The MFNSpace is similar in design to the MFNVector described above,
but with different access routines.

MFNSpace MFCreateNSpaceBaseClass(char *id); – This creates an empty
MFNSpace and returns it to the user.

The ”id” is a character string that will be returned by the MFNSpaceGetId
routine, and can be used to check the type of a vector for example, be-
fore casting the data block to the struct used for this class.

char *MFNSpaceGetId(MFNSpace); – Returns the identification string of
a vector (i.e. the string passed to the base class ctor). base class ctor).

void MFNSpaceSetData(MFNSpace,void*); – Sets the data pointer.

void *MFNSpaceGetData(MFNSpace); – Sets the routine that is called
when the last reference to the vector is Free’d. Note that the Cre-
ateBaseClass returns a vector with one reference.

void MFNSpaceSetWriteData(MFNSpace,writedata); – Sets the routine used
to write a vector to file. The routine has the signature

void writedata(FILE*,MFNSpace,void*);
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void MFNSpaceSetFreeData(MFNSpace,void (*freedata)(void *)); – Sets
the routine that is called when the last reference to the vector is Free’d.
Note that the CreateBaseClass returns a vector with one reference.

void *MFNVectorGetData(MFNVector); – returns the data pointer of a
vector.

void MFNSpaceSetDistance(MFNSpace,distance); – Sets the routine that
computes the distance between two vectors in the space. The routine
has the signature:

double distance(MFNSpace,MFNVector,MFNVector,void*);

void MFNSpaceSetInnerProduct(MFNSpace,inner); – Sets the routine that
computes the inner product of two vectors in the space. The routine
has the signature:

double inner(MFNSpace,MFNVector,MFNVector,void*);

void MFNSpaceSetDirection(MFNSpace,direction); – Sets the routine that
computes the direction from one vector to another. The routine has
the signature:

void direction(MFNSpace,MFNVector,MFNVector,MFNVector,void*);

void MFNSpaceSetAdd(MFNSpace,add); – Sets the routine that computes
the sum oof two vectors in the space. The routine has the signature:

void add(MFNSpace,MFNVector,MFNVector,MFNVector,void*);

void MFNSpaceSetScale(MFNSpace,scale); – Sets the routine that multi-
plies a vector in the space by a scalar. The routine has the signature:

void scale(MFNSpace,double,MFNVector,MFNVector,void*);
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20 Implementing an MFNRegion

The MFNRegion represents a subset of an n-dimensional space. The only
real function is supplies is a ”test”.

MFNRegion MFNRegionCreateBaseClass(char*); – creates an empty MFN-
Region and returns it to the user.

The ”id” is a character string that will be returned by the MFNSpaceGetId
routine, and can be used to check the type of a vector for example, be-
fore casting the data block to the struct used for this class.

void MFNRegionSetTest(MFNRegion,test); – sets the routine used to test
if a vector is inside the region. The routine has the signature

int test(MFNVector,void*);

and should return 1 if the point is in the region, and 0 if it is not. The
data pointer is passed as the third argument.

void MFNRegionSetData(MFNRegion,void*); – Sets the data pointer.

void *MFNRegionGetData(MFNRegion); – Returns the data pointer.

void MFNRegionSetFreeData(MFNRegion,void (*)(void*)); – Sets the rou-
tine that is called when the last reference to the vector is Free’d. Note
that the CreateBaseClass returns a region with one reference.

void MFNRegionSetWriteData(MFNRegion,writedata); – Sets the routine
used to write a region’s data to file. The routine has the signature

void writedata(FILE*,void*);

21 Implementing an Implicitly Defined Man-

ifold

An Implicity Defined Manifold is a definition of a set of points. In principle
the points satisfy a continuous equation, but we only require a way of pro-
jecting points onto the manifold, a procedure for computing an orthonormal
basis for the tangent space, and a local scale.
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To implement your own you write a constructor (ctor), and provide cer-
tain basic routines. The ctor calls MFIMFCreateBaseClass, and then the
MFIMFSet

MFImplicitMF MFIMFCreateBaseClass(n,k,char *id); – creates an empty
MFImplicitMF and returns it to the user. The integers n and k are the
dimension of the embedding space and the dimension of the manifold
respectively.

The ”id” is a character string that will be returned by the MFIMFGetId
routine, and can be used to check the type of a manifold for example,
before casting the data block to the struct used for this class.

void MFIMFSetSpace(M,MFNSpace); – Sets the embedding space.

void MFIMFSetData(M,void*); – Sets the data pointer.

void MFIMFSetFreeData(MF,void (*)(void*)); – Sets the routine that is
called when the last reference to the vector is Free’d.

void MFIMFSetProject(M,projectPoint); – Sets the routine used to project
a point in n-space onto the manifold orthogonal to a k dimensional
linear subspace. The project routine must have the signature

int ProjectPoint(int n,int k,MFNVector u,MFNKMatrix Phi,MFNVector v,void*);

The data pointer is passed as the last argument.

void MFIMFSetTangent(M,tangent); – Sets the routine used to compute an
orthonormal basis for the tangent space of the manifold at a point on
the manifold. The tangent routine must have the signature

void tangent(int n,int k,MFNVector u,MFNKMatrix Phi,void*);

The data pointer is passed as the last argument. PhiG, and Phi will
have been allocated before the routine is called.

void MFIMFSetTangentWithGuess(M,tangentWG); – Sets the routine used
to compute an orthonormal basis for the tangent space of the manifold
at a point on the manifold. The tangent routine must have the signa-
ture
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void tangentWG(int n,int k,MFNVector u,MFNKMatrix PhiG,MFNKMatrix Phi,void*));}

The data pointer is passed as the last argument. The guess is in PhiG,
and Phi will have been allocated before the routine is called.

void MFIMFSetScale(M,scale); – Sets the routine used to compute an es-
timate of the radius to be used for a chart centered at a point on the
manifold with tangent space Phi. The scale routine must have the
signature

double scale(int n,int k,MFNVector u,MFNKMatrix Phi,void*);

The data pointer is passed as the last argument.

void MFIMFSetProjectForSave(M,project); – Sets the routine used to project
a point for saving to disk. The project routine must have the signature

int project(MFNVector u,double*,void*);

The data pointer is passed as the last argument. If u or the Pu is
passed as NULL the routine is expected to return the required length
of Pu. This is used to allocate Pu before calling the project routine
with a non-NULL u.

void MFIMFSetProjectForDraw(M,project); – Sets the routine used to project
a point for plotting. The project routine must have the signature

int project(MFNVector u,double *Pu,void*);

The data pointer is passed as the last argument. If u or the Pu is
passed as NULL the routine is expected to return the required length
of Pu. This is used to allocate Pu before calling the project routine
with a non-NULL u.

void MFIMFSetProjectForBB(M,project); – Sets the routine used to project
a point for the hierarchical bounding box used to find the charts near a
new point. The projection need not be linear, but the dimension should
probably be at least k. The project routine must have the signature

int project(MFNVector u,double *Pu,void*);
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The data pointer is passed as the last argument. If u or the Pu is
passed as NULL the routine is expected to return the required length
of Pu. This is used to allocate Pu before calling the project routine
with a non-NULL u.

void MFIMFSetWriteData(M,writedata); – Sets a routine to write the man-
ifold’s data to a disk file. The routine must have the signature

void writedata(FILE*, void*);

The data pointer is passed as the second argument.

void MFIMFSetEvaluate(M,eval); – Sets a routine to evaluate the function
“F” that defines the manifold. This isn’t needed explicitly by the con-
tinuation algorithm, but it seems like a reasonable thing to want to do.
The routine must have the signature

void eval(int n,MFNVector u, MFNVector f,void*);

The data pointer is passed as the last argument.

void MFIMFSetApplyJacobian(M,apply); – Sets a routine to apply the Ja-
cobian of the function “F” that defines the manifold to a set of vectors
(passed as a matrix). This isn’t needed explicitly by the continuation
algorithm, but it seems like a reasonable thing to have. The routine
must have the signature to want to do.

void apply(int n,int k,MFNVector u,MFNKMatrix Phi,MFNKMatrix FuPhi,void*);

The data pointer is passed as the last argument.

void MFIMFSetApplySecDer(M,apply); – Sets a routine to apply the second
derivative of the function “F” that defines the manifold to a pair of
vectors. This isn’t needed explicitly by the continuation algorithm,
but it seems like a reasonable thing to have. The routine must have
the signature to want to do.

void apply(int n,int k,MFNVector u,MFNVector phi0,MFNVector phi1,MFNVector psi,void*));}

The data pointer is passed as the last argument.
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void MFIMFSetStop(M,stop);

int stop(MFImplicitMF,MFNVector,MFNKMatrix,MFNVector,void*);

The data pointer is passed as the last argument.

void MFIMFSetR(M,double); – Sets a radius that is used if the scale routine
(provided in MFIMFSetScale) is not present.

void MFIMFSetSingular(M,singular); – Sets a routine to compute the (k+
1)st Null vector of the Jacobian Fu at a singular point u. pair of vectors.

int singular(int n,int k,u,Phi,phi1,void*);

Phi is the tangent space a little away from the singular point. The new
Null vector phi1 is expected to be outside the span of the columns of
Phi. The data pointer is passed as the last argument.

void MFIMFSetSetStability(M,stability); – Sets a routine to assign an index
to a point on the manifold. In addition to the Stop routine described
above, if the index changes between two points a singular point is lo-
cated by bisection.

void stability(M,u,Phi,void*);

The data pointer is passed as the last argument.
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