
COIN-OR METSlib

a Metaheuristics Framework

in Modern C++.

Mirko Maischberger

Dipartimento di Sistemi e Informatica,
Università degli Studi di Firenze
Via di S. Marta, 3 - 50139 Firenze
email: <mirko.maischberger@gmail.com>

April 23, 2011

(this document refers to version 0.5.2 of the library)

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 Neighbourhood exploration based methods 3

1.2.1 Local search . 5
1.2.2 Simulated annealing . 6
1.2.3 Tabu search . 7

1.3 The curse of local search methods 8
1.3.1 Multi-start . 9
1.3.2 Iterated Local Search . 9
1.3.3 Population based methods 10

2 The problem framework 11
2.1 Introduction . 11
2.2 The problem and neighbourhood framework 11

2.2.1 Feasible solutions . 12
2.2.2 Neighbourhood operators 12
2.2.3 Neighbourhood exploration 13
2.2.4 Modelling a permutation problem 14

3 The solution toolkit 16
3.1 Introduction . 16

3.1.1 Recording the best solution 16
3.1.2 Terminating the search 17

3.2 Implemented algorithm . 17
3.2.1 Local search . 18
3.2.2 Random Restart Local Search 18
3.2.3 Simulated Annealing . 19
3.2.4 Tabu Search . 19

3.3 An application . 19
3.3.1 The Quadratic Assignment Problem 19
3.3.2 Local search . 21
3.3.3 A simple Tabu Search . 22
3.3.4 Random Restart Local search 23
3.3.5 An Iterated Tabu Search 23

1

3.4 Computational results . 24

4 Conclusions 25

2

Chapter 1

Introduction

1.1 Introduction

As a software framework METSlib provides a common abstraction of local
search derived metaheuristics algorithms. Once the user has defined her own
data structures and operators, the framework allows an easy personalisation of
the algorithms and an easy comparison and combination of different local search
strategies. The behaviour of single aspects of each algorithm can be controlled
implementing specific specialisations.

METSlib emphasise code reuse: problem, operators and neighbourhoods
can be solved with all the provided algorithms without requiring changes in the
model code. The model and the solver can and should evolve independently.
Moreover METSlib code is fully re-entrant and can be used to run more searches
in parallel without problems.

The library can be viewed as both a framework and a toolkit: the framework
can be used to build a model for the problem and the toolkit provides the
components to build the solution algorithms. The first step, as a user, is to
fill the framework with your own problem, the second is to use the toolkit to
build your custom solution strategy. Once the first solving strategy has been
set up the user can chose weather she is satisfied with the result or if she wants
to personalise the algorithm even more, replacing some strategy with new ones
that she can also provide herself.

1.2 Neighbourhood exploration based methods

Given a discrete optimization problems, the aim of the library is to allow easy
switching between some of the most effective neighbourhood search algorithms:
local search, random restart local search, variable neighborhood search, iterated
local search, simulated annealing, tabu search and possibly others.

The exploration of a neighbourhood is at the root of all the implemented
algorithms.

3

Given a discrete optimisation problem

min
s∈S

f̂(s) (1.1)

S is discrete (1.2)

the exploration can start from any point s0 ∈ S. Operators are defined as
rules to modify the current point sc into neighbouring points. The set of all
the possible neighbouring points that can be reached is called neighbourhood
of sc and denoted by N (sc). The algorithm can explore the neighbourhood
completely or not depending on the neighbourhood exploration scheme chosen.
A new current point s′c is chosen from the neighbourhood based on an acceptance
rule – the heart and soul of the algorithm – that depends, possibly amongst
other things, on the cost function f̂ . If no point can be accepted the algorithms
terminates.

The acceptance rule is the ingredient that is most characterising of the search
algorithm:

Local Search the best point in the neighbourhood is accepted if it improves
over the current point:

s′c = argmin
{
s ∈ N (sc) : f̂(s) ≤ f̂(sn) ∧ f̂(s) < f̂(sc) ∀sn ∈ N (sc)

}
(1.3)

Simulated Annealing uses a probabilistic rule in analogy with the physical
annealing of metals. A point from the neighbourhood is accepted with
probability

P = max

{
1, exp

(
f̂(sc)− f̂(sn)

T

)}
(1.4)

where T is the “temperature” of the algorithm. The T parameter
varies from some starting value, usually very high, to a very low value.
Temperature is updated at each iteration of the algorithm based on a
predefined cooling schedule.

Tabu Search in tabu search a new point is always accepted, but tabu points
are excluded from the search.

s′c = argmin
{
s ∈ N (sc)\tabu(N (sc)) : f̂(s) ≤ f̂(sn) ∀sn ∈ N (sc)

}
(1.5)

except for the degenerate case in which N (sc)\tabu(N (sc)) = ∅. The
criterion that is used to declare a certain point of the neighbourhood as
tabu is based on a short term memory and will be analysed further in the
following paragraphs.

4

The local search is monotonic and will stop in a point of local minimum.
This limitation can be mitigated by non monotonic search algorithms such as
Simulated Annealing or Tabu Search that will explore the space aiming at a cost
decrease on the long term but accepting also non-improving moves to escape
local optima and implement specific strategies to avoid cycling.

Sometimes the explored set S set is not feasible in a strict sense and sprouts
from the relaxation of an original feasible space S that is more difficult to ex-
plore. When this happens the objective function f̂ is usually a combination of
the real cost f with some terms that penalise the solutions s ∈ Ŝ\S. This tactic
is very useful when, in the original feasible space S, the neighbourhood structure
induces funnels between regions of the feasible space (or this regions are simply
plain unreachable each other). The ability to explore a relaxed space, with less
constraints, can ease moving from one region to another using an unfeasible
path. Some algorithms try to follow the border between feasibility and infea-
sibility introducing a penalising term, proportional to the current infeasibility,
using a proportion that is increased after each infeasible iteration and decreased
after each feasible one.

1.2.1 Local search

The local search implemented in METSlib can be configured in two different
ways: it can accept the best solution of the neighbourhood or the first improving
solution that is found exploring the neighbourhood.

The search will stop when no improving move can be found in the neigh-
bourhood.

Algorithm 1 Local search

s∗ ← s0

loop
s′′ = s∗

for all s′ ∈ N(s′′) do
if f(s′) < f(s′′) then
s′′ = s′

{ we can stop the search on the best or on the first improving point }
end if

end for
if f(s′′) < f(s∗) then
s∗ ← s′′

else
return s∗

end if
end loop

5

1.2.2 Simulated annealing

The search by Simulated Annealing was proposed in [10]. Many variants exist in
literature, the one proposed in the METSlib follows the general scheme given in
algorithm 2 with an additional termination criterion and the ability to replace
the cooling schedule with the desired one.

In the current state the Simulated Annealing procedure implementation is
less customisable than the Tabu Seach we will discuss in section 1.2.3.

Algorithm 2 Simulated Annealing

s′′ ← s0

s∗ ← s0

T ← T0

while T > 0 do
for all s′ ∈ N(s′′) do

pick random u in U01

if max{1, e
f(s′)−f(s′′)

T } > u then
{always accept improving moves, accept also non improving moves with

probability e
f(s′)−f(s′′)

T }
s′′ = s′

break { stop exploring the current neighbourhood after accepting a point
}

end if
end for
if f(s′′) < f(s∗) then
s∗ ← s′′

end if
T ← update(T)

end while
return s∗

The acceptance rule, is loosely based on the transitions of a physical system
during the process of annealing. It is easier and probably more useful to drop the
analogy and simply state the rule as a probabilistic acceptance rule that allows
deteriorating moves with a probability function that depends on the current
iteration and is usually very high at the beginning and very low at the end of
the algorithm. In this way the algorithm will proceed with a good breadth at
the beginning and with a good intensification near the end of the algorithm.

It can be proved [9], working on the probability of the state of the algorithm
and of the transitions that Simulated Annealing converges with high probability
to a global optimum under some assumptions, most notably a finite problem,
an exponential cooling, and an number of iterations that leads to infinity. It’s
probably worth noting that, for a finite combinatorial problem, explicit enumer-
ations – a technique useful only for small problems with a search space, right
now, not much bigger than 15! – gives similar guarantees. The most important

6

characteristic of Simulated Annealing is not the theoretical convergence but the
well balanced non monotonic behaviour that leads to good solutions in a limited
number of iterations.

Another obvious requirement for a well working implementation of a meta-
heuristic algorithm is a non zero transition probability between any two points of
the feasible space. This requires in first analysis a well thought neighbourhood
structure.

In our implementation the probabilistic rule is hard-coded in the algorithm
in the current version of METSlib. On the other hand the cooling schedule can
be freely replaced and customised.

1.2.3 Tabu search

Tabu search [8, 7] is the main focus of the METSlib framework. It is the most
tested and also, given the effort required to set it up, one of the most effective
on a wide range of practical combinatorial problems.

In tabu search the “best” neighbouring solution is always accepted with
maximum disregard of the current point and the value of its cost function.

The best solution is chosen as the one that has the best cost and has not been
declared tabu by the search memory unless it meets some criterion of general
aspiration. The tabu memory is frequently called tabu list and its length is
called tenure.

The aspiration criterion is used to override the memory mechanism when
it becomes too influential. In some circumstances the tabu memory can inhibit
solutions that have bright characteristics: like being the best solution ever found,
being feasible w.r.t. a relaxed constraint or being the best solution having some
other distinctive attributes.

Contrariwise the tabu memory has the role of avoiding certain solution
based on the search history of the algorithm in an attempt to avoid cycling.
It can be implemented in many different ways and is a very important feature
of the tabu search: it can inhibit visiting again a certain solution for a certain
number of iterations (the tenure of the list) or it can memorise and compare
only some attributes of the neighbouring solution, or of its difference to the
current one, or based on some other strategy.

Tabu lists have been implemented in may ways: as FIFO (first-in first-out)
queue, as LRU (least recently used) cache memories, as look-up tables, or in
less ordinary ways.

In the knowledge of the author a very common type of tabu list is based
on the memory of the last tenure moves. Each move is represented by a code,
independent on the current point, and the same move is not done again for
tenure iterations unless the aspiration criterion is met .

7

Algorithm 3 Tabu Search

s′′ ← s0

s∗ ← s0

while ¬terminate() do
zn =∞
for all s′ ∈ N(s′′) do
if f(s′) < zn ∧ (¬tabu(s′) ∨ aspiration met(s′)) then
s′′ ← s′

zn ← f(s′′)
end if

end for
if zn < f(s∗) then
s∗ ← s′′

end if
end while
return s∗

1.3 The curse of local search methods

Local search methods are generally condemned by their own locality. They can
usually intensify the search very well in a certain zone, but have a hard time
trying to get from one point to a very distant one.

For combinatorial problems the foremost method to avoid excessive locality
is to design a neighbourhood structure that leads to a good balance between
neighbourhood size and the overall diameter of the graph obtained connecting
the points of the search space with their neighbours.

In some circumstances this is very hard to achieve or is not sufficient and
some other methods are required to diversify the search.

Intensification and diversification are terms that are very common in the
tabu search vocabulary and have been interpreted in many different ways. Usu-
ally a good algorithm design consists in diversification phases interspersed with
an intensification of the search. How this is achieved is a matter of experience
and trial and error. However there are some useful diversification methods that
are utterly general.

Sometimes the diversification can be achieved with a longer or dynamic tabu
list, other times using a penalisation on recurring situations (somewhat misusing
the objective function).

In many situations we can resort to methods that can be used to improve
the diversification of a metaheuristic in a general way. We will discuss in the
following paragraph the two that are most common: multi-start and iterated
local search.

8

1.3.1 Multi-start

Multi-start [7, 519-537] is a very simple and general diversification method. In
order to better explore distance portions of the search space the search is started
more that one time from different points, carefully chosen, and the best overall
point is recorded.

Algorithm 4 Multi-start

i← 1
s∗ ← ∅
while ¬terminate() do
s0 ← generate(i-th starting point)
s′ ← improve(s0)
if f(s′) < f(s∗) then
s∗ ← s′

end if
end while
return s∗

More frequently than not, the “generate” function will provide a starting
point using a so called Monte Carlo method [4]. Choosing a random starting
point without any bias, with the added handicap of having to do so using a
computer, is not a plain trivial task. Citing what D. Knuth wrote in The Art
of Computer Programming : “[...]random numbers should not be generated with
a method chosen at random. Some theory should be used.”. In order to avoid
any type of bias a well thought and well implemented algorithm is of uttermost
importance.

In recent years [6] the multi-start approach has been merged with the will-
ingness to make good use of the search history. The most prominent variation,
in this direction, on the multi-start method is probably the Greedy Randomized
Adaptive Search Procedure (GRASP) that is generally attributed to [2] and re-
ceived a lot of attention in the latest years. In GRASP the starting solutions are
typically generated with a randomized greedy procedure and improved with a
local search, in the same way a multi-start does. As the algorithm proceeds the
randomized starting solutions are generated with a bias guided by the similarity
with previously generated points and the quality they achieved.

1.3.2 Iterated Local Search

Iterated Local Search (ILS) was introduced in [13, 12] although a very similar
algorithm, introduced for continuous global optimization, and known as Basin-
Hopping was introduced by [16].

ILS has a structure similar to multi-start, but instead of generating a new
random solution at each iteration we apply a perturbation so that the new start-
ing point has a good balance of similarity and dissimilarity from the previous
solution.

9

Algorithm 5 Iterated local search

s∗ = improve(s0)
repeat
s′ = perturbation(s∗)
s′′ = improve(s′)
s∗ = acceptance-criterion(s′′, s∗)

until termination criteria met
return s∗

The perturbation can be applied to the best solution found during the search
or to the last solution found by the improving procedure. In the first case
we intensify the search around the best known solution while in the latter we
diversify the search more. The usual choice will fall between always applying
the perturbation to the best know solution or balancing the two methods to
start with a better diversification and conclude with a better intensification.

1.3.3 Population based methods

Another common method to obtain a good diversification of the search is to
maintain a population of elements and to obtain diversification exchanging in-
formation between elements (as happens in Evolutionary Algorithms), this is
outside the scopes of this dissertation and of the metaheuristics library here
presented.

METSlib does not offer, right now, any kind of support for population meth-
ods. However it can be certainly used to represent instances of the population
and to improve those instances with local search methods when needed.

10

Chapter 2

The problem framework

2.1 Introduction

This chapter will be a more technical introduction to the METSlib framework
that will require some knowledge of metaheuristics, of the C++ programming
languages, and of some object orientation concepts. We will describe the classes
of the modelling and of the solution framework and will propose some usage
examples and results for the Quadratic Assignment Problem.

For a complete reference to the classes and methods of the library you should
consult the complete API documentation available on-line [14].

2.2 The problem and neighbourhood framework

The first thing that the user needs to do in order to start solving a discrete
optimisation problem using METSlib is to model the problem: in this process
the user has different choices. The author’s suggestion is to start implementing
the simplest thing that could possibly work and to start improving over that
working base.

On the other hand the choice of an efficient data structure depends deeply on
the neighbourhood that we want to exploit, and will weight on the final compu-
tational time. So, before starting with the implementation a long consideration
to guess the most appropriate neighbourhood and data structure is due.

METSlib facilitates the user mostly by providing standard and customary
solvers. The solving strategy can be customised on a working code base, when
the objective function and the neighbourhood have been tested deeply.

In some circumstances, when the problem we want to model is a permutation
problem, the framework will facilitate the work even more, providing ready made
operators and neighbourhoods to start with.

The components that are involved in the modelling are:

mets::feasible solution - A generic tag for a solution

11

mets::evaluable solution - A solution with an objective function that can be
used with solver components that need to evaluate solutions.

mets::permutation problem - A partially specialised solution to model the wide
range of problems in which the solution space is made by all the
possible permutations of a given set.

mets::move - A generic move that can be evaluated or applied against a solution
instance.

mets::mana move - A move that can be stored in the hash table of the
mets::simple tabu list.

mets::swap elements - A move that swaps two elements of a permutation
problem.

mets::invert subsequence - A 2-opt move (TSP like) on a permutation prob-
lem.

2.2.1 Feasible solutions

The role of the mets::feasible solution class is to act as a base class for all problem
instances. It is an empty class that you can fill with your problem data, variables
and methods. The purpose for this tagging class is simply to have a common
base class that can be used to pass the solution instances around.

In most cases the user will not derive directly from the empty feasible so-
lution class, but will probably prefer the mets::evaluable solution or some of its
specialisations.

The mets::evaluable solution base class has some pure virtual methods that
must be overridden and allow to use the implemented solution with some toolkit
components. The two virtual methods are the cost function() and the copy from().
This methods are used by most of the solution toolkit components to evaluate
and store a solution in memory.

A generic evaluable solution instance represents a point in the search space
and its objective value. Usually classes derived from this one will also provide
helper methods to modify and manipulate the solution.

A special type of feasible solution specialisation is the mets::permutation problem:
a class that provides some facilities to explore a feasible space made of all the
possible permutations of a given set. Very well known examples of permutation
problems are the Travelling Salesman Problem, where the minimum cost per-
mutation of cities has to be found and Assignment Problems where we have to
assign facilities to locations. To some extent even the Vehicle Routing Problem
that we will discuss in the next part can be modelled as a permutation problem.

2.2.2 Neighbourhood operators

Strictly speaking a move (also called an operator) is an operation that generates
a single neighbour from a given point. There are two basic types the user can
derive from: a generic mets::move and a tabu search specific mets::mana move which

12

is, in turn, a generic move object with some methods that allows efficient storing
and retrieving from a tabu list.

In METSlib moves provide two basic methods that are used by search
algorithms:

evaluate() - evaluates the cost function of the provided solution instance after
the move (without modifying the point)

apply() - modifies the solution into one of its neighbours.

The reason of having two distinct methods is that, in many situations, the
evaluation of the neighbouring points can be done without destroying the start-
ing point. When this is possible many costly copying operations can be avoided
with a significant speed increase.

Another speed-up can be achieved implementing the cost function so that
it does not recompute the whole objective function at each step, but updates
the cost function considering only the variables that are being modified by the
move. In the paragraph about Quadratic Assignment Problem we will illustrate
how to improve the computation of the objective cost after a tentative move.

Typical examples of a move are: insert or remove a specific element from
a certain position of a set, swap the position of two elements, increment or
decrement a certain variable, and so on. Moves depend deeply on the data
structure used: if a solution is represented as a vector the insert/remove/swap
are natural moves, if the solution is represented as a tree it is easy also to move
a sub-tree from one node to another. The specific move to be implemented
depends deeply on the user insight on the problem.

2.2.3 Neighbourhood exploration

In METSlib move managers are containers of moves and as such represent the
neighbourhood of the point to be explored. The neighbourhood plays a key role
in the algorithm definition: the neighbourhood (and the resulting algorithm) can
be deterministic or stochastic, define the search space allowing only feasible or
also unfeasible points, they can be made using a single type of move or multiple
types and so on.

Although the move manager exists as a framework class (see mets::move manager,
it can also be used as a generic concept [1]. There is no requirement to derive
from an existing move manager. All the search algorithms are templetised and
can use, as a neighbourhood, any class that will respect the following concept
class:

Move Manager Concept

refresh(s: feasible_solution&)
iterator type definition
begin(): iterator
end(): iterator

13

At each iteration the search algorithm will call the refresh() method passing
the current point to be explored.

All algorithms will thereafter explore the neighbourhood in order, using C++
instructions very similar to the following (assuming move manager is an instance
of a generic move manager type templetised class):

Listing 2.1: Neighbourhood expansion

1 move_manager.refresh(working_solution_m);
2 for(typename move_manager_type :: iterator
3 move_it = move_manager.begin();
4 move_it != move_manager.end();
5 ++ move_it)
6 ...

Your neighbourhood can reach different level of complexity.

Constant neighbourhood - if the neighbourhood does not depend on the
point being considered, i.e. the moves does not depend on the current so-
lution (like in swap the third element with the seventh), the neighbourhood
can be any container with an empty refresh method. The mets::move manager

base class can be used in this case.

Neighbourhood depends on the current point - in this case you also need
to implement the refresh method and fill the container at each iteration
with the feasible moves.

Implicit exploration - an implicit exploration of the neighbourhood is doable
with a specialised refresh method that only inserts the promising moves.

Customised neighbourhood exploration - when the mets::move manager is no
more sufficient (e.g. the generation of the neighbourhood at each iteration
is too expensive) the user can implement her own iterators and neighbour-
hoods that adhere to the concept: in this case the moves can be generated
by the iterator one at a time.

2.2.4 Modelling a permutation problem

If the problem that the user wants to model is a permutation problem, a problem
in which the solution space can be represented as all the permutation of a
certain set, the mets::permutation problem base class can be used. Deriving from
the permutation problem class the user can employ the provided neighbourhoods
and operators. The variable will be called pi m and, upon construction, will be
a vector (an ordered set) containing the first n natural numbers.

The user needs to implement the pure virtual methods evaluate swap() and
compute cost(), and, in the likely case where new variables and parameters have
been introduced, also the copy from() method.

The provided neighbourhoods are:

14

a b

cf

e d

a b

cf

e d

Figure 2.1: A 2-opt exchange move on an Hamiltonian cycle consists in removing two arcs
and restoring the cycle in a different way (note that there is only one way to do this). After
the exchange the sequence changes from abedcf to abcdef . Exchanging arcs (b, e) and (c, f)
with (b, c), (e, f) is equivalent to inverting the subsequence contained between b and f . We
are not aware of other works where this particular data structure has been used.

mets::swap full neighbourhood - a neighbourhood made from all the possible swaps
between every two elements of the permutation problem.

mets::swap neighbourhood - a random subset uniformly chosen from the previous
one.

mets::invert full neighborhood - a 2-opt neighbourhood made inverting all the sub-
sequences of the current permutation (see fig. 2.1).

15

Chapter 3

The solution toolkit

3.1 Introduction

Once the user has filled the framework with her problem, she can apply one of
the several algorithms provided by the library. Some of them are almost ready
to use, others require some coding. As the library improves the coding needed
will be reduced. The default direction of the optimisation is minimisation: in
order to maximise the sign of the cost function must be inverted.

The search algorithms are modular. Each algorithm, before starting the
search, must be configured using the required components.

First we must provide the search with a starting point1 and a solution
recorder2 . The former is needed to give the search the s0 solution to start
the search from, while the latter is used to record the best solution found dur-
ing the search.

Some algorithms can use an external stopping criterion while others will
need algorithm specific components. Tabu search will need a tabu list and an
aspiration criterion, while simulated annealing will need a cooling schedule.

Each component can be interchanged independently with other provided
components or with components developed by the user.

3.1.1 Recording the best solution

The framework provides a mets::best ever solution recorder that can be used to-
gether with mets::evaluable solution instances to record the solution with the best
cost. This recorder will copy improving points into the instance stored into the
recorder via the accept() method.

Sometimes the merit function value is not sufficient to accept a point as
improving. A widespread example of this situation, as we mentioned in 1.2, is
when the feasible space being explored does not match the feasible space for

1An instance of a class derived from mets::feasible solution
2A class derived from mets::solution recorder

16

the original problem. In this cases we may want to implement our own recorder
that will accept a solution as improving if it is the best known solution that is
also feasible for the un-relaxed model.

3.1.2 Terminating the search

Tabu Search and Simulated Annealing algorithms can be terminated by an
external termination criterion. This is useful to stop the search altogether or to
restart the search, possibly with different parameters or a different algorithm.

The termination criteria provided are:

mets::iteration termination criterion - The search is stopped after a fixed number
of iterations.

mets::noimprove termination criterion - The search is stopped after a fixed number
of non-improving iterations. This stopping criterion provides a second guess()

method that will return the maximum number of non improving iterations
that was below the threshold. This value can be used to have some hints
on how much iterations have been wasted.

mets::threshold termination criterion - The search is stopped when the objective
function drops below a certain value.

mets::forever - The search is never stopped.

Termination criteria can be chained as in the chain of responsibility design
pattern [5]. When two or more criteria are chained the search will stop when
any termination criterion is met.

3.2 Implemented algorithm

An interesting feature of METSlib is that it is extremely easy to start the search
using a local search, then switch to SA or TS (or even try the two together)
and react during the search making decisions that depends on the particular
solution being explored.

All search algorithms derive from the mets::abstract search templetised class.
The class accepts a neighbourhood exploration type as described in 2.2.3. It is
also an observable subject as in the observer design pattern [5].

Observers obeying the mets::search listener interface can use attach() to be
notified (we can also say called back) via the update() method. Observers are
notified on different events: when a move is made, when an improvement occurs
or in other circumstances that can be detected using the step() method of the
search algorithm. As an example, the following code can be used to observe
any search algorithm using an evaluable solution to report improvements on a
stream:

17

Listing 3.1: A simple search listener

1 template <typename neighborhood_type >
2 struct logger : public mets:: search_listener <neighborhood_type >
3 {
4 logger(std:: ostream& o) :
5 mets:: search_listener <neighborhood_type >(),
6 iteration (0), os(o) { }
7

8 void update(mets:: abstract_search <neighborhood_type >* as) {
9 mets:: evaluable_solution& e = dynamic_cast <mets::

evaluable_solution &>(as->working ());
10 if(as->step() == mets:: abstract_search <neighborhood_type >::

MOVE_MADE)
11 iteration ++;
12 else if(as->step() == mets:: abstract_search <neighborhood_type >::

IMPROVEMENT_MADE)
13 os << iteration << e.cost_function () << ’\n’;
14 }
15 int iteration;
16 std:: ostream& os;
17 };

The only method, excluding the constructor is update() that is called upon
events by the framework and receives the current algorithm. The implemented
update procedure checks the value of the algorithm step(), documented in the
API documentation, and prints information about the current iteration only
after an improving move has been made.

3.2.1 Local search

The simplest available algorithm is hill climbing, where the neighbourhood is
explored to search for the first improving move (in the minimising direction).
A simple variation is the Steepest descent, where the neighbourhood is fully
explored to find the best improving one. Both algorithms terminate when there
are no more improving moves in the neighbourhood.

This strategies are implemented in the mets::local search class.

3.2.2 Random Restart Local Search

The Random Restart Local Search (RRLS) is probably not the most effective
metaheuristics, but can be used for comparisons to test if another metaheuristic
performs well on a given problem. The reason is that it is really simple and relies
only on uniform randomness and a neighbourhood structure. It consists of a
multi-start method combined with a local search.. To be fair, when comparing
with other algorithms, comparison should be made using an uniform random
generation and the same neighbourhood structure and exploration.

The generation of the starting point depends on the problem and can be
done using the TR1 random extensions to the C++ standard (or using some
external library the user is already familiar with). The RRLS is not provided

18

by the framework but is really simple to implement using a single for cycle and
mets::local search.

3.2.3 Simulated Annealing

The algorithm described in 1.2.2 is implemented in mets::simulated annealing to-
gether with two basic cooling schedules: linear cooling schedule [15] defined in
mets::linear cooling, and exponential schedule [10] mets::exponential cooling.

The METSlib implementation will stop when the temperature reaches Tmin
or when an external termination criterion is met. If the termination criterion is
satisfied first may want to check that the temperature reached is not too high,
do something with the solution, and in case start another search phase.

3.2.4 Tabu Search

Tabu search (see 1.2.3) is implemented in the mets::tabu search class. The search
algorithm must be built providing the starting point, the solution recorder, the
neighbourhood exploration strategy, a tabu list, an aspiration criterion, and a
termination criterion.

The starting point (2.2.1), the solution recorder (3.1.1), the neighbourhood
((2.2.2,2.2.3) have been discussed earlier in this chapter.

The tabu list must be an instance of a class derived from mets::tabu list chain.
The ready to user mets::simple tabu list is a tabu list that memorises the latest
tenure moves and will avoid to explore them if present in the current neigh-
bourhood. Lots of other strategies are possible and can be easily implemented.
Tabu lists can be chained together: a neighbourhood element will be judged
tabu if any of the tabu lists matches.

The last needed component, the best ever aspiration criterion, is imple-
mented in mets::best ever criterion.

3.3 An application

We’ve seen how METSlib framework can be used to model discrete and combi-
natorial optimisation problems through the definition of a feasible space to be
explored, operators, and neighbourhoods.

The modelled problem can than be used with any of the available algo-
rithms. Algorithms are, in turn, modular and can be built from replaceable
first principles components.

In the next section we will see actual code to model the Quadratic Assign-
ment Problem, and different method to solve it using increasingly sophisticated
algorithms.

3.3.1 The Quadratic Assignment Problem

The Quadratic assignment problem is usually attributed to Koopmans-Beckmann
(1957) [11, 3].

19

In the Quadratic Assignment Problem we are given a set of n locations and
n facilities and we need do decide where to build the facilities (assign facilities
to locations) so that the cost of inter-plant transportation is minimised.

We call F ∈ Rn×n the matrix of the flows fij , the number of commodities
that we need to transport from facility i to facility j in a certain amount of
time.

We call D ∈ Rn×n the matrix of the costs dij of transporting one commodity
from location i to location j.

A first formulation can be written introducing a permutation matrixX where
the element xij is equal to 1 if the facility i is assigned to location j and zero
in the other case.

The model can be written as follow:

min
∑
i

∑
j

∑
p

∑
q

fijdpqxipxjq (3.1)

subject to
∑
j

xij = 1 ∀i ∈ {1, 2, . . . , n} (3.2)

∑
i

xij = 1 ∀j ∈ {1, 2, . . . , n} (3.3)

xij binary (3.4)

This formulation can be misleading for an inexperienced operations research
analyst in search for a useful neighbourhood. It may be useful for exact methods,
but can lead to neighbourhoods that are hard to explore.

If we define Π as the set of all the possible permutations of the set {1, 2, . . . , n}
and π ∈ Pi as a particular permutation so that πi will represent the position
chosen for the i-th facility we can restate the problem using another well known
formulation, that is more natural from the point of view of a neighbourhood
exploration:

min
π∈Π

n∑
i=1

n∑
j=1

fijdπ(i)π(j). (3.5)

In this formulation the neighbourhood operators emerge almost on their own:
the algorithm can move from a permutation to another by swapping elements.

The full problem definition can be written in a very compact and efficient
form using METSlib:

Listing 3.2: QAP model

1 class qap_model : public mets:: permutation_problem
2 {
3 protected:
4 std::vector < std::vector <int > > f_m;
5 std::vector < std::vector <int > > d_m;
6

20

7 double compute_cost () const {
8 double sum = 0.0;
9 for(unsigned int ii = 0; ii != pi_m.size(); ++ii)

10 for(unsigned int jj = 0; jj != pi_m.size(); ++jj)
11 sum += f_m[ii][jj] * d_m[pi_m[ii]][pi_m[jj]];
12 return sum;
13 }
14

15 public:
16 qap_model () : permutation_problem (0), f_m(), d_m() {};
17 void copy_from(const mets:: copyable& sol) {
18 const qap_model& o = dynamic_cast <const qap_model&>(sol);
19 permutation_problem :: copy_from(sol);
20 f_m = o.f_m;
21 d_m = o.d_m;
22 }
23

24 double evaluate_swap(int i, int j) const {
25 double delta = 0.0;
26 for(unsigned int ii=0; ii != f_m.size(); ++ii) {
27 delta -= f_m[i][ii] * d_m[pi_m[i]][pi_m[ii]];
28 delta -= f_m[ii][i] * d_m[pi_m[ii]][pi_m[i]];
29 delta -= f_m[j][ii] * d_m[pi_m[j]][pi_m[ii]];
30 delta -= f_m[ii][j] * d_m[pi_m[ii]][pi_m[j]];
31 int ni = ii;
32 if(ii==i) ni = j; else if(ii==j) ni = i;
33 delta += f_m[i][ii] * d_m[pi_m[j]][pi_m[ni]];
34 delta += f_m[ii][i] * d_m[pi_m[ni]][pi_m[j]];
35 delta += f_m[j][ii] * d_m[pi_m[i]][pi_m[ni]];
36 delta += f_m[ii][j] * d_m[pi_m[ni]][pi_m[i]];
37 }
38 return delta;
39 }
40 };

The class starts declaring the two matrices f m and d m and uses the implicit
pi m permutation vector inherited from the permutation problem base class. The
copy method at line 17 is used by the best ever solution recorder to store the
best known solution, the compute method at line 7 is the C++ implementation
of eq. (3.5) and computes the cost function form scratch. The most important
method, evaluate swap at line 24, is used to evaluate the cost function after
a swap using only 8n multiplications instead of the n2 needed by a full cost
computation.

3.3.2 Local search

In this paragraph the model declared in the previous one is used to implement
a simple local search.

Listing 3.3: Local search strategy

1 qap_model problem_instance;
2 std::cin >> problem_instance;
3 unsigned int N = problem_instance.size();

21

4

5 qap_model best_solution(problem_instance);
6 mets:: best_ever_solution best_recorder(best_solution);
7

8 mets:: swap_full_neighborhood neighborhood(N);
9

10 std::tr1:: mt19937 rng(time(NULL));
11 mets:: random_shuffle(problem_instance , rng);
12

13 mets:: local_search <mets:: swap_full_neighborhood >
14 algorithm(problem_instance ,
15 incumbent_recorder ,
16 neighborhood);
17

18 mets:: iteration_logger g(clog);
19 algorithm.attach(g);
20 algorithm.search ();
21

22 std::cout
23 << std::fixed
24 << N << " "
25 << best_solution.cost_function () << std::endl
26 << best_solution << std::endl;

Lines 1–2 declare and load the working QAP instance, lines 5–6 declare
a second solution instance to store the best known solution (this will closely
follow the working instance for local search, but will be more useful for other
algorithms). The neighbourhood is instantiated at line 8 and will explore all
the possible single swaps. A random starting point is generated using the C++
TR1 extension and the random shuffle algorithm (lines 10–11): the algorithm
will select a random permutation uniformly chosen between all possible permu-
tations. The algorithm declaration (local search in this case) is at line 13. The
following lines are used to attach a logger to the search (lines 18–19), to start
the search and to print the result.

The complete code can be found on-line on the METSlib page of the COIN-
OR project.

3.3.3 A simple Tabu Search

If we replace the statement at line 13 with the following code we can replace
the local search with a tabu search algorithm. There is no need to change the
model or the other solver statements.

Listing 3.4: Tabu search strategy

1 mets:: simple_tabu_list tabu_list(N*sqrt(N));
2 mets:: best_ever_criteria aspiration_criteria;
3 mets:: noimprove_termination_criteria termination_criteria (1000);
4 mets:: tabu_search <swap_full_neighborhood_t >
5 algorithm(problem_instance ,
6 incumbent_recorder ,
7 neighborhood ,
8 tabu_list ,

22

9 aspiration_criteria ,
10 termination_criteria);

This code declares the needed components and builds a simple tabu search
strategy.

3.3.4 Random Restart Local search

In order to random restart the aforementioned local search algorithm shown in
listing 3.3 the termination and recording component of METSlib can be used
in a loop containing the local search as show in listing 3.5.

Listing 3.5: RRLS

1 mets:: iteration_termination_criteria rrls_stop (200);
2 while(! rrls_stop(best_recorder.best_seen ())) {
3 mets:: random_shuffle(problem_instance , rng);
4 mets:: local_search <mets:: swap_full_neighborhood >
5 algorithm(problem_instance ,
6 best_recorder ,
7 neighborhood);
8 mets:: iteration_logger g(clog);
9 algorithm.attach(g);

10 algorithm.search ();
11 }

3.3.5 An Iterated Tabu Search

We also tested an Iterated Tabu Search (ITS), replacing the strategy at line 13
of listing 3.3 with the following strategy that uses a randomly varying tabu list
tenure, and perturbation entity. In this algorithm the neighbourhood has been
replaced by a random sample of neighbours of size N

√
N .

Listing 3.6: ITS

1 // random number generators
2 std::tr1:: mt19937 rng(time(NULL));
3 std::tr1:: uniform_int <int > tenure_gen (5, N*sqrt(N));
4 std::tr1:: uniform_int <int > pert_gen(N/5, N/2);
5 mets:: random_shuffle(problem_instance , rng);
6 mets:: noimprove_termination_criteria ils_stop (20);
7 mets:: simple_tabu_list tabu_list(tenure_gen(rng));
8 while(! ils_stop(ils_recorder.best_seen ())) {
9 qap_model ts_solution(problem_instance);

10 mets:: best_ever_solution ts_recorder(ts_solution);
11 mets:: best_ever_criteria aspiration_criteria;
12 mets:: noimprove_termination_criteria ts_stop (500);
13 mets:: tabu_search <swap_neighborhood_t >
14 algorithm(problem_instance ,
15 ts_recorder ,
16 neighborhood ,
17 tabu_list ,
18 aspiration_criteria ,

23

Table 3.1: Comparison of results on Taillard instances for the presented algorithms.

LS gaps (%) RRLS gaps (%) TS gaps (%) ITS gaps (%)
Instance B.K.S. Avg Min Avg Min Avg Min Avg Min

tai12a 224416 10.20 6.23 0.00 0.00 0.49 0.00 0.00 0.00
tai15a 388214 2.19 2.34 0.27 0.00 0.71 0.00 0.00 0.00
tai17a 491812 5.38 3.10 1.34 0.00 1.43 0.56 0.13 0.00
tai20a 703482 6.00 2.33 1.55 0.47 1.63 0.47 0.75 0.00
tai25a 1167256 5.09 3.58 2.21 1.88 2.46 1.78 0.98 0.00
tai30a 1818146 4.69 2.33 2.36 1.84 2.11 1.39 1.03 0.49
tai35a 2422002 5.25 3.95 2.79 2.28 2.11 1.42 1.47 0.81
tai40a 3139370 4.98 3.63 2.99 2.62 2.29 1.79 1.40 0.95
tai50a 4938796 5.04 4.13 3.16 2.10 2.54 2.10 2.07 1.75
tai60a 7205962 4.67 3.98 3.32 3.00 2.31 2.04 1.97 1.47
tai80a 13511780 4.22 3.67 2.95 2.71 2.14 1.93 2.10 1.69
tai100a 21052466 3.60 3.13 2.81 2.65 1.98 1.77 2.00 1.82

Avg 5.11 3.53 2.15 1.63 1.85 1.27 1.16 0.75

19 ts_criteria);
20 algorithm.search ();
21 ils_recorder.accept(ts_recorder.best_seen ());
22 problem_instance.copy_from(ils_recorder.best_seen ());
23 mets:: perturbate(problem_instance , pert_gen(rng), rng);
24 tabu_list.tenure(tenure_gen(rng));
25 }

3.4 Computational results

We tested the implemented strategies on the Taillard instances and compared
with the best known solutions (BKS) of the QAPLIB (Burkard, ela, Karisch
and Rendl) solving each instance 10 times and providing average and minimum
gaps. The complete set of algorithms presented is provided with full source
in the Examples package, available for download on www.coin-org.org . The
results of ITS, on average below 1% can be considered very good in practice as
they are far less than the tolerance in road measurement.

24

Chapter 4

Conclusions

We presented METSlib a metaheuristics framework for OR researchers and
practitioners searching for a simple, efficient, reusable and concise framework
for local search methods. We’ve shown the framework spirit and main com-
ponents giving sample code where needed. We also provided some results on
some very simple code using only stock components, that, in the author opinion,
are very satisfying. Starting from this tutorial the user can deepen her knowl-
edge of the framework reading the example code and the almost complete API
documentation, both available on-line.

METSlib is still young. The current release, version 0.5.2, can be down-
loaded from http://www.coin-or.org/metslib. Software of this kind is not of
widespread use and untested code lies in ambush. As a Free Software user, on
one hand you have the right to demand for reliable and stable code, on the other
hand you should test code, report bugs, join the mailing list, encourage the au-
thors, tell about framework usages, and, in general, find your way to participate
in its development.

25

Index

accept(), 16
apply(), 13
aspiration criterion, 7, 16, 19
attach(), 17

COIN-OR, 24
compute cost(), 14
copy from(), 12, 14
cost function(), 12

evaluate(), 13
evaluate swap(), 14

Iterated Local Search, 9
algorithm, 9

Iterated Tabu Search, 23

Local Search, 4, 5, 18, 21
locality, 8

metaheuristic, 3
Local Search, see Local Search
Simulated Annealing, see Simulated

Annealing
Tabu Serarch, see Tabu Search

mets::abstract search, 17
mets::best ever criterion, 19
mets::best ever solution, 16
mets::evaluable solution, 12, 16
mets::exponential cooling, 19
mets::feasible solution, 11, 12, 16
mets::forever, 17
mets::invert full neighborhood, 15
mets::invert subsequence, 12
mets::iteration termination criterion,

17
mets::linear cooling, 19
mets::local search, 18, 19

mets::mana move, 12
mets::move, 12
mets::move manager, 13, 14
mets::noimprove termination criterion,

17
mets::permutation problem, 12, 14
mets::search listener, 17
mets::simple tabu list, 12, 19
mets::simulated annealing, 19
mets::solution recorder, 16
mets::swap elements, 12
mets::swap full neighbourhood, 15
mets::swap neighbourhood, 15
mets::tabu list chain, 19
mets::tabu search, 19
mets::threshold termination criterion,

17
METSlib, 3, 5–7, 10, 11, 13, 17, 19, 20,

22, 23, 25
model, 11, 14
move manager, 14
move manager type, 14
Multi-start, 9

algorithm, 9

Neighbourhood, 11
neighbourhood, 3, 12–14

permutation problem, 14

Quadratic Assignment Problem, 19–25

Random Restart Local Search, 18, 23
refresh(), 14

second guess(), 17
Simulated Annealing, 4, 6, 19

algorithm, 6

26

solution recorder, 16
step(), 17, 18

Tabu memory, 7
Tabu Search, 4, 7, 19, 22

algorithm, 7
tenure, 7
termination criterion, 17

update(), 17, 18

27

Bibliography

[1] Gabriel Dos Reis and Bjarne Stroustrup, Specifying c++ concepts, SIG-
PLAN Not. 41 (2006), 295–308.

[2] Thomas A. Feo and Mauricio G. C. Resende, A probabilistic heuristic for a
computationally difficult set covering problem, Operations Research Letters
8 (1989), no. 2, 67 – 71.

[3] Gerd Finke, Rainer E. Burkard, and Franz Rendl, Quadratic assignment
problems, Surveys in Combinatorial Optimization (Michel Minoux Sil-
vano Martello, Gilbert Laporte and Celso Ribeiro, eds.), North-Holland
Mathematics Studies, vol. 132, North-Holland, 1987, pp. 61 – 82.

[4] George S. Fishman, Monte carlo: concepts, algorithms, and applications,
Springer, New York, 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software, Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA, 1995.

[6] M. Gendreau and J-Y. Potvin (eds.), Handbook of Metaheuristics, 2nd ed.,
International Series in Operations Research and Management Science, vol.
146, Springer, 2010.

[7] Fred W. Glover and Gary A. Kochenberger (eds.), Handbook of Metaheuris-
tics, International Series in Operations Research and Management Science,
vol. 114, Springer, January 2003.

[8] Fred W. Glover and Manuel Laguna, Tabu Search, 1 ed., Springer, June
1998.

[9] V. Granville, M. Krivánek, and J. P. Rasson, Simulated annealing: A proof
of convergence, IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 652–
656.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated
annealing, Science, Number 4598, 13 May 1983 220, 4598 (1983), 671–680.

[11] Eugene L. Lawler, The quadratic assignment problem, Management Science
9 (1963), no. 4, pp. 586–599 (English).

28

[12] Helena Lourenço, Olivier Martin, and Thomas Stülze, Handbook of meta-
heuristics, International Series in Operations Research and Management
Science, vol. 57, ch. 11, Iterated Local Search, pp. 321–353, Kluwer Aca-
demic Publisher, 2003.

[13] H.R. Loureno, O. Martin, and T. Sttzle, A beginners introduction to iterated
local search, Proceeding of the 4th Metaheuristics International Conference,
2001, pp. 1–11.

[14] Mirko Maischberger, METSlib, a metaheuristics framework in C++,
http://projects.coin-or.org/metslib, July 2010.

[15] R. E. Randelman and Gary S. Grest, N-city traveling salesman problem:
Optimization by simulated annealings, Journal of Statistical Physics 45
(1986), no. 5, 885–890, The problem of finding the shortest closed path
connectingN randomly chosen points is one of the classicNp-complete prob-
lems. We show that the length of tour depends logarithmically on the cool-
ing rateQ in a simulated Monte Carlo anneal. We speculate that this is a
general property of allNp-complete problems.

[16] David J. Wales and Jonathan P. K. Doye, Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones clusters con-
taining up to 110 atoms, Journal of Physical Chemistry A 101 (1997),
5111–5116.

29

