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Abstract

DYLP is a full implementation of the dynamic simplex algorithm for linear programming. Dy-
namic simplex attempts to maintain a reduced active constraint system by regularly purging
loose constraints and variables with unfavourable reduced costs, and adding violated constraints
and variables with favourable reduced costs. In abstract, the code alternates between primal and
dual simplex algorithms, using dual simplex to reoptimise after updating the constraint set and
primal simplex to reoptimise after updating the variable set.
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1 Introduction

DYLP is a linear programming (LP) code designed to be used as the underlying LP code in a branch-
and-cut integer linear programming (IP) code. It emphasises convenience of use by the client,
particularly with respect to fixing variables and adding and deleting constraints and variables.
The target user population is IP algorithm developers; as such, DYLP emphasises controllability
and convenience over efficiency and is capable of producing copious amounts of output for use in
debugging.

DYLP implements a dynamic simplex algorithm along the lines set out by Padberg in [9, §6.6].
The core idea is that, at any given time, many of the constraints of a LP problem are loose, and
many nonbasic variables are unlikely to ever be considered for pivoting because their reduced costs
are very unfavourable. A rough outline of the algorithm, neglecting unboundedness, infeasibility,
and implementation issues, is as follows.

From the problem supplied by the client, DYLP chooses an initial subset of constraints and
variables to become the active system. This system is solved to optimality with primal simplex.
DYLP then enters a minor loop where it deactivates variables whose reduced costs are worse than
a threshold, activates variables whose reduced costs are favourable, and reoptimises the system
with primal simplex. This minor loop is repeated until there are no more variables suitable for
entry. Next, DYLP deactivates any loose constraints, activates any constraints which are violated
at the current basic solution, and reoptimises with dual simplex. On regaining feasibility, it
returns to primal simplex and the deactivate/activate variable loop. When there are no variables
with favourable reduced costs among the inactive variables and no violated constraints among the
inactive constraints, the solution is optimal.

The primal simplex algorithm used by DYLP is a two-phase algorithm. Phase I uses a dynam-
ically modified objective to attain a primal feasible solution. Both phase I and phase II use a
projected steepest edge (PSE) pricing algorithm outlined by Forrest & Goldfarb [3, algorithm ‘dy-
namic’]. There are two antidegeneracy methods. The first, referred to as ‘anti-degeneracy lite’,
attempts to resolve ties among degenerate pivots by choosing the pivot in such a way as to make
tight a hyperplane which has a desirable alignment. The second, applied when the first takes too
long to resolve the degeneracy, is a perturbation algorithm which builds on a method described by
Ryan & Osborne [10].

The dual simplex algorithm provides only a second phase with dual steepest edge (DSE) pric-
ing [3, algorithm ‘steepest 1’], standard or generalised pivoting, and implementations of anti-
degeneracy lite and perturbation-based antidegeneracy in the dual space. In the context of DYLP,
it is the subordinate simplex, used for reoptimisation after adding constraints and as the initial
simplex when the problem is dual feasible but not primal feasible.

The active and inactive constraint systems are maintained with the CONSYS subroutine library
[5]. Basis factoring and pivoting are handled using the basis maintenance package from GLPK
[6, 71.

DYLP is written in C and provides a native C interface. It can be used as a standalone simplex
LP code with only a minimal shell required to generate the constraint system.

In the context of a branch-and-cut code, DYLP expects that the dominant mode of use will be
successive calls to reoptimise a constraint system that is incrementally modified between calls.
On request, it will maintain its internal state (constraint system, basis inverse, and support
data structures) between calls to support efficient hot starts for reoptimisation. Because DYLP
maintains this internal state, it does not provide a native capability to interleave optimisation and
reoptimisation of distinct constraint systems. DYLP provides two specialised interface routines to



support two queries commonly required in a branch-and-cut context, pricing a new variable and
pricing a dual pivot.

DYLP can be used with COIN-OR [2] software through the C++ OsiDylp OSI interface class. An
OSI interface object maintains a copy of the constraint system as well as providing an interface to
the underlying solver. Multiple OsiDylp objects with distinct constraint systems can exist simulta-
neously and calls to optimise and reoptimise the systems can be interleaved. There is some loss
of efficiency as the state of the underlying solver is changed, but the necessary bookkeeping is
handled by the OsiDylp objects.

The next section specifies the notation used for the primal and dual problems in the remainder
of the report. Sections 3 through 11 describe individual components of the implementation. Sec-
tions 12 through 16 describe the simplex algorithms and the variable and constraint management
algorithms used in DYLP. Sections 17 through 19 describe the interface and parameters provided
by DYLP.



2 Notation

DYLP works naturally with the minimisation problem

min cx
Ax<b (1)
I<x<u

Add slack variables s and partition [A I ] into basic and nonbasic portions as

B! O|N' I
B N]z[Bl I'| N 0}

with corresponding partitions [x? sB xV sV ]T for x, s, and [b bl]T for b. The objective c
is augmented with O’s in the columns corresponding to the slack variables, and partitioned as
[cB 0 cN 0]. The basis inverse will be

L [ Byt o
B = [_Bl(Bt)—l Il:| (2)

We then have

[ u——
n =
T ®
[ E—
1]

N
B'b-B7N [XN}
S

[Bt)—l bt B (Bt)—l Nt [Bt)—l XN
bl - Bl(Bt)—l bt Nl - Bl(Bt)—l Nt _Bl(Bt)—l SN

(3)

and
z=[cB 0][xB sP]'+[c¥ O] [xN sM]'
=[cB 0] Bb+([c¥ 0]-[cB 0] BIN)[x" sV]" 4)
= cB(BY) bt + [N = cB(BY Nt —cB(BY)™] [xN SN]T
The quantities [x SB]T = b = B!b are the values of the basic variables, the quantities y =
[cB 0] B™ are the dual variables, and the quantities ¢= ([c¥ 0] - [c® 0] B! N) are the reduced
costs. A row or column of B! N (as appropriate to the context) will be denoted @y (the single
subscript distinguishes it from an individual element @;;). A row or column of B™! (as appropriate

to the context) will be denoted ;. When discussing pivot selection calculations, A; will be the
change in nonbasic variable x; or s;.

B

The dual problem is formed by first converting (1) to max —cx, giving

min yb
yAz=-c
y=0

Add surplus variables ¢ and partition [A -] " into basic and nonbasic portions as

o -I*
B|_| B N
Nl | -0

B! N



with corresponding partitions [0® y® o y"] fory, 0, and [P ] for c. The right-hand side
b is augmented with O’s in the rows corresponding to the surplus variables and partitioned as

[0 b' O blf. The basis inverse will be

B

o (Bt)—th (Bt)—l
I & 0 |-

We then have
0% y?] =B - [0 Yy |NB!

-(BY)'N* -(BY™ (5)

= [CN - CB(Bt)_th —CB(Bt]_l] - [O'N yN] |:B1(Bt]_1Nt_ N Bl(Bt)—l

and
z=[o® y?][0 b +[o* y¥][0 b

=(-gB7'b" + [0V yN| (B -NBb?)
(Bt)—l bt :|

(6)

=-cP(B)'b' +[0N yV] {bl - BU(BY) bt
When discussing pivot selection calculations, §; will be the change in nonbasic dual variable y; or
gj.

There are several points to note about the relationship between primal and dual simplex in the
DYLP implementation.

First, DYLP does not solve max —cx as a surrogate for min cx. It minimises cx directly by
algorithmic design. Hence the dual variables y = cBB™ have the wrong sign for the dual problem,
and are calculated solely as a convenience. The dual algorithm actually works with the reduced
costs ¢ = ¢V - ¢cBB7'N, which are the correct dual variable values (compare (4) with (5)).

Second, because primal simplex provides B'N = -NB™! (compare (3) with (5)), the relevant
calculation when determining the leaving dual variable is T + a@;0;, rather than ¢ — a@;c6;.

Throughout the remainder of the report, let e, € R? be a row or column vector of appropriate
dimension (as determined by the context), with a 1 in position k and O’s in all other positions.



3 Updating Formulse

For purposes of the updating formulee, the distinction between original variables x and slack
variables s is not important. For simplicity, xi is used to represent both original variables and
slack variables in this section. In the same vein, ¢ and ¢V will denote [c® 0] and [¢V 0],
respectively.

3.1 Basis Updates
While these formulee are not applied directly to update the basis, they are useful in deriving update
formulee for other values.
Suppose that x; will leave basis position k and be replaced by x;. The new basis B’ can be
expressed as B' = B- a;e + aje,. Premultiplying by B™! and postmultiplying by (B')~!, we have
B'B(B)!'=B'BB)!'-B'qerB) '+ B aer(B)!
B = (B)" — @i+ afi (7)
(B/)_l = B_1 +aiﬁ;c - ajﬂ,;(
Since x; was basic, a; = e,. This gives
(B)™!' =B + el — @
Premultiplying by e; to obtain an update formula for row [, we have
a;
Bi=Pi-—Lp. l#k
ak_,-

B = ;ﬁk

Ajj

(8)

3.2 Primal Variable Updates

Updating the primal variables is straightforward and follows directly from (3).

Both primal and dual pivots calculate the change in the entering primal variable, A;. The
entering variable x; is set to u; +A; or [;+A;, for x; entering from its upper or lower bound,
respectively. The leaving variable x; is set to u; or [;, for x; leaving at its upper or lower bound,
respectively. The remaining basic variables x;, k # i, are updated according to the formula

Xic = by —aijj.

3.3 Dual Variable Updates

Updating the dual variables is simple in the final implementation, but a little work is necessary
to derive the updating formula. The difficulty lies in the fact that the dual variables of interest are
y=[y® y"], i.e., amixture of basic and nonbasic dual variables. Direct application of (5) is not
possible.



Assume that the leaving variable x; occupies row k in the basis B. The new vector of basic
costs, (¢')B, can be expressed as (¢)B=cB-[0...¢;...01+[0...¢;...0l, where ¢; and ¢; occur in
the k" position. From (7), it is easy to show B(B/)™! = I + a;(8')i - a;(B).

We can proceed to derive the update formulee for y as follows:
y/ - (C/)B[B/]—l
=cPBT'B(B) ! - cilf)i + ¢i(B)i
=y + ai(B)ic — a;(B)i) = cilB)ic + ¢;(B)rc
=y+(c;—ya)(Bi = (ci =~ ya) B

Recognising that ¢; = ¢; — ya; is the reduced cost of x; before the basis change, and noting that
C; = ¢;—ya; = 0 since x; was basic, we have

Y =y+¢(B).
As a further observation, note that ('), =i /di;, so we can update y using a row of B! as

Y =y+¢;Pi/ax;.

10



4 Pricing Algorithms

4.1 Projected Steepest Edge Pricing

The primal simplex algorithm in DYLP uses projected steepest edge (PSE) pricing; the algorithm
used is described as dynamic projected steepest edge (‘dynamic’) in Forrest and Goldfarb [3].

To understand the operation of projected steepest edge (PSE) pricing, it will be helpful to start
with the definition of a direction of motion. The values of the basic and nonbasic variables can be

expressed as
B b B—l AN
o] = [P [9)

where [/u is intended to indicate use of the lower or upper bound as appropriate for the particular
nonbasic variable. When a given nonbasic variable x; is moved by an amount A;, the values of x
will change as
Blaq; a;
‘[ _ejj} Aj=- {_ejj} Aj=njA; (10)
The vector 7; is the direction of motion as x; is changed; alternatively, it is the edge of the polyhe-
dron which is traversed as x; is changed. Let y; = ||;|| be the norm of ;.

For pricing, it can be immediately seen that cn; = ¢; - ¢ @; is the reduced cost ¢;. Dantzig pric-
ing chooses an entering variable x; such that ¢; has appropriate sign and the largest magnitude
over all reduced costs, but it can be misled by differences in scaling from one column to the next.
Steepest edge (SE) pricing scales c; by y;, choosing an entering variable x; with ¢; of appropriate
C :

H’?i ’ effectively calculating the change in objective value over a unit vector
J
in the direction of motion. This gives a uniform pricing comparison, using the slope of the edge.

sign and the largest

Projected steepest edge (PSE) pricing uses ‘projected’ column norms which are calculated using
a vector 7]; which contains only the components of 7; included in a reference frame. Initially, this
reference frame contains only the nonbasic variables, so that 7; =1 for all x; € x". In order to avoid
calculating y; from scratch each time a column must be priced, the norms are iteratively updated.

To derive the update formulee for j;, it is useful to start with the update formulee for the
full vector 7;. As mentioned in §3.3, for x; leaving basis position k and x; entering, B(B/)™ =
I+a;(8)i - a;(f). Taking this one step further, (B)! = B™ +@;()i = a@;(#")k. Then for an arbitrary
column ay,

(B)ta, = B a, +@i(B)ap —a;(B)iap

o akp _ akp
= + Py — (22
a,=a, ek[akj] aJ[akj] (11)
(recalling that (8')c = Bi/ax;).

To see that (11) amounts to 17}, =np—17 j(%), it’s helpful to expand the vectors:
kj

alp 0 EU
_ aj _ | ax
a,=|ap |+ 1| =2~ |ag| =2
akj akJ

Amp| O Tpnj

11



With a little thought, it can be seen that the middle term represents one half of the permuta-
tion which moves x; into the basic partition of 7). (The other half moves x; into the nonbasic
partition). When updating 7;, the update formula can be collapsed to 1} = -n;/d;, since Qj; = 1.
Summarising, the update formulae for the edge directions 7; are

Np=Mp~ 771(* -), p#i (12)

N = =1/ ;.

In fact, the code actually stores and updates yjz. With (12) in hand, derivation of the update
formulee are straightforward:

(yp)> =110,
=01p = m(gfk’f)] U m(f p))

=Mp- 7710_2(— )77J 77p+(— )77J nj

(13)
Qicp 1 |Ap akpz
-2 @l ] M *‘akﬂ
=y2-220) @] Bay + (2 Ly}
QAjej
> =mn;-n;
=10/ Qxj- N/ Axj (14)

Equations (12) can be used directly to update the 7;. To adapt (13) and (14) for the y;, a little
algebra should serve to see that it’s sufficient to substitute a; in (13), as well as using ¥, and ¥;.

It is straightforward to observe that when equations (12) are premultiplied by c, they can be
used to update the reduced costs as

akp)

¢, =Cp— ¢l p#i

EIL = _Cj/akj.

4.2 Dual Steepest Edge Pricing

The dual simplex in DYLP uses dual steepest edge (DSE) pricing; the algorithm used is described
as dual algorithm 1 (‘steepest 1’) in Forrest and Goldfarb [3].

The values b= B™!b are the reduced costs of the nonbasic dual variables. Analogous to Dantzig
pricing in the primal case, one can choose a entering dual variable y; such that b; has appropriate
sign and the largest magnitude over all reduced costs, but there is the same problem with scaling.
The version of dual steepest edge (DSE) pricing implemented in DYLP scales b; = 8;b by p; =

Bib
1Bl I

lating the change in the dual objective value over a unit vector in the dual direction of motion in

choosing a leaving variable x; with b; of appropriate sign and the largest

, effectively calcu-

12



the space of the dual variables. This gives a uniform pricing comparison, using the slope of the
dual edge.

In the next few paragraphs, an alternative motivation of the algorithm is presented which
(perhaps) clarifies the relationship between dual algorithm 1 and dual algorithm 2 in that paper!.

To see how DSE operates within the context of the revised primal simplex tableau, we can refer
back to equations (5) and (6) from §2, repeated here:
0% y?] =B - [0 Yy |NB!
_ _ B _(Bt)—l Nt _(Bt)—l (5)
= [CN - CB(Bt) th —CB(Bt] 1] - [O'N yN] |:Bl(Bt]_1Nt _ Nl Bl(Bt)—l

and
z=[o® ][0 b7+ [0 YN0 b
=(-aB'b" + [0V Y] (BN -NBbP)

(Bt)—l bt
bl - Bl(Bt)—l bt

(6)
= _CB[Bt)—l bt + [UN yN] |:

Recall that the values of the dual basic variables are the reduced costs of the primal problem, and
the reduced costs of the dual variables are the values of the primal basic variables (cf. equations
(3) and (4)).

By analogy to the primal pivoting rules, for dual simplex we want to choose a nonbasic dual
variable which will move us in a direction of steepest descent. If the nonbasic dual is to increase,
its reduced cost must be less than O in order to see a reduction in the dual objective. This
corresponds to the case of a primal variable which will be increased and driven out of the basis at
its lower bound with a positive primal reduced cost. If the nonbasic dual is to decrease, its reduced
cost must be greater than O in order to see a reduction in the dual objective. This corresponds
to the case of a primal variable which will be decreased and driven out of the basis at its upper
bound with a negative primal reduced cost.

The actual direction of motion in the full dual space (y and o) is specified by a row of

G -BYINT By
NB™ = Bl[Bt)—th — Nl Bl(Bt)—l ’

a vector which is not readily available in the revised primal simplex?. However, one can make an
argument that there’s no need to consider the component of the direction of motion in the subspace
of the dual surplus variables when choosing the entering dual variable. (More positively, we can
take the view that we're only interested in motion in the polyhedron {y e R™|yA > -c, y >0} defined
by the dual variables.) Changes in the surplus variables cannot affect the objective directly, as they
account for the O’s in the augmented and partitioned b vector. Algebraically, we can see that the

dual basic portion of b, [0 b'] T guarantees that there will never be any direct contribution from

I'Those who have read [3] are warned that the author’s notation is in no way compatible with that of Forrest
and Goldfarb.

2It’s necessary to calculate one such row @; once the entering dual variable has been selected, but only one.
For the typical problem in which the number of variables greatly exceeds the number of constraints, the
norms of these vectors are expensive to calculate when initialising the pricing algorithm, and the updates are
expensive. The algorithm which uses the full dual direction of motion is the one that Forrest and Goldfarb
describe as dual algorithm 2.

13



the columns of NB™! involving N. The component of motion in the space of the dual variables y is
then simply the rows f3; of B™!, which are easily available from the primal tableau. (The analogous
action in the primal problem — ignore the component of 7; in the subspace of the primal slack
variables — offers no computational advantage.)

Given a rationale for taking the rows f3; of B™' as the component of interest in the dual direc-
tion of motion, what remains is to work out the details. Since we're aiming for a steepest edge
algorithm, we’ll be interested in iteratively updating ||3;||? = B: - Bi, the square of the norm of a row
fi. Given the update formulze for §; derived in §3.1, the development of the update formulee for
pi = ||Bi||? is straightforward algebra. Let x; be the leaving variable and x; be the entering variable,
and assume x; occupies row k of the basis B before the update. We have

ai ai
P =pi=2=LPi B+ (=L)pi ik
Ajcj Ajcj
1 (15)
/= 2
Ok (akj) Ok

Since the update will be performed for all rows in the basis, it’s worth calculating the vector
7= BT to obtain all the inner products f; - fx in one calculation.

14



5 Anti-Degeneracy Using a Perturbed Subproblem

In both primal and dual simplex, DYLP implements an anti-degeneracy algorithm using a per-
turbed subproblem. It builds on a method described by Ryan & Osborne [10] in which all variables
are assumed to have lower bounds of zero and upper bounds of infinity.

The original algorithm is easily described in terms of the primal problem. When degeneracy
is detected, a restricted subproblem is formed consisting only of the constraints involved in the
degeneracy (i.e., constraints i such that b; =0). The values b; are given (relatively) large perturba-
tions and pivots are performed within the context of the restricted subproblem until a direction of
recession from the degenerate vertex is found (indicated by apparent unboundedness). The origi-
nal unperturbed values of b; are then restored (since all pivots were, in actuality, simply changes
of basis while remaining at the degenerate vertex) and the full problem is resumed.

An alternative view goes directly back to the constraints involved in the degeneracy. By per-
turbing their right-hand-side values b;, the single vertex formed by the constraints is fractured
into many vertices. For the simple case of 0 < x <o, we have b= B™'b, so perturbing b by the
vector § is equivalent to perturbing b by the vector —B§.

In dual simplex, this algorithm can be implemented directly. The restricted subproblem is
formed from the dual constraints (primal columns) corresponding to basic dual variables (primal
reduced costs) whose value is zero. The perturbation is introduced directly to the values ¢;, taking
care to maintain dual feasibility. The perturbation is maintained by the incremental update of
the dual variables and reduced costs after each pivot. When accuracy checks are performed, the
correct value of zero can be substituted on the fly for the perturbed values.

The trick to implementing this algorithm in the context of variables with arbitrary upper and
lower bounds is to distinguish between apparent motion due to the introduced perturbations and
real motion (along a direction of recession) which is nonetheless limited by a bound on a variable.
DYLP uses an array, dy_brkout, to record the direction of change (away from the current bound)
required for nondegenerate but bounded motion.

A second, more subtle problem, is that the perturbation for a given variable must be sufficiently
small to avoid a false indication of a nondegenerate pivot. DYLP scales the perturbation to be at
most .001(y; — [;), but there is no easy way to guarantee that this is sufficiently small. Consider
two variables x; and X, and assume that they occupy rows i and k in the basis, with perturbed
values b; and by, respectively. For concreteness, assume that each was originally degenerate at its
lower bound, so that a pivot which resulted in one variable leaving at its upper bound would be
nondegenerate. For a;; and ay; of appropriate sign to move x; toward [; and x; toward uy, given a
situation where |a;;| <« [ay;l, it is not possible to assure that

bi_ li < u;i— bk
aij akj

without actually testing each pair. In this case, the perturbation introduced for x; is too large,
and the resulting A;; appears to allow x;. to become the limiting variable, leaving the basis with a
bounded but nondegenerate change. When DYLP detects this problem, it will reduce the perturba-
tion by a factor of 10 and form the restricted subproblem again. If a (small) limit on the number
of attempts is exceeded, DYLP simply gives up and takes a degenerate pivot.

A second problem occurs when a perturbation is so small as to be indistinguishable next to
the bound. Specifically, the test to determine if a variable x; is at bound is dy_tols.zero(1 + |bnd;|) <
|x; — bnd;|. If bnd; is large, the perturbation can be swamped. This situation can arise if u; and
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l; as given to DYLP are nearly equal, or due to reduction of the perturbation as described in the
previous paragraph.
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6 Lightweight Anti-Degeneracy Measures Based on Hyperplane
Alignment

In addition to the perturbed subproblem anti-degeneracy algorithm described in §5, DYLP pro-
vides a light-weight anti-degeneracy mechanism based on hyperplane alignment. In the code and
documentation, this is referred to as ‘anti-degen lite’.

Each constraint a;x < by defines an associated hyperplane at equality. In the absence of degen-
eracy, a simplex pivot consists of moving away from one hyperplane along an edge until another
hyperplane blocks further progress. The hyperplane being left becomes loose, and the blocking
hyperplane becomes tight. The choice of entering variable x; determines the constraint that will
become loose, and the choice of leaving variable x; determines the constraint that will become
tight.

Ideally, the choice of constraints is unique, but life is seldom ideal. Most often the lack of
uniqueness is due to degeneracy, in which one or more basic variables are at their upper or
lower bounds. Geometrically, there are more tight constraints than required to define the current
extreme point. In this case the change of basis that occurs with the pivot will not result in a move
to a new extreme point.

This section describes a suite of measures based on hyperplane alignment which try to bet-
ter the odds of selecting hyperplanes which will form an edge that escapes from the degenerate
extreme point.

Because all constraints at a degenerate vertex are tight, some terminology will be useful to de-
scribe the changes associated with a pivot. For this section only, the terms activate and deactivate
will be used as follows:

% When the slack variable for a constraint moves to the basic partition, the constraint is deac-
tivated. When the slack variable moves to the nonbasic partition, the constraint is activated.

% When an architectural variable moves to the basic partition, the relevant bound constraint
is deactivated. When an architectural variable moves to the nonbasic partition, the relevant
bound constraint is activated.

6.1 Activation of Constraints

In both the primal and dual simplex algorithms, the constraint which is activated by a pivot de-
pends on the leaving variable and its direction of motion. Before discussing the types of alignment
calculations, it will be useful to discuss the activation of constraints. Knowing the type of con-
straint (‘<" or >’) is necessary because it determines the direction of the normal with respect to the
feasible region.

DYLP assumes that the majority of explicit constraints of the primal problem are of the form
aix < bg. It also understands range constraints of the form by < ayex < by.. These are implemented
by placing an upper bound on the associated slack variable si, but for purposes of determining
the constraint to be activated we need to recognise that there are really two constraints, ajx > by
and ayx < by.

Bounded variables are handled implicitly by the primal simplex algorithm. When a bounded
variable becomes nonbasic at its lower bound, the constraint x; > I is activated; when it becomes
nonbasic at its upper bound, the constraint x < uy is activated.
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A final complication is introduced in phase I of the primal simplex, where it's possible to
approach a constraint from the ‘wrong’ side in the process of finding a primal feasible basic
solution. For example, if a slack variable s; < 0 will increase and leave the basis at O, the constraint
which is becoming tight is actually aix > by. « Is this really a valid insight? In terms of blocKing motion,
it’s true. In terms of alignment with the objective, for example, I have doubts. »

Turning to the dual problem, the question of what constraint is being activated is substantially
obscured by the mechanics of running the dual simplex algorithm from the primal data structures.
A much clearer picture can be obtained by expanding the primal system to include explicit upper
and lower bound constraints and examining the resulting dual constraints ([3, §3.4], or see [4] for
an extended development). Briefly, let y be the dual variables associated with the original explicit
constraints ajx < by (the architectural constraints), § be the dual variables associated with the
lower bound constraints, and j be the dual variables associated with the upper bound constraints.
A superscript N will represent the set of primal variables at their lower bound, N the set of primal
variables at their upper bound, and B the set of basic primal variables. The set of dual constraints
can then be written as

yB-gPI+g°1=c”

YN -GN+ gt =

yN-gN1+gNr=c"
where the first term in each dual constraint comes from the primal architectural constraints,
the second term from the lower bound constraints, and the third term from the upper bound
constraints. The variables g2, 2, g, and g" are dual nonbasic and therefore have the value
zero. (They are associated with primal bound constraints which are not tight.) We can rewrite the
dual constraints as

yB=cB
uN -yt =ct
yN+gN1=cVN

We can then interpret the constraints yN — g = c¥ as yN > ¢V, with g¥ acting as the surplus
variables. Similarly, the constraints yN + "I = ¢V can be interpreted as yN < ¢V, with gV acting
as the slack variables.

With this interpretation in hand, it’s easy to determine the hyperplane that’s activated by a
pivot. When a dual variable g{;" is driven out of the basis at O (x enters rising from its lower
bound), the constraint yay = ¢, becomes tight. When a dual variable g{f is driven out of the basis
at O (x enters decreasing from its upper bound), the constraint yay < ¢ becomes tight. This
interpretation is uniform for the original primal variables as well as the primal slack variables.

For the most common case of a primal constraint a;x < b;, with associated slack s;, 0 < s; < oo,
the dual constraint reduces to y; 2 0, and this is handled as an implicit bound by the dual simplex
algorithm implemented in DYLP. (Range constraints complicate the interpretation, but not the
mechanics, of the implementation. Again, see [4] for a detailed explanation.)

In the sections which follow, the alignment calculations are developed in terms of the most
common constraint form (aixx < by in the case of the primal simplex, and yax > ¢, in the case
of the dual simplex). Accommodating the different constraint types described in this section is
simply a matter of correcting the sign of the calculation as needed to account for the direction of
the constraint normal.
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6.2 Alignment With Respect to the Objective Function

The primal objective used in DYLP is min cx. We need to move in the direction —c until we reach
an extreme point of the polytope where the cone formed by the normals of the active constraints
includes —c.

If the goal is to travel in the direction —c, one approach would be to leave each vertex by moving
along the edge which most nearly points in the direction —c. The edges traversed by the simplex
algorithm are simply the intersections of active hyperplanes. If we're trying to construct an edge
with which we can leave a degenerate vertex, we could choose to activate a hyperplane aj.x = by
such that —c most nearly lies in the hyperplane, on the theory that its intersection with other active
hyperplanes at the vertex is more likely to produce an edge with the desired orientation. This is
the ‘Aligned’ strategy, because we want the hyperplanes most closely aligned with the normal of
the objective.

Going to the other extreme, at the optimal vertex it must be true that the active hyperplanes
block further motion in the direction —c, and —-c must lie within the cone of normals of the active
hyperplanes. One can make the argument that a good choice of hyperplane would the one that
most nearly blocks motion in the direction —c, as it’s likely to be active at the optimal vertex. This
is called the ‘Perpendicular’ strategy, because we want the hyperplanes which are most nearly
perpendicular to the normal of the objective.

For constraints a,x < by the normal points out of the feasible region. Let the alignment of the
a; - C
llauflflell

the hyperplane a;x = b; such that i = argmax

normal a; with —c be calculated as Then for the Perpendicular strategy, we want to select

Q- C

Tax] over all constraints a,x < by in the degenerate
k

set.
For the Aligned strategy, the criteria is a bit more subtle. If a; - —c =0, —c lies in the hyperplane

aix = by. Selecting the hyperplane i such that i = argmkin‘m is not quite sufficient. Where
k

possible, DYLP attempts to choose hyperplanes which are tilted in the direction of the objective, SO

as to bound the problem. The preferred hyperplane is a;x = b; such that i = arg kl >o la ‘T over
. c I
the constraints in the degenerate set. If a, - ¢ <O for all k, the preferred hyperplane is chosen as
Ay - C
=argmax -
lall”

The dual objective used in DYLP is min yb, but we must be careful here to to include the effect of

the bounds on the primal variables. The objective is properly stated asmin|y g g|[b -1 u] n
and we will need to include the coefficients of §j and g in the constraint normals. (In the primal
we could ignore this effect, because the objective coefficients associated with the slack variables
are uniformly zero.)

For dual constraints yay > ¢, the normal [ax —e, 0] will point into the feasible region and
b-a+ 1
(laxl +DII[b ~L u]|I’
that a positive result identifies a constraint which blocks motion in the direction of the objective.
(=b) - agc = wie

i (lax + Db =1 u]]
variable g,’;\’ or gy is done using the same criteria outlined for the Perpendicular and Aligned cases
in the primal problem.

DYLP calculates the alignment of [-b | -u] with the hyperplane as so

For a constraint yay < ¢k, the calculation is Selection of a specific leaving
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6.3 Alignment With Respect to the Direction of Motion

The selection of an entering variable specifies the desired direction of motion for the pivot. At a
degenerate vertex, we cannot move in the desired direction because the set of active hyperplanes
does not contain this edge. Intuitively, activating a hyperplane which is closely aligned with the
desired direction of motion might increase the chance of being able to move in that direction.

For the primal simplex, the direction of motion derived in §4.1 is 7, = [-B™'a; —-e;]'. The
normal of a constraint axx < by points out of the feasible region. The alignment of 1; and the
Qi - 1]

EAIETIR so that a positive value identifies a hyperplane which blocks
ke Jj

normal ay is calculated as

motion in the direction #;.

It’s important to note that normal ay in this calculation is that of the inequality — the coefficient
associated with the slack s is not included. This means that ay -17;=—a;;. For a bound constraint,
the relation is obvious by inspection. If, for example, the constraint is xj < w, the normal is e, and
er-—a; = —ay;. For an architectural constraint, it's necessary to look at the calculation in a way
that separates the contributions of the architectural and slack variables, and basic and nonbasic

_p-1
variables. We are interested in the structure of the product [B N} B I N} for loose constraints
which will be activated by pivoting the associated slack variable out of the basis. Breaking up the

matrices as detailed in §2, we have

1 e, o
-B7IN] _ -BYBY)! I||N
B I N 0][ . ]_[Bllzvl 0] L
I 0 I
r _(Bt)—l Nt _(Bt)—l
_ Bl(Bt)—th — Nl Bl(Bt)—l
=[B' I N' 0] { o
0 I

= [_Bl(Bt)—th + Bl(Bt]—th - N+ N _Bl(Bt]—l + Bl(Bt)_l}

Removing the contribution due to the basic slack variables, we have [-B'(B)"!N‘+ N' -B!(BY)™].
Because the leaving variable for the pivot is a slack, the pivot element ay; will be drawn from the
component [BY(B)!N'-N' B!(BY)!] in -B'N, and the equivalence is verified.

To finish the alignment calculation for the purposes of selecting a leaving variable, all that is
needed is to perform the normalisation by | ay||||77;]|, and since ||57;|| is constant during the selection
of the leaving variable, we need only divide by | ax|| for comparison purposes. The selection of a
leaving variable using the Aligned strategy is as outlined in the previous section.

Given that ay - 17; = —ay;, it’s worth taking a moment to consider a common tie-breaking rule for
selecting the leaving variable — pick the variable with the largest [ay;|, to maintain numerical sta-
bility. In fact, this amounts to selecting a hyperplane to activate using an unnormalised variation
of the Perpendicular strategy. The obvious corollary is that using the Aligned strategy presents a
potential danger to numerical stability by deliberately choosing small pivots.

For the dual simplex, the direction of motion ¢; is more complicated. Fortunately, we need only
consider the portion of ; in the space of the dual variables y. As derived in §4.2, this is simply
row f3; of B7l. For the dual constraints yay > ¢, the normal points into the feasible region. To
maintain the convention that the alignment calculation should produce a positive result if the con-

straint blocks motion, the alignment calculation used by DYLP is __Lidk Given that we're only

1€l el
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interested in the portion of {; - a) contributed by the dual variables y, it's immediately apparent

that the alignment calculation can be reduced to —HZ—”{H for purposes of selecting the leaving dual
le

variable. The final selection of a leaving dual variable using the Aligned or Perpendicular strategy

proceeds as outlined in the previous section.
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7 The LP Basis

DYLP requires three capabilities from a basis maintenance module:

# Factoring of the basis to create the basis inverse.
#% Update of the basis inverse for a pivot.

# Premultiplication (‘ftran’) of a column vector by the basis inverse, and postmultiplication
(‘btran’) of a row vector by the basis inverse.

DYLP uses the basis maintenance module from GLPK to provide these services. Knowledge of the
structure and operation of the GLPK subroutines is confined to a set of interface subroutines in the
file dy_basis.c. The majority of these are straightforward interface functions whose sole purpose is
to hide the GLPK structures and to mediate between GLPK and the remainder of the code.

7.1 The GLPK Basis Module Interface

Very roughly, the GLPK basis maintenance module has a two-layer structure. The top layer
(glpinv.c) provides the basic services for a generic basis inverse. In turn, the top layer calls on a
second layer (glpluf.c) to provide a specific implementation of the basis inverse data structures and
algorithms. Dynamic Markowitz pivoting with partial threshold pivot selection is used to factor a
basis.

The routine dy_initbasis is used to initialise the basis module. The capacity of the basis, algo-
rithm options, and numeric tolerances are set at initialisation (vid. §17.3). The basis is deleted
by the routine dy_freebasis. Changing the basis capacity is implemented in DYLP by saving op-
tions and tolerances for the existing basis, deleting the existing basis, and creating a new basis
of the appropriate size. The capacity is checked each time the basis is factored; changes are in-
visible to clients. The GLPK basis module will resize its own internal data structures whenever it
determines that this is required.

In the main, DYLP uses the basis module in a standard way for factoring and pivoting. There
are some departures from GLPK defaults:

# The initial size of the sparse vector working area is tripled.
% The limit on element growth (lufmax_gro) is reduced from 10'2 to 108.

# The minimum value for elements on the diagonal of the factorisation (luf_basis.upd_tol is re-
duced from 1076 to 10710,

# Instead of a fixed default of .1, the pivot stability tolerance is dynamically adjusted in a range
between .01 and .95 based on DYLP’s assessment of the numerical stability of the current
basis. The number of pivot candidates examined when factoring the basis is also adjusted
in the range 4 to 10. More candidates are considered as the stability requirement is raised
in the hope of finding a numerically stable candidate without compromising sparsity.

The routine dy_setpivparms is provided to adjust the pivot stability tolerance and pivot candi-
date limit. Adjustment of the pivot selection parameters is done according to a fixed schedule of
tolerance and limit values kept in the static data structure dy_basis.c:pivtols. The client specifies
an integer delta which is used to select a pair of values from the schedule.
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Pre- and post-multiplication of vectors by the basis inverse are provided by the routines dy_ftran
and dy_btran, respectively.

7.2 Factoring

For factoring the basis, the routine dy_factor provides significant error recovery functions on top
of the basic abilities of GLPK. The call structure is shown in Figure 1.

luf adjustsize <dy_initbasis — glp_inv_delete
dy_setpivparms
glp_inv_decomp
adjust_basis

dy_freebasis — glp_inv_create

dy_factor dy_calccbar

dy_degenout
dy_clrpivrej
dy_pseinit
dy_dseinit
dy_calcduals

adjust_therest

dy_calcprimals

Figure 1: Call Graph for dy_factor

A singular basis can occur because of a simplex pivot attempt or as the result of a change in
the coefficients of the basis because the client has fixed variables and then requested a warm or
hot start. The factoring routine glp_inv_decomp detects a singular basis and reports the unpiv-
oted rows and columns, but does not attempt to fix the basis. adjust_basis uses the information
reported by glp_inv_decomp to attempt to patch the basis, substituting columns associated with
slack variables for the set of columns identified as singular. This sequence is repeated until the
basis is successfully factored.

In the larger context of DYLP, patching the basis is the least of the work. dy_factor will call
adjust_therest to adjust the DYLP data structures as necessary to reflect the exchange of variables
between the basic and nonbasic partitions. Depending on the phase, this can include updat-
ing the structures which maintain the basis, recalculating the primal (dy_calcprimals) and dual
(dy_calcduals) variables, recalculating the reduced costs (dy_calccbar), resetting the DSE or PSE
norms (dy_dseinit and dy_pseinit, respectively), clearing the list of variables marked ineligible for
pivoting (dy_clrpivrej), and backing out a perturbed subproblem (dy_degenout).

glp_inv_decomp will abort an attempt to factor the basis if the current pivot selection parameters
give rise to numerical instability (detected as excessive growth in the magnitude of the coefficients
of the factored basis). dy_factor will make repeated tries to factor the basis, tightening the pivot
selection parameters before each attempt. It will admit failure only if the numerical instability
remains after the pivot selection tolerances have been tightened as much as possible, so that each
pivot chosen is the maximum coefficient remaining in the unpivoted portion of the basis.
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7.3 Pivoting

Pivoting is performed by dy_pivot, which confirms the numerical stability of the pivot element and
calls glp_inv_update to pivot the basis.

To be judged numerically stable, a prospective pivot coefficient a;; must exceed the product of
the GLPK stability multiplier (lufpiv_fol), the DYLP pivot selection multiplier (dy_fols.pivot), and the
maximum element in the transformed column a; = B"laj (primal simplex) or row a; = ;N (dual
simplex). Standard defaults in DYLP are 5x 1072 for the GLPK stability multiplier and 1 x 107®
for the DYLP pivot selection multiplier, so that the pivot coeflicient is required to satisfy |a;| >
(5 x 1077)(maxy |ay;l) (primal simplex) or [a;l| > (5 x 1077)(maxy [@l) (dual simplex). The routine
dy_chkpiv is supplied to perform this test, and is used as a qualification test by the routines which
select the leaving primal variable in primal simplex and the entering primal variable in dual
simplex. The check performed in dy_pivot should not fail, but is retained as a precaution.

If a;; is rejected as numerically unstable, the pivot attempt is aborted. In primal simplex, the
entering variable x; will be placed on the rejected pivot list. For dual simplex, the leaving variable
x; is placed on the rejected pivot list. Recovery from pivoting problems and the handling of the
rejected pivot list are discussed in §12.2.

A pivot can also fail if it results in a singular basis or if the basis representation runs out of
space. The implementation of GLPK requires that the basis be reloaded and factored to recover
from these errors; this is orchestrated by dy_duenna and discussed in §12.2.

Note that glp_inv_update expects to be supplied with L™'a; as a hidden parameter. GLPK pro-
vides the capability to control whether a call to glp_inv_firan sets this hidden parameter. This
capability is exposed to clients as the second parameter to dy_ftran.
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8 Accuracy Checks and Maintenance

Primal and dual accuracy checks, primal and dual feasibility checks, and factoring of the basis
can be requested through the routine dy_accchk; each action can be requested separately.

DYLP refactors the basis and performs accuracy checks at regular intervals, based on a count
of pivots which actually change the basis. By default, primal and dual accuracy checks are
performed at twice this frequency. During phase II of the primal and dual simplex algorithms, the
appropriate feasibility check is performed following each accuracy check. dy_duenna tracks the
pivot count and requests checks and factoring at the scheduled intervals.

dy_accchk uses dy_factor to factor the basis and recalculate the primal and dual variables.
When the basis has been factored and has passed the accuracy checks, the routine groomba-
sis checks that the status of the basic variables matches their values and makes any necessary
adjustments.

Failure of an accuracy check will cause the basis to be refactored. Failure of an accuracy check
immediately after refactoring will cause the current pivot selection tolerances to be tightened by
one increment before another attempt is made. dy_accchk will repeat this cycle until the accuracy
checks are satisfied or there’s no more room to tighten the pivot selection parameters. On the
other hand, each time that an accuracy check is passed without refactoring the basis, the current
pivot selection tolerances are loosened by one increment, to a floor given by the minimum pivot
selection tolerance.

The minimum pivot selection tolerance is reset to the loosest possible setting at the start of
each simplex phase. If groombasis detects and corrects major status errors (indicating that an
unacceptable amount of inaccuracy accumulated since the basis was last factored), it will raise
the minimum pivot selection tolerance. Similarly, if the primal phase I objective is found to be
incorrect, or primal or dual feasibility is lost when attempting to verify an optimal solution, the
current and minimum pivot selection tolerances will be raised before returning to simplex pivots.
Raising the minimum pivot selection tolerance provides long-term control (for the duration of a
simplex phase) over reduction in the current pivot selection tolerance.

The primal accuracy check is Bx®? = b— Nx". Comparisons are made against the scaled toler-
ance || b||,(dy_tols.pchk). To pass the primal accuracy check, it must be that

(b= Nx™) - BxP||, <||b]|,(dy_tols.pchk)

The dual accuracy check is yB = cB. Comparisons are made against the scaled tolerance
|| c||,(dy_tols.dchk). To pass the dual accuracy check, it must be that

|cP - yBl|, <||cl|,(dy_tols.dchk)

The primal feasibility check is I < x < u. For each variable, it must be true that x; > [; -
(dy_tols.pfeas)(1 + |l;]) and x; < u; + (dy_tols.pfeas)(1 + |u;l). In the implementation, only the basic
variables are actually tested; nonbasic variables are assumed to be within bound as an invariant
property of the simplex algorithm. dy_tols.pfeas is scaled from dy_tols.zero as

11l

m

dy_tols.pfeas = min(1, log ( ))(dy_’rols.zero)(dy_’rols.pfec:s_scole).

The dual feasibility check is ¢ = ¢’ — yN of appropriate sign. For each variable, it must be true
that ¢; < dy_tols.dfeas for x; nonbasic at u; and ¢; > —dy_tols.dfeas for x; nonbasic at [;. dy_tols.dfeas
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is scaled from dy_tols.cost as

dy_tols.dfeas = min(1, log ( ”yk||1> )(dy_tols.cost)(dy_tols.dfeas_scale).

Jm
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9 Scaling

DYLP provides the capability for row and column scaling of the original LP problem. This section
develops the algebra used for scaling and describes some additional details of the implementation.
The following section (§10) describes unscaling in the context of generating solution, ray, and
tableau vectors for the client.

Let R be a diagonal matrix used to scale the rows of the LP problem and S be a diagonal matrix
used to scale the columns of the LP problem. The original problem (1) is scaled as

min (¢S)(S™'x)
(RAS)(S'x) < (Rb)
(ST)<(S'x)<(Sw

to produce the scaled problem

where A= RAS, b=Rb, ¢=c¢S, =S, ii=S'u, and ¥ = S'x. DYLP then treats the scaled
problem as the original problem.

By default, DYLP will calculate scaling matrices R and S and scale the constraint system unless
the coefficients satisfy the conditions .5 < min;;|a;;| and max;;la;;| < 2. The client can forbid scaling
entirely, or supply a pair of vectors that will be used as the diagonal coefficients of R and S.

A few additional details are helpful to understand the implementation. The first is that DYLP
uses row scaling to convert >’ constraints to ‘<’ constraints. Given a constraint system with 2’
constraints, DYLP will generate scaling vectors with coefficients of £1.0 even if scaling is otherwise
forbidden. If scaling is active for numerical reasons, the relevant row scaling coefficients will be
negated.

DYLP scales the original constraint system before generating logical variables. Nonetheless, it
is desirable to maintain a coefficient of 1.0 for each logical. The row scaling coefficient r;; for
constraint i is already determined. To keep the coefficients of logical variables at 1.0, the column
scaling factor is chosen to be 1/r; and the column scaling matrix S is conceptually extended to
include logical variables.
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10 Generating Solutions, Rays, and Tableau Vectors

The dynamic simplex algorithm implemented by DYLP introduces some unique challenges when
generating solution values, rays, and tableau vectors. The client expects an answer that corre-
sponds to the full, unscaled constraint system. In addition to the standard calculations associated
with unscaling, DYLP must often synthesize portions of the answer corresponding to inactive con-
straints or variables, and position the components of the answer to match the original constraint
system. This becomes even more interesting when the client is asking for answers in the context
of the dual problem.

10.1 Solution Vectors

Calculating the values of the unscaled primal variables is the simplest request. We have X% = B™b.
Then xB = (SP)'B'R'Rb=(SP)'B™'b and xB = SBxB. Recall that the column scaling factor for
a logical variable will be the inverse of the row scaling factor, as explained in §9. The unscaled
values of the nonbasic primal variables (architectural or logical) can be read directly from the
original unscaled | and u vectors.

There is one subtle point about the column scaling factor for logicals which is not immediately
apparent from the simplified presentation in the previous paragraphs. Logical variables can be
basic for the row occupied by their associated constraint — the ‘natural’ position. They can also
be basic for some other row — an ‘unnatural’ position; this is achieved by a column permutation
in the basis. The correct column scaling factor, when required, is the one associated with the
natural row. This is more apparent when the column permutation matrix P is made explicit:

B=(RBSP)P
B1l= P—I[SB]—IB—I Rl

By definition, inactive architectural variables are nonbasic, so their value is also easily read
from the original unscaled ! and u vectors. By definition, inactive constraints are loose and the
corresponding logical would be basic. Rather than expand the basis inverse, the value of the
logical for an inactive constraint i is calculated directly as a;x.

Turning to the dual variables, recall first the observation from §2 that the dual variables y =
c¢BB™ calculated by DYLP during primal and dual simplex are in fact the negative of the correct
dual variables, a consequence of implementing the relationship

min cx max (—c)x minyb
Ax<b Ax<b yA=(-c)

by algorithmic design rather than actually negating c. When generating dual variable values to
return to the client, there is a choice: should the dual variables be returned with a sign conven-
tion appropriate for DYLP’s min cx problem, or should they be returned with a sign convention
appropriate for the true dual problem? For all routines returning values associated with the dual
problem, DYLP allows the client to choose the sign convention.

There are two further details to consider: The canonical relationship assumes all constraints
are ‘<’ constraints and all primal constraints are explicit. In reality, the primal problem presented
to DYLP typically contains >’ constraints, and bounds on variables are usually handled by the al-
gorithm rather than stated as explicit constraints. There are a number of possible implementation
choices; DYLP chooses the following:
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# For the duals associated with ‘>’ constraints, the sign of the dual value returned is always
negated to match the >’ that’s actually present in the constraint matrix. This choice is
intended to make it easy for the client to use the dual variable values with the coefficient
matrix as written.

# For the duals associated with variables that are nonbasic at their upper bound (hence nega-
tive in DYLP’s min primal convention), the value is negated if the user chooses the true dual
sign convention. This matches the conversion of the implicit upper bound to an explicit ‘<’
constraint in the dual problem.

To extend this point to upper and lower bounds, when the client requests dual variables
using the true dual sign convention, DYLP assumes that implicit upper bounds are made
explicit as x; < u; and implicit lower bounds are made explicit as —x; < —;.

To calculate the values of the unscaled row dual variables y, start with §j=¢fB™!. Then
J=cBSB(SB)1B'R™! =cBB'R! =yR™ and y = gR. These values must be negated to be correct
for the dual problem. By definition, inactive constraints are not tight, hence the value of the
associated dual variable is zero.

The values of the column dual variables are the primal reduced costs ¢;. Starting from ¢;, we
have

¢;=¢-¢cPBlqy

=¢;S; - cPSB(SP)' B R Rq;S;
=(c;-cPB™ay)S;

=CjS;

hence c; = Ej(Sj] “1. For active variables, the value of éj is immediately available. For inactive
variables, DYLP first calculates Ej =7a;.

10.2 Tableau Vectors

DyLP implements routines to return four tableau vectors: rows §; and columns f3; of the basis
inverse B!, and rows @; and columns @; of the transformed constraint matrix B A.

Given the scaled basis inverse B! = (SB)'B1R™!, the unscaled column of the basis inverse
corresponding to basic variable x;, basic for row Ik, will be

B = SPB™' Rex = SPB;rik (16)

Because DYLP periodically deactivates loose constraints, it is in general necessary to synthesize
the rows of the basis inverse for these inactive constraints. The necessary algebra is shown in (2)
and repeated here for convenience:

a_ [ BY? 0
B = [_Bl(Bt)-l Il:| (2)

Let the partition B! correspond to B in (16), 3; to a column of (B!)™, and let the partition B! be the
coefficients of basic variables in the inactive constraints. By definition, the basic variable for an
inactive constraint is the logical associated with the constraint. Given the unscaled column f3; for
the active system from (16), DYLP generates the necessary coefficients from —B!(Bf)™! by calculating

_Blﬁj-
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For all inactive logical variables (i.e., logical variables for inactive constraints), and active
logical variables basic in the natural position, ; = e;; this is detected as a special case.

Generating the transformed column @; = B™ a; follows a similar pattern, with the added com-
plication that the requested column may not be active. Given the scaled transformed column

@;= B Ne; = (SP)' BT R Rays; = (SP)' By

the unscaled column a; will be
SBa;(1/s;) (17)

If there are inactive constraints, the remaining coefficients in the column must be synthesized.
Using the same notation as above for basis inverse columns, we have

_ (BYy! 0] [a!
B 1aj= [_Bl(Bt)—l Il:| [aj] =

(BY! aj
ajl- - BY(BY)dj

Given the unscaled column a; for the active system from (17), DYLP generates the necessary
coefficients from aJl. - BY{(BYH)! aj by calculating aJl. - B'a;.

If the requested column is not active, DYLP first generates the portion of the column Ra; that
matches the active constraints, and then proceeds as described in the previous paragraphs. Inac-
tive logical variables will be basic in natural position, hence a; = e;; this is detected as a special
case. The user is cautioned that active basic variables are not handled as a special case.

The work required to generate a row f3; of the basis inverse is similar to that required for
a column f3;. Given the scaled basis inverse B! = (S®)"'B'R™!, the unscaled row of the basis
inverse corresponding to basic variable x;, basic for row i, will be

/J)i = eiSBB_lR = Sjj/::')iR

If the requested row is not active, the basis must be extended as outlined in previous paragraphs.
DYLP creates the partially scaled row vector e; B'SP, calculates an intermediate vector e; B'S?(B!)™!
and then completes the calculation by postmultiplying by R to remove the row scaling still present
in (BY)™.

Regrettably, there’s no easy way to calculate @;, a row of the transformed matrix B A. DYLP
implements this operation as @; = #;A. The calculation is performed entirely in the original un-
scaled system.

10.3 Rays

In several aspects, rays prove to be the most challenging of the three solution components. Careful
attention to sign reversals is required for both primal and dual rays, and the virtual nature of the
dual problem adds yet another layer to the challenge of generating coefficients for inactive portions
of the constraint system. The routines implemented in DYLP will return all rays emanating from
the current extreme point up to a limit specified by the client.

For a primal ray r, it must be the case that cr <0, and a;r £0 for a ‘<’ constraint, a;r >0 for
a >’ constraint, and a;r = 0 for range constraints and equalities. The task of identifying a ray
is easy; indeed, it’s a simplified version of the algorithm used to select the leaving variable in a
primal pivot, where the only concern is that no basic variable is driven to bound. Getting the sign
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right requires a bit of thought, however. The relevant mathematics is shown in equations (9) and
(10); (10) is repeated here for convenience:

B A o[ W] A =
[ —e; }AJ = {_ej Aj=nj4 (10)
As can be immediately seen, r is precisely 7, = - [a; -—ej] " the operations required for unscaling

have been discussed in §10.2.

In addition to the obvious negation required to produce 7;, there are two other possible nega-
tions to consider.

# If the nonbasic variable x; is actually decreasing from its upper bound u;, the ray must be
negated to compensate.

# If the nonbasic variable is a logical s; associated with a ‘>’ constraint in the original system,
DYLP’s input transformations have converted a;x > b; = (-a;)x < (-b;) = (—a;)x + s; = (—-b;) for
0 < s; <. The inverse converts (~a;)x +s; = (—b;) = a;x + s} = b; = a;x > b; for —~ < s; <0. What
appears to be a slack variable increasing from its lower bound is actually a surplus variable
decreasing from its upper bound; accordingly, the ray must be negated.

There’s no need to synthesize the components of 7; that would be associated with inactive
constraints. By definition, the basic variable for an inactive constraint is the associated logical.
The ray r contains only the components associated with architectural variables.

For a dual ray r, it must be the case that rb <0 and rA > 0O for the true dual problem. Unfor-
tunately, as outlined in §10.1, the primal - dual transform implemented in DYLP does not match
the ideal, and this introduces complications. Neither mathematical test is guaranteed to work
unless the dual variables associated with tight implicit bound constraints (i.e., nonbasic primal
variables) are handled explicitly.

As with primal rays, the task of identifying a dual ray is easy, a simplified version of the
algorithm used to select the leaving dual variable in a dual pivot. The only concern is that no dual
basic variable be driven to bound. Again, it’s getting the sign right that requires some thought.

As discussed in §2, the vector ay is the proper starting point; the initial negation which would
normally be required is built in by NB™! = -B™' N. The operations required for unscaling have been
discussed in §10.2. It’s necessary to add a coefficient of 1.0 for the nonbasic dual that’s driving
the ray.

There are three other sources of negation to consider:

# If the entering dual is apparently decreasing because it's associated with a leaving primal
variable that’s decreasing to its upper bound (and hence must have a negative reduced cost
when it becomes nonbasic), the ray must be negated to compensate.

# If the ray is derived from a >’ constraint in the original system, the coefficients of the con-
straint have been negated; this is encoded in the row scaling. However, as noted for primal
rays, the logical must really be interpreted as a surplus variable with an upper bound of
zero, and if it’s basic for this row we have the case described in the previous item. The ray
must be negated.

% As explained in §10.1, if an individual ray coefficient corresponds to a variable that is non-
basic at its upper bound, the ray coefficient must be negated if the client has requested the
true dual sign convention.
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11 Startup

DYLP provides a cold, warm, and hot start capability. For a cold start, DYLP selects a set of
constraints and variables to be the initial active constraint system and then crashes a basis.
For a warm start, DYLP expects that the caller will supply a basis but assumes that the active
constraint system and other data structures need to be built to this specification. For a hot
start, DYLP assumes that its internal data structures are valid except for possible modifications
to variable bounds, objective coefficients, or right-hand-side coefficients. It will incorporate these
modifications and continue with simplex iterations.

DYLP will default to attempting a hot start unless specifically requested to perform a warm
or cold start. For all three start types, DYLP will evaluate the constraint system for primal and
dual feasibility, choosing primal simplex unless the constraint system is dual feasible and primal
infeasible.

It is not possible to perform efficient and foolproof checks to determine if the client has violated
the restrictions imposed for a hot start. At minimum, such a check would require a coefficient
by coeflficient comparison of the constraint system supplied as a parameter with the copy held
by DYLP from the previous call. It is the responsibility of the client to notify DYLP if variable
bounds, objective coefficients, or right-hand-side coefficients have been changed. DYLP will scan
for changes and update its copy of the constraint system only if the client indicates a change.

Section 17 provides detailed information on the options used to control DYLP’s startup actions.

The startup sequence for DYLP is shown in Figure 2. The first actions are determined by the
purpose of the call. The call may be solely to free retained data structures; if so, this is done
and the call returns. The next action is to determine the type of start — hot, warm, or cold —
requested by the client. If a warm or cold start is requested, any state retained from the previous
call is useless and all retained data structures are freed. For all three types of start, options and
tolerances are updated to reflect the parameters supplied by the client.

For a warm or cold start, the constraint system is examined to see if it should be scaled, and
the options specified by the client are examined to see if scaling is permitted. If this assessment
determines that scaling is advisable and permitted, the constraint system is scaled as described
in §9. The original constraint system is cached and replaced by the scaled copy. In the case of
a hot start, the existing scaled copy, if present, is retrieved for use. The original system is not
consulted again until the solution is packaged for return to the client.

Following scaling, the active constraint system is constructed for a warm or cold start, or
modified for a hot start; §§11.1 — 11.3 describe the actions in detail. At the completion of this
activity, the active constraint system is assessed for primal and dual feasibility and an appropriate
simplex phase is chosen.

Once the constraint system is constructed, common initialisation actions are performed: Data
structures are initialised for PSE and DSE pricing, for the perturbation-based antidegeneracy
algorithm, and for the pivot rejection algorithm.

To complete the startup sequence, DYLP evaluates the constraint system and client options to
determine if it should perform constraint activation or variable activation or deactivation before
starting simplex iterations. Variable deactivation is mutually exclusive to constraint and variable
activation; the former is considered only during a cold start, the latter only during a warm or hot
start.

An initial round of variable deactivation is performed during a cold start if the number of
active variables exceeds the number specified by the coldvars option. This activity is intended to
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reduce the initial size of constraint systems with very large numbers of variables (e.g., set covering
formulations).

Constraint or variable activation, or both, are performed during a warm or hot start if requested
by the client. Constraint activation is performed before variable activation. If initial constraint
activation is requested, DYLP will add all violated constraints to the active system. If constraints
are added, primal feasibility will be lost, and DYLP will reassess the choice of initial simplex phase.

If initial variable activation is requested, the action taken depends on the initial simplex phase.
If pyLp will enter primal simplex, variables with favourable primal reduced costs are activated,
evaluated under the phase I or phase II objective as appropriate. For dual simplex, variables
which will tend to bound the dual problem are selected for activation: For each infeasible primal
basic variable (nonbasic dual variable with favourable reduced cost), primal variables with optimal
reduced costs (feasible dual constraints) which will bound motion in the direction of the incoming
dual variable are selected for activation.

11.1 Cold Start

DYLP performs a cold start in two phases. The first phase, implemented in dy_coldstart, constructs
the initial active constraint system. The second phase, implemented in dy_crash, constructs the
initial basis.

To construct the initial active constraint system, dy_coldstart first checks to see if the client has
specified that the full constraint system should be used. In this case, the active system will be the
entire constraint system and the dynamic simplex algorithm will reduce to a single execution of
either primal or dual simplex.

If the client specifies that DYLP should work with a partial constraint system, the constraints
are first separated into equalities and inequalities. All equalities are included in the initial active
system.

The remaining inequalities are sorted, using the angle of the constraint normal a; to the objec-
tive function normal c as the figure of merit,

a;/c= 180 cog™! —H-€
4 el cll

Consider a minimisation objective and ‘<’ inequalities. The normals of the inequalities point out
of the feasible region, and the normal of the objective function will point into the feasible region
at optimality. Hence a constraint whose normal forms an angle near 180° with the normal of the
objective should be more likely to be active at optimum. A constraint whose normal forms an angle
near 0° is more likely to define a facet on the far side of the polytope. Unfortunately, ‘more likely’
is not certainty, and it’s easy to construct simple two-dimensional examples where the normal of
one of the constraints active at optimality forms an acute angle with the normal of the objective
function.

DYLP allows the client to specify one or two angular intervals and a sampling fraction which are
used to select inequalities to add to the initial active system. By default, the initial system will be
populated with 50% of the inequalities which form angles in the intervals [0°, 90°) and (90°, 180°].
(I.e., inequalities whose normals are perpendicular to the objective normal are excluded entirely,
and half of all other inequalities will be added to the initial active system.) The inequalities selected
will be spread evenly across the specified range(s). DYLP will activate all variables referenced by
each constraint.
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Once the initial constraint system is populated, dy_crash is called to select an initial basis.
DYLP offers three options for the initial basis, called ‘logical’, ‘slack’, and ‘architectural’. A logical
basis is the standard unit basis composed of slack and artificial (logical) variables for the active
constraints. A slack basis again uses slack variables for inequalities, but attempts to select archi-
tectural variables for equalities, including artificial variables only if necessary. An architectural
basis attempts to choose architectural variables for all constraints, selecting slack and artificial
variables only when necessary.

There are many qualities which are desirable in an initial basis, and they are often in conflict.
A logical basis is trivially easily to construct, factor, and invert, and has excellent numerical
stability. On the other hand, such a basis is hardly likely to be the optimal basis. When choosing
architectural variables, free variables are highly desirable since they will never leave the basis. In
addition, DYLP’s basis construction algorithm tries to select architectural variables which will form
an approximately lower-diagonal matrix and provide numerically stable pivots. Constructing a
matrix which is approximately lower-diagonal minimises fill-in when the basis is factored. Several
of the ideas implemented in DYLP’s initial basis construction algorithms are described by Bixby
in [1].

Since DYLP makes an effort to populate the constraint system with constraints that should be
tight at optimality, an architectural basis is the default.

11.2 Warm Start

The routine dy_warmstart implements a warm start. The client is expected to supply an initial
basis, expressed as a set of active constraints and corresponding basic variables. By default, DYLP
will activate all variables referenced by each constraint. As an option, the client can specify an
initial set of active variables.

11.3 Hot Start

For a hot start, DYLP assumes that all internal data structures are exactly as they were when it last
returned to the client. Changes to the constraint system must be confined to the right-hand-side,
objective, and variable upper and lower bound vectors, so that the basis factorisation and inverse
are not affected. The client is responsible for indicating to DYLP which of these vectors have been
changed. The routine dy_hofstart scans the changed vectors and orchestrates any updates to the
corresponding data structures in the active constraint system. Unlike a cold or warm start, the
basis is not factored prior to resuming pivots. DYLP assumes that the basis was refactored as part
of the normal preoptimality sequence prior to the last return to the client and that no intervening
pivots have occurred. Any numerical problems arising from the modifications specified by the
client will be picked up in the normal course of dynamic simplex execution.

35



12 Dynamic Simplex

12.1 Normal Algorithm Flow

Figure 3 gives the normal flow of the dynamic simplex algorithm implemented in DYLP. The
outcomes included in the normal flow of the algorithm are primal optimality, infeasibility, and
unboundedness, and dual optimality and unboundedness. Other outcomes (e.g., loss of dual
feasibility during dual simplex, or numerical instability) are discussed in §12.2.

The implementation of the dynamic simplex algorithm is structured as a finite state machine,
with six normal states, primal simplex, dual simplex, deactivate variables, activate variables,
deactivate constraints, and activate constraints; two user-supplied states, generate variables and
generate constraints; and three error recovery states, force primal feasibility, force dual feasibility,
and force full constraint system. State transitions are determined by the previous state, the type
of simplex in use, and the outcome of actions in a state.

As described in §11, DYLP establishes an initial active constraint system, determines whether
the system is primal or dual feasible, and chooses the appropriate simplex as the starting phase.

The most common execution pattern is as described in the Introduction: The initial active
constraint system is neither primal or dual feasible. Primal simplex is used to solve this system
to optimality. A minor loop then activates variables with favourable reduced cost and reoptimises
using primal phase II. This loop repeats until no variables can be activated; at this point the
solution is optimal for the active constraints, over all variables. The algorithm then attempts to
activate violated constraints; if none are found, the solution is optimal for the original problem.
After violated constraints are activated, loose constraints are deactivated and dual simplex is used
to reoptimise. When an optimal solution is reached, the algorithm attempts to activate variables
with favourable reduced cost and return to the ‘primal phase II — activate variables’ minor loop. If
no variables can be activated, the algorithm attempts to activate violated constraints. If none are
found, the solution is optimal for the original problem. If violated constraints are activated, then
an attempt is made to activate dual feasible variables and dual simplex is used to reoptimise.

There is an obvious asymmetry in the use of primal and dual simplex. When primal simplex
reaches an optimal solution, the ‘primal phase II — activate variables’ minor loop iterates until no
useful variables remain to be activated. Only then does the algorithm activate violated constraints
and move to dual simplex. The analogous minor loop for dual simplex would be to add violated
constraints (dual variables with favourable reduced costs) and reoptimise with dual simplex until
no violated constraints remain. Instead, the algorithm attempts to add variables and return
to primal simplex; failing that, it will add both violated constraints and dual feasible variables
(satisfied dual constraints). The purpose of this asymmetry is two-fold: It acknowledges that
primal infeasibility is much more likely than primal unboundedness when solving LPs in the
context of a branch-and-cut algorithm, and it attempts to avoid the large swings in the values
of primal variables which often accompany dual unboundedness. Dual simplex moves between
primal infeasible basic solutions which can be at a large distance from the primal feasible region
and at a large distance from one another in the primal space. This presents a challenge for
numerical stability. Because the primal simplex remains within the primal feasible region, primal
unboundedness does not present the same difficulty.

To avoid cycling by repeatedly deactivating and reactivating the same constraint when the
dimension of the optimal face is greater than one, constraint deactivation is skipped unless there
has been an improvement in the objective function since the previous constraint deactivation
phase. This guarantees that the simplex will not return to a previous extreme point.
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If primal simplex finds that the active system is infeasible, the algorithm will attempt to activate
variables with favourable reduced cost under the phase I objective function (vid. §14) and resume
primal phase I. If no variables can be found, the original problem is infeasible.

If primal simplex finds that the active system is unbounded, the algorithm first attempts to
activate bounding constraints which will not cause the loss of primal feasibility. If such constraints
can be found, execution returns to primal phase II. If no such constraints can be found, or primal
feasibility is not an issue, all violated constraints are added and execution moves to dual simplex.
If no violated constraints can be found, the full constraint system is activated. If primal simplex
again returns an indication of unboundedness, the original problem is declared to be unbounded.
The effort expended before indicating a problem is unbounded acknowledges that unboundedness
is expected to be extremely rare in DYLP’s intended application.

If dual simplex finds that the active system is dual unbounded (primal infeasible), the algorithm
first attempts to activate dual bounding constraints (primal variables) which will not cause the
loss of dual feasibility. If such dual constraints can be found, execution returns to dual simplex.
If no such dual constraints can be found, the algorithm will attempt to activate variables with
favourable reduced cost under the primal phase I objective function and continue with primal
phase 1.

12.2 Error Recovery

A substantial amount of DYLP’s error recovery capability is hidden within the primal and dual sim-
plex algorithms. It is also possible to use the capabilities present in a dynamic simplex algorithm
to attempt error recovery at this level. The dynamic simplex algorithm modifies the constraint
system as part of its normal execution. This ability can be harnessed to force a transition from
one simplex to another when one simplex runs into trouble. The actions described in this section
are fully integrated with the actions described in §12.1. They are described separately to avoid
reducing Figure 3 to an incomprehensible snarl of state transitions.

Primal Simplex

The error recovery actions associated with the primal simplex algorithm are shown in Figure 4.
There are five conditions of interest, excessive change in the value of primal variables (excessive
swing), stalling (stall), inability to perform a pivot (punt), numerical instability (accuracy check),
and other errors (other error).

Excessive change (‘swing’) in the value of a primal variable during primal simplex is taken
as an indication that the primal problem is verging on unboundedness. Swing is defined as
(new value)/(old value). DYLP’s default tolerance for this ratio is 10!5. The action taken is the
same as that used for normal detection of unboundedness, with the exception that the algorithm
will always return to primal simplex.

When primal simplex stalls or is forced to punt, the strategy is to attempt to modify the con-
straint system so that the simplex algorithm will be able to choose a new pivot and again make
progress toward one of the standard outcomes of optimality, infeasibility, or unboundedness. The
specific actions vary slightly depending on whether primal feasibility has been achieved.

If primal simplex is still in phase I, the first action is to try to activate variables which have a
favourable reduced cost under the phase I objective. If this succeeds, execution returns to primal
simplex. If no variables can be found, the algorithm will attempt to activate violated constraints; if
successful, execution returns to primal simplex. If no variables or constraints have been activated,
there is no point in returning to primal simplex as the outcome will be unchanged. In this case,
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the algorithm will attempt to force dual feasibility by deactivating variables whose reduced costs
are not dual feasible (i.e., deactivate unsatisfied dual constraints). If this succeeds, the algorithm
will deactivate loose constraints (dual variables) to reduce the chance of dual unboundedness and
continue with dual simplex. Failing all the above, the ultimate action is to active the full constraint
system and attempt to solve it with primal or dual simplex. This can be done only once, to avoid
a cycle in which the full system is activated, pared down while forcing primal or dual feasibility,
and then reactivated when lesser measures again fail.

When a stall or punt occurs in primal phase II, the first action is again to attempt to activate
variables with a favourable reduced cost. However, if no new variables can be found, the algorithm
immediately attempts to force dual feasibility. Only if this can be achieved will it proceed to activate
violated constraints, deactivate loose constraints, and proceed to dual simplex. Failure to force
dual feasibility or to activate any constraints causes forced activation of the full constraint system
as described above.

Both the primal and dual simplex algorithm incorporate extensive checks and error recovery
actions to detect and recover from numerical instability. By the time a simplex gives up and
reports that it cannot overcome numerical problems, there is little to be done but force activation
of the full constraint system for one last attempt.

Other errors indicate algorithmic failures within the simplex algorithms (e.g., failure to acquire
resources, or conditions not anticipated by the code) and no attempt is made to recover at the
dynamic simplex level.

Dual Simplex

The error recovery actions associated with the dual simplex algorithm are shown in Figure 5. In
addition to the five outcomes cited for primal simplex, loss of dual feasibility (lost dual feasibility)
can be reported by the dual simplex algorithm. (Loss of primal feasibility is handled internally by
the primal simplex, which simply returns to phase I simplex iterations.)

When the dual simplex algorithm loses feasibility, the algorithm will attempt to force dual
feasibility by deleting the offending dual constraints (primal variables). If this succeeds, it will
attempt to activate feasible dual constraints and return to dual simplex. If dual feasibility cannot
be restored, the algorithm attempts to activate variables with favourable reduced costs under the
primal phase I objective and executes primal phase 1.

Excessive change in the value of primal variables during dual simplex is taken as an indica-
tion that the dual algorithm is moving between basic solutions which are far outside the primal
feasible region and far from each other. When excessive change in a primal variable is detected,
the algorithm attempts to activate primal constraints which will bound this motion. If this is
successful, execution of dual simplex resumes. General activation of violated primal constraints
is not attempted as it is less likely to bound the primal swing. If no bounding constraints can
be found, the algorithm attempts to activate feasible dual constraints and return to dual simplex.
If no such constraints can be found, the algorithm attempts to activate variables with favourable
reduced costs under the primal phase I objective and executes primal phase 1.

When dual simplex reports that it has stalled or cannot execute necessary pivots, the algo-
rithm first attempts to activate violated primal constraints. If such constraints can be activated,
execution returns to dual simplex. If no constraints can be found, the algorithm attempts to force
primal feasibility by deactivating violated primal constraints. Depending on the result of this ac-
tion, the algorithm attempts to activate variables with favourable reduced costs under the primal
phase I or phase II objective and executes primal simplex.

Loss of numerical stability and other errors are handled as for primal simplex.
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13 Dual Simplex

DYLP will choose dual simplex whenever the current basic solution is dual feasible but not primal
feasible. The primary role of dual simplex in DYLP is reoptimisation following the addition of
violated constraints. The implementation reflects this role and does not provide a dual phase I for
achieving dual feasibility. The dual simplex implementation incorporates dual steepest edge (DSE)
pricing (§4.2), standard (§13.5) and generalised (§13.6) pivoting, and perturbation-based (§5) and
alignment-based (§6) antidegeneracy algorithms.

Because the dual simplex implementation does not provide a phase I, a number of exceptional
conditions will cause DYLP fall back from dual simplex to primal simplex.

In dynamic simplex, apparent primal infeasibility can result because only a subset of the
variables are present in the active constraint system. In some cases, the variables needed to regain
feasibility cannot be activated into the nonbasic partition while maintaining dual feasibility. In
the context of the dual problem, the problem is unbounded and any dual constraint which would
bound it would also make the current basic solution dual infeasible. DYLP implements a variable
activation procedure which can pivot a single variable into the basis as it is activated in order
to maintain dual feasibilty. It is still possible, however, to reach a basic solution where multiple
pivots are required to regain dual feasibility for any candidate variable. When this occurs, DYLP
reverts to primal simplex.

If primal infeasible variables remain but they cannot be pivoted because their pivot coefficients
do not satisfy the current pivot selection tolerances, dy_dual will punt and DYLP will return to
phase I of the primal simplex algorithm in the hope that addition of variables and/or the appli-
cation of primal pivoting rules will allow pivoting to continue. In addition, if the dual simplex
terminates due to stalling or loss of feasibility, DYLP will try the primal simplex algorithm before

giving up.
Figure 6 shows the call structure of the dual simplex implementation.
dy_clrpivrej
dy_dualout — dualpricexk

. dy_dualpivot
dy_setpivparms

dy_accchk
dy_dual dual2 dy_duenna < dy_addtopivrej

d 1 . .
dy_calcobj y_clrpivrej

dy_accchk
preoptimality < dy_degenout

dy_clrpivrej
dy_setpivparms

Figure 6: Call Graph for Dual Simplex
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13.1 Dual Top Level

Dual simplex is executed when the dynamic simplex state machine enters state dyDUAL. If re-
quired, DSE pricing is initialised by calculating the square of the norms of the rows of the basis
inverse (vid. §4.2) and the dual simplex routine dy_dual is called. dy_dual is a trivial shell which
calculates the objective (dy_calcobj) and calls the dual phase II routine dual2 to do the optimisation.

13.2 Dual Phase II

The overall flow of phase II of the dual algorithm is shown in Figure 7. The body of the routine
is structured as two nested loops. The outer loop handles startup and termination, and the inner
loop handles the majority of routine pivots.

On entry to dual2, the outer loop is entered and dy_dualout is called to select the initial leaving
variable. Then the inner loop is entered and dy_dualpivot is called to perform the pivot. dy_dualpivot
(vid. §13.3) will calculate the coefficients of the pivot row (dualpivrow), select an entering variable
(dualin), pivot the basis (dy_pivof), update the primal and dual variables (dualupdate), and update
the DSE pricing information and reduced costs (dseupdate). For a routine pivot, dseupdate will also
select a leaving variable for the next pivot. dy_duenna evaluates the outcome of the pivot, handles
error detection and recovery where possible, and performs the routine maintenance activities of
accuracy checks and refactoring of the basis. If there are no problems, the pivoting loop iterates,
using the leaving variable selected in dseupdate. The loop continues until optimality is reached,
the problem is determined to be primal infeasible (dual unbounded), or an exception or fatal error
occurs.

One common reason for a failure to select a leaving variable for the next pivot is that the
current pivot was aborted due to numerical problems (an unsuitable pivot coefficient being the
most common of these). In this case, dseupdate never executes. Once dy_duenna has taken the
necessary corrective action, the flow of control escapes to the outer loop and calls dy_dualout to
select a new leaving variable.

Another common reason for failure to select a leaving variable is that all candidates were previ-
ously flagged as unsuitable pivots. In this case, dy_dualout will indicate a ‘punt’ and dy_dealWithPunt
will be called to reevaluate the flagged variables. If it is able to make new candidates available,
control returns to dy_dualout for another attempt to find a leaving variable. If all flagged variables
remain unsuitable, control flow moves to the preoptimality actions with an indication that dual
simplex has punted.

When dy_dualout indicates optimality (primal feasibility) or dy_dualpivot indicates optimality,
dual unboundedness (primal infeasibility), or loss of dual feasibility, the inner loop ends and
preoptimality is called for confirmation. preoptimality will refactor the basis, check for accuracy,
recompute the primal and dual variables, and confirm dual and primal feasibility status. If there
are no surprises, dual phase II terminates with an indication of optimality, dual unboundedness,
or loss of dual feasibility.

Loss of dual feasibility stems from loss of numeric accuracy, but i