
Coopr User Manual:
Pyomo Modeling Language and Extension Packages

William E. Hart1 Jean-Paul Watson2 David L. Woodruff3

November 7, 2009

1Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185; wehart@sandia.gov

2Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185; jwatson@sandia.gov

3Graduate School of Management, University of California at Davis, Davis, CA 95616-8609;
dlwoodruff@ucdavis.edu

2

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Design Goals and Requirements . 6

1.2.1 Open Source . 6
1.2.2 Customizable Capability . 7
1.2.3 Solver Integration . 7
1.2.4 Abstract Models . 7
1.2.5 Flexible Modeling Language . 8
1.2.6 Portability . 8

1.3 Why Python? . 8
1.4 Background . 10

2 Getting Started with Pyomo 13
2.1 Introduction . 13
2.2 Installing Coopr . 14

3 The Coopr Optimization Package 17
3.1 The Coopr Optimization Package . 17

3.1.1 Optimization Plugins . 17
3.1.2 Generic Optimization Process . 18

4 PySP 21
4.1 Overview . 21

4.1.1 Reference Model . 21
4.1.2 Scenario Tree . 21

4.2 File Structure . 22
4.2.1 ScenarioStructure.dat . 22

4.3 Extensions via Callbacks . 23
4.3.1 Watson and Woodruff Extensions . 23
4.3.2 General Parameters . 25
4.3.3 Callback Details . 26

4.4 Examples . 27
4.4.1 Farmer Example . 27

3

CONTENTS CONTENTS

4.4.2 Forestry Example . 28
4.4.3 Sizes Example . 28

5 Advanced Pyomo Examples 31
5.1 XXX Advanced Pyomo Examples . 31

5.1.1 Parallel Benders Decomposition . 31

6 Discussion 33
6.1 XXX Discussion . 33

4

Chapter 1

Introduction

This is a preliminary draft at a Pyomo Reference manual. There are some big picture issues
that need to be addressed:

• What is the scope of this document? Should it include Coopr Opt? How about PySP?

• Should this include all aspects of Coopr?

• What specific chapters should we include ... even if we stay focused on Pyomo?

1.1 Introduction

The Python Optimization Modeling Objects (Pyomo) software package supports the defini-
tion and solution of optimization applications using the Python scripting language. Python
is a powerful dynamic programming language that has a very clear, readable syntax and
intuitive object orientation. Pyomo includes Python classes for sparse sets, parameters, and
variables, which can be used to formulate algebraic expressions that define objectives and con-
straints. Thus, Pyomo can be used to concisely represent mixed-integer linear programming
(MILP) models for large-scale, real-world problems that involve thousands of constraints and
variables. Further, Pyomo includes a flexible framework for applying optimizers to analyze
these models.

The design of Pyomo is motivated by a variety of factors that have impacted applications
at Sandia National Laboratories. Sandia’s discrete mathematics group has successfully used
AMPL [3, 10] to model and solve large-scale integer programs for many years. This appli-
cation experience has highlighted the value of Algebraic Modeling Languages (AMLs) for
solving real-world applications, and AMLs are now an integral part of operations research
solutions at Sandia.

Pyomo was developed to provide an alternative platform for developing math program-
ming models that leverages Python’s rich programming environment to facilitate the ap-
plication and deployment of optimization capabilities. Pyomo is not intended to perform
modeling better than existing tools. Instead, it supports a different modeling approach for
which the software is designed for flexibility, extensibility, portability, and maintainability.

5

Introduction

TODO: Review our goals? 1) Fully embedded modeling language, 2) Open source, 3)
generic solvers, 4) extensibility. We review our goals in detail in the next section, so it seems
funny to summarize them here. NOTE: we don’t mention generic solvers later. Do we really
have space to include that in this paper???

TODO: mention Open Source here? The point would be to say that the goal of Pyomo is
not just to provide a free framework, but instead provide a framework that can be customized
and extended. I’m not sure how to blend that theme with the previous paragraph

TODO: introduce Coopr here

Pyomo is integrated into Coopr, a COmmon Optimization Python Repository. The
Coopr Opt package supports the execution of models developed with Pyomo using standard
MILP solvers.

1.2 Design Goals and Requirements

The following sections describe the design goals and requirements that have guided the devel-
opment of Pyomo. The design of Pyomo has been driven by a two different types of projects
at Sandia. First, Pyomo has been used by research projects that need a flexible framework for
customizing the formulation and evaluation of math programming models. Second, projects
with external users often require that math programming modeling techniques be deployed
without commercial licenses.

1.2.1 Open Source

A key goal of Pyomo is to provide an open-source math programming modeling capability.
Although open-source optimization solvers are widely available in packages like COIN-OR,
surprisingly few open-source tools have been developed to model optimization applications.
An open-source capability for Pyomo is motivated by several factors:

• Transparency and Reliability: When managed well, open-source projects facili-
tate transparency in the software design and implementation. Since any developer can
study and modify the software, bugs and performance limitations can be identified
and resolved by a wide range of developers with diverse software experience. Conse-
quently, there is growing evidence that managing software as open-source can improve
its reliability.

• Flexible Licensing: A variety of significant operations research applications at Sandia
have required the use of a modeling tool with a non-commercial license. There have
been many different reasons for this requirement, including the need to support open-
source analysis tools, limitations for software deployment on classified computers, and
licensing policies for commercial partners (e.g. that are motivated by minimizing the
costs of deploying an application model internally within a large company). The Coopr
software, which contains Pyomo, is licensed under the BSD.

6

Introduction

Although the use of an open-source model is not a panacea; ensuring high reliability of
the software requires careful software management and a commited developer community.
However, there is increasing recognition that open source software provides many advantages
beyond simple cost savings [6], including supporting open standards and avoiding being
locked in to a single vendor.

1.2.2 Customizable Capability

A key limitation of commercial modeling tools is the ability to customize the modeling or
optimization process. Pyomo’s open-source project model allows a diverse range of develop-
ers to prototype new capabilities. Thus, developers can customize the software for specific
applications, and they can prototype capabilites that are integrated into future

More generally, Pyomo is designed to support a “stone soup” development model where
each developer “scratches their own itch”. A key element of this design is the plugin frame-
work that Pyomo uses to integrate components like optimizers, optimizater managers, and
model format conversions. This framework manages the registration of components, and it
automates the interaction of these components through well-defined interfaces. Thus, users
can customize Pyomo in a modular manner without risk of destabilizing core functionality.

1.2.3 Solver Integration

Modeling tools can be roughly categorized into two classes based on how they integrate
with optimization solvers: tightly coupled modeling tools directly link in optimization solver
libraries (including dynamic linking), and loosely coupled modeling tools apply external opti-
mization executables (e.g. through system calls). Of course, these options are not exclusive,
and a goal of Pyomo is to support both types of solver interfaces.

This design goal has led to a distinction in Pyomo between model formulation and opti-
mization execution. Pyomo uses a high level programming language to formulate a problem
that can be solved by optimizers written in low-level languages. This two-language approach
leverages the flexibility of the high-level language for formulating optimization problems and
the efficiency of the low-level language for numerical computations.

1.2.4 Abstract Models

A requirement of Pyomo’s design is that it support the definition of abstract models in a
manner similar to the AMPL. AMPL separates the declaration of a model from the data
that generates a model instance. This is supports an extremely flexible modeling capability,
which has been leveraged extensively in applications at Sandia.

To mimic this capability, Pyomo uses a symbolic representation of data, variables, con-
straints, etc. Model instances are then generated from external data sets using construction
routines that are provided by the user when defining sets, parameters, etc. Further, Pyomo
is designed to use data sets in the AMPL format to facilitate translation of models between
AMPL and Pyomo.

7

Introduction

1.2.5 Flexible Modeling Language

Another goal of Pyomo is to directly use a modern programming language to support the
definition of math programming models. In this manner, Pyomo is similar to tools like
FlopC++ [9] and OptimJ [26], which support modeling in C++ and Java respectively. The
use of an existing programming language has several advantages:

• Extensibility and Robustness: A well-used modern programming language provides
a robust foundation for developing and applying models, because the language has been
well-tested in a wide variety of contexts. Further, extensions typically do not require
changes to the language but instead involve additional classes and modeling routines
that can be used in the modeling process. Thus, support of the modeling language is
not a long-term factor when managing the software.

• Documentation: Modern programming languages are typically well-documented, and
there is often a large on-line community to provide feedback to new users.

• Standard Libraries: Languages like Java and Python have a rich set of libraries
for tackling just about every programming task. For example, standard libraries can
support capabilities like data integration (e.g. working with spreadsheets), thereby
avoiding the need to directly support this in a modeling tool.

An additional aspect of general-purpose programming languages is that they can support
modern language features, like classes and first-class functions, that can be critical when
defining complex models.

Pyomo is implemented in Python, a powerful dynamic programming language that has a
very clear, readable syntax and intuitive object orientation. When compared with AMLs like
AMPL, Pyomo has a more verbose and complex syntax. Thus, a key issue with this approach
concerns the target user community and their level of comfort with standard programming
concepts. Our examples in this paper compare and contrast AMPL and Pyomo models,
which illustrate this trade-off.

1.2.6 Portability

A requirement of Pyomo’s design is that it work on a diverse range of compute platforms.
In particular, working well on both MS Windows and Linux platforms is a key requirement
for many Sandia applications. The main impact of this requirement has been to limit the
choice of programming languages. For example, the .Net languages were not considered for
the design of Pyomo due to portability considerations.

1.3 Why Python?

Pyomo has been developed in Python for a variety of reasons. First, Python meets the
criteria outlined in the previous section:

8

Introduction

• Open Source License: Python is freely available, and its liberal open source license
lets you modify and distribute a Python-based application with few restrictions.

• Features: Python has a rich set of datatypes, support for object oriented program-
ming, namespaces, exceptions, and dynamic loading.

• Support and Stability: Python is highly stable, and it is well supported through
newsgroups and special interest groups.

• Documentation: Users can learn about Python from extensive online documentation,
and a number of excellent books that are commonly available.

• Standard Library: Python includes a large number of useful modules.

• Extendability and Customization: Python has a simple model for loading Python
code developed by a user. Additionally, compiled code packages that optimize com-
putational kernels can be easily used. Python includes support for shared libraries
and dynamic loading, so new capabilities can be dynamically integrated into Python
applications.

• Portability: Python is available on a wide range of compute platforms, so portability
is typically not a limitation for Python-based applications.

Several other popular programming languages were also considered for Pyomo. However,
in most cases Python appears to have distinct advantages:

• .Net: As mentioned earlier, the .Net languages are not portable to Linux platforms,
and thus they were not suitable for Pyomo.

• Ruby: At the moment, Python and Ruby appear to be the two most widely recom-
mended scripting languages that are portable to Linux platforms, and comparisons
suggest that their core functionality is similar. Our preference for Python is largely
based on the fact that it has a nice syntax that does not require users to type weird
symbols (e.g. $, %, @). Thus, we expect this will be a more natural language for
expressing math programming models.

• Java: Java has a lot of the same strengths as Python, and it is arguably as good a choice
for Pyomo. However, Python has a powerful interactive interpreter that allows realtime
code development and encourages experimentation with Python software. Thus, users
can work interactively with Pyomo models to become familiar with these objects and
to diagnose bugs.

• C++: Models formulated with the FlopC++ [9] package are similar to models devel-
oped with Pyomo. They are be specified in a declarative style using classes to represent
model components (e.g. sets, variables and constraints). However, C++ requires ex-
plicit compilation to execute code, and it does not support an interactive interpreter.
Thus, we believe that Python will provide a more flexible language for users.

9

Introduction

We also considered developing a domain-specific AML. Domain-specific AMLs have can
support a concise, expressive syntax, with a clear semantic interpretation. However, it is
difficult to develop and maintain an AML. For example, there is extensive documentation on
Python and other standard programming languages. By comparison, AMLs for math pro-
gramming are sparsely documented. Additionally, it is a significant commitment to develop
an AML that provides the full suite of capabilities that are available in modern program-
ming languages (e.g. standard libraries, and interoperability with different programming
languages).

Finally, we note that run-time performance was not a key factor in our decision to use
Python. Recent emperical comparisons suggest that scripting languages offer reasonable
alternatives to languages like C and C++, even for tasks that must handle fair amounts of
computation and data [27]. Further, there is evidence that dynamically typed languages like
python allow users to be more productive than with statically typed languages like C++ and
Java [36, 29]. It is widely acknowledged that Python’s dynamic typing and compact, concise
syntax makes software development quick and easy. Thus, it is not surprising that Python
is widely used in the scientific community [23]. Large Python projects like SciPy [16] and
SAGE [33] strongly leverage a diverse set of Python packages to perform complex numerical
calculations.

1.4 Background

A variety of different strategies have been developed to facilitate the formulation and so-
lution of complex optimization models. For restricted problem domains, optimizers can be
directly interfaced with application modeling tools. For example, modern spreadsheets like
Excel integrate optimizers that can be applied to linear programming and simple nonlinear
programming problems in a natural way.

Algebraic Modeling Languages (AMLs) are alternative approach that allows applica-
tions to be interfaced with optimizers that can exploit problem structure. AMLs are high-
level programming languages for describing and solving mathematical problems, particularly
optimization-related problems [18]. AMLs like AIMMS [2], AMPL [3, 10] and GAMS [12]
have programming languages with an intuitive mathematical syntax that supports concepts
like sparse sets, indices, and algebraic expressions. AMLs provide a mechanism for defin-
ing variables and generating constraints with a concise mathematical representation, which
is essential for large-scale, real-world problems that involve thousands of constraints and
variables.

Standard programming languages can also be used to formulate optimization models
when used in conjunction with a software library that uses object-oriented design to support
mathematical concepts. Although these modeling libraries sacrifice some of the intuitive
mathematical syntax of an AML, they allow the user to leverage the greater flexibility of
standard programming languages. For example, modeling tools like FlopC++ [9], OPL [25]
and OptimJ [26] can be used to formulate and solve optimization models.

A related strategy is to use a high-level programming language to formulate optimization

10

Introduction

models that are solved with optimizers written in low-level languages. This two-language
approach leverages the flexibility of the high-level language for formulating optimization
problems and the efficiency of the low-level language for numerical computations. This
approach is increasingly common in scientific computing tools, and the Matlab TOMLAB
Optimization Environment [35] is probably the most mature optimization software using this
approach. However, Python has been used to implement a variety of optimization packages
that use this approach:

• APLEpy: A package that can be used to describe linear programming and mixed-
integer linear programming optimization problems [4, 19].

• CVXOPT: A package for convex optimization [7].

• PuLP: A package that can be used to describe linear programming and mixed-integer
linear programming optimization problems [28].

• POAMS: A modeling tool for linear and mixed-integer linear programs that defines
Python objects for abstract sets, constraints, objectives, decision variables, and solver
interfaces.

• OpenOpt: A numerical optimization framework that is closely coupled with the SciPy
scientific Python package [24].

• NLPy: An optimization framework that leverages AMPL to create problem instances,
which can then be processed in Python [22].

Pyomo is similar to APLEpy, PuLP and POAMS. All of these packages define Python
objects that can be used to express models. POAMS and Pyomo support a clear distinction
between abstract models and problem instances. This design has several advantages, which
were summarized by Fourer and Gay [10] when presenting AMPL:

• The statement of the symbolic model can be made compact and understandable,

• The independent specification of a symbolic model facilitates the specification of the
validity of the associated data,

• Data from different sources can be used with the symbolic model, depending on the
computing environment,

The main high-level feature that distinguishes Pyomo from POAMS is Pyomo’s support
for an instance construction process that is automated by object properties. This is akin to
the capabilities of AML’s like AMPL and GAMS, and it provides a standardized technique
for constructing model instances. Hart [15] provides Python examples that illustrate the
differences between PuLP, POAMS and Pyomo.

11

Introduction

12

Chapter 2

Getting Started with Pyomo

2.1 Introduction

The Python Optimization Modeling Objects (Pyomo) software package supports the defini-
tion and solution of optimization applications using the Python scripting language. Python
is a powerful dynamic programming language that has a very clear, readable syntax and
intuitive object orientation. Pyomo includes Python classes for sparse sets, parameters, and
variables, which can be used to formulate algebraic expressions that define objectives and con-
straints. Thus, Pyomo can be used to concisely represent mixed-integer linear programming
(MILP) models for large-scale, real-world problems that involve thousands of constraints and
variables. Further, Pyomo includes a flexible framework for applying optimizers to analyze
these models.

The design of Pyomo is motivated by a variety of factors that have impacted applications
at Sandia National Laboratories. Sandia’s discrete mathematics group has successfully used
AMPL [3, 10] to model and solve large-scale integer programs for many years. This appli-
cation experience has highlighted the value of Algebraic Modeling Languages (AMLs) for
solving real-world applications, and AMLs are now an integral part of operations research
solutions at Sandia.

Pyomo was developed to provide an alternative platform for developing math program-
ming models that leverages Python’s rich programming environment to facilitate the ap-
plication and deployment of optimization capabilities. Pyomo provides a set of Python
classes and functions that define a modeling capability that is similar to AML’s like AMPL.
Further, Pyomo leverages a flexible plugin framework to provide a highly extensible and
flexible modeling framework. Pyomo is integrated into Coopr, a COmmon Optimization
Python Repository. Coopr packages provide optimization components that can be applied
to optimize Pyomo models in a flexible manner.

This chapter discusses how to install Coopr and verify that Pyomo can be run. The rest
of this document introduces the user to Pyomo and describes the details of the Pyomo’s
modeling objects. This presentation is principally intended for Pyomo end-users. Readers
may also find the following references useful when diving deeper into Coopr and Pyomo:

13

Getting Started with Pyomo

• W. E. Hart, J. Siirola, and J.-P. Watson, ”Coopr User Manual: Customizing Coopr
with Plugins”, Sandia National Laboratories, 2009.

• W. E. Hart, J.-P. Watson, and D. L. Woodruff, ”Coopr User Manual: Pyomo Modeling
Language and Extension Packages”, Sandia National Laboratories, 2009.

• W. E. Hart, J.-P. Watson, and D. L. Woodruff, ”PYthon Optimization Modeling Ob-
jects (Pyomo)”, 2009, (in preparation).

2.2 Installing Coopr

There are several different ways that Coopr can be installed:

easy install Coopr releases can be directly installed using the Python easy install com-
mand.

source Coopr can be installed from source.

coopr install The coopr install command provides a one-step installation of Coopr and
the Python packages that Coopr depends on.

The first two options are the techniques that Python developers typically used. The easy install

command is the de facto standard python installation technique. For example, the following
command will download Coopr and the Python packages that it depends on, and install
them in Python’s site-packages directory:

e a s y i n s t a l l Coopr

In most cases, end-users will want to use the coopr install script to install Coopr and
other packages that Coopr depends on. This is a Python script that creates a directory that
contains a virtual Python installation, related Coor scripts, examples and related documen-
tation. This installation does not require administrator privileges, and the user can view the
Coopr documentation and examples in the installation directory.

The coopr install script does not rely on non-standard Python packages, so it can be
run as follows:

c o o p r i n s t a l l coopr

On MS Windows, the python command needs to be run explicitly:

python c o o p r i n s t a l l coopr

This creates the coopr directory, which has the following directory structure:

admin Administrative data for maintaining this distribution

bin Scripts and executables

14

Getting Started with Pyomo

doc Coopr documentation and tutorials

examples Coopr examples

lib Python libraries and installed packages

include Python header files

src Python packages whose source files can be

modified and used directly within this virtual Python

installation.

Scripts Python bin directory (used on MS Windows)

util Coopr utility scripts (including coopr_install)

If the bin directory is put in user’s PATH environment, then the bin/python command can
be used to employ Coopr and associated packages without further configuration. Further,
Coopr’s Python scripts are installed in the bin directory such that they reference this virtual
Python installation directly.

If coopr install is executed with no installation directory, then the script will search
the user’s PATH environment for the pyomo command. If found, the path of this command
will be used to identify the Coopr installation that is being updated or replaced. If not
found, then a default installation path is used: C:
coopr on Windows and ./coopr on Linux.

By default, coopr install installs the latest release of Coopr. The current development
trunk can be installed using the --trunk option:

c o o p r i n s t a l l −−trunk coopr

Also, Coopr has a stable branch, which is updated as major software revisions are finalized.
This can be installed with the --stable option:

c o o p r i n s t a l l −−trunk coopr

Users can reinstall Coopr using the --clear option:

c o o p r i n s t a l l −−c l e a r coopr

Note that this option is also needed to switch between the trunk, stable, and release installa-
tions, since that involves a reinstallation of Coopr. A Coopr installation can also be updated
with the --update option:

c o o p r i n s t a l l −−update coopr

This updates Coopr to the latest release, or the latest revision of trunk and stable installa-
tions.

The coopr install script installs a variety of Python packages that Coopr uses. This
script also has options for using third-party Coopr extensions that are available on the
Coopr Forum software repository ??. The Coopr Forum repository facilitates community
involvement in Coopr by allowing people to contribute code extensions and plugins without

15

Getting Started with Pyomo

going directly through the Coopr software repository. For example, the coopr.plugins.neos
package provides a simple example of how Coopr can be extended with plugins to enable
optimization on the NEOS optimization server [8]. This plugin package can be installed with
Coopr using the --forum-pkg option:

c o o p r i n s t a l l −−forum−pkg=neos coopr

Multiple packages can be separated with a comma-separated list of package names.
The Python setuptools package is the de facto standard for deploying Python software.

This package extends Python’s distutils functionality. A key element of this extension
is the easy install command, which allows the installation of Python software from re-
mote repositories. In particular, the Python Package Index (PyPI) provides a convenient
repository for hosting Python packages. The easy install command can easily upload and
download packages from PyPI, thereby simplifying the distribution of Packages like Coopr,
which depends on a variety of freely available packages.

Finally, here are some notes about coopr install:

• This script installs packages by downloading files from the internet. If you are running
this from within a firewall, you may need to set the HTTP PROXY environment variable
to a value like http://<proxyhost>:<port>.

• By default, the virtual Python installation used with Coopr exposes the packages that
are installed with your Python installation. Occasionally, this can cause conflicts be-
tween different package version. The --no-site-packages option isolates the Coopr
installation from the Python packages that have been installed with the Python inter-
preter.

16

Chapter 3

The Coopr Optimization Package

3.1 The Coopr Optimization Package

Much of Pyomo’s flexibility and extensibility is due to the fact that Pyomo is integrated into
Coopr, a COmmon Optimization Python Repository. Coopr utilizes a component archi-
tecture to provide plugins that modularize many aspects of the optimization process. This
includes components that manage the execution of optimizers, which enables transparent par-
allelization of independent optimization tasks. This component architecture also supports a
generic optimization process. Finally, Coopr provides a simple installation mechanism that
leverage’s Python’s online package index.

3.1.1 Optimization Plugins

Coopr uses plugin components to modularize the steps needed to perform optimization. A
component is a software package, module, or object that provides a particular function-
ality. Plugin components augment the execution flow by implementing functionality that
is exercised “on demand.” Component-based software with plugins is a best practice for
extend and evolve complex software systems in a reliable manner [32]. Component-based
software frameworks manage the interaction between components to promote adaptability,
scalability and maintainability in large software systems [34]. For example, with component-
based software there is much less need for major release changes because software changes
can be encapsulated within individual components. Component architectures also encourage
third-party developers to add value to software systems without risk of destabilizing the core
functionality.

Coopr uses the PyUtilib plugin framework [30] to define interfaces for the following plugin
components:

• solvers, which perform optimization

• solver managers, which manage the execution of solver plugins

• converters, which translate between different optimization problem file formats

17

The Coopr Optimization Package

• solution readers, which load optimization solutions from files

• problem writers, which create files that contain optimization problems

Coopr also contains Pyomo-specific components for preprocessing Pyomo models before they
are solved.

Coopr includes a variety of plugins that implement these component interfaces, many of
which rely on third-party software packages to implement key functionality. For example,
solver plugins are available for the CPLEX, CBC, PICO and GLPK mixed-integer linear
programming solvers. These plugins naturally rely on the availability of binary executables
for these solvers, which need to be installed separately. Similarly, Coopr includes plugins that
convert between different optimization problem file formats, which rely on binary executables
built by the GLPK [14] and Acro [1] software libraries.

Taken together, plugins provide the following capabilities that simplify optimization
within Pyomo:

• Dynamic Registration of Optimizers: Optimizers are registered as plugins, which
provides an extensible architecture for developers of third-party optimizers. Coopr
uses a dynamic registration process that disables plugins whose executables are not
available at runtime. This minimizes the effort needed to integrate new optimizers
into Pyomo.

• Problem Transformation: A key challenge for optimization packages is the need
to support a diverse set of problem formats. This is an issue even for LP and MILP
solver packages, where MPS is the least common denominator for users. Coopr includes
plugins that can write problems in NL and CPXLP formats. Additionally, Coopr
includes an automatic problem transformation mechanism that enables the application
of optimizers to problems with a wide range of formats. This mechanism employs
plugins, which simplifies the process for adding new conversion capabilities.

• Solver Managers: Some optimization techniques involve the execution of multiple,
independent optimization subproblems. In this context, Pyomo’s solver manager plugin
components provide a high-level abstraction of the execution of these subproblems.
This abstraction enables the parallel execution of optimizers for these subproblems in
a transparent manner.

3.1.2 Generic Optimization Process

Pyomo strongly leverages Coopr’s ability to execute optimizers in a generic manner. For
example, the following script illustrates the how an optimizer is setup and executed with
Coopr:

opt = SolverFactory (name)
opt . r e s e t ()
r e s u l t s = opt . s o l v e (problem)

18

The Coopr Optimization Package

r e s u l t s . wr i t e ()

Note that this relies on Coopr’s explicit segregation of problems and solvers into separate
objects. This promotes the development of tools like Pyomo that support flexible definition
of optimization applications, and it enables automatic transformation of problem instances.

Coopr borrows and extends the representation used by the COIN-OR OS project [11]
to support a general representation of optimizer results. The results object returned by a
Coopr optimizer includes information about the problem, the solver execution, and one or
more solutions generated during optimization.

For example, if the problem in Appendix ?? is being solved, the simple Coopr optimiza-
tion script would print the following information that is contained in the results object:

===
−−− So lve r Resu l t s −−−
===
−−−
−−−−−− Problem Informat ion −−−−−−
−−−

name : None
num constra ints : 5
num nonzeros : 6
num object ives : 1
num var iab les : 2
sense : maximize
upper bound : 192000

−−−
−−−−−− So lve r In format ion −−−−−−
−−−

e r r o r r c : 0
nbounded : None
ncreated : None
s t a tu s : ok
syst ime : None
usrt ime : None

−−−
−−−−−− So lu t i on 0
−−−

gap : 0 . 0
s t a tu s : opt imal
va lue : 192000
Primal Var iab l e s

X bands 6000
X c o i l s 1400

19

The Coopr Optimization Package

Dual Var i ab l e s
c u L imi t 1 4
c u Time 0 4200

−−−

20

Chapter 4

PySP

4.1 Overview

The pysp package extends the pyomo modeling language to support multi-stage stochastic
programs with enumerated scenarios. Pyomo and pysp are Python version 2.6 programs.
The underlying algorithm in pysp is based on Progressive Hedging (PH) [31], which uses
weights corresponding to each variable to force convergence. In order to specify a program,
the user must provide a reference model and a scenario tree.

The software is executed with a command of the form

python phdriver.py

but “python” might be replaced by a command to execute Python version 2.6 and “ph-
driver.py” might include a path specification (e.g., ..\phdriver.py or ../phdriver.py

when there are various data subdirectories for one project directory and phdriver.py is in
the project directory). It is possible, and generally necessary, to invoke extensions to the
basic algorithm and to override default parameters; this is described in Sections 4.3 and 4.3.2.

4.1.1 Reference Model

The reference model describes the problem for a canonical scenario. It does not make use
of, or describe, a scenario index or any information about uncertainty. Typically, it is just
the model that would be used if there were only a single scenario. It is given as a pyomo
file. Data from an arbitrary scenario is needed to instantiate.

The objective function needs to be separated by stages. The term for each stage should be
“assigned” (i.e., constrained to be equal to) a variable. These variables names are reported
in ScenarioStructure.dat so that they can be used for reporting purposes.

4.1.2 Scenario Tree

The scenario tree provides information about the time stages and the nature of the uncer-
tainties. In order to specify a tree, we must indicate the time stages at which information

21

PySP

becomes available. We also specify the nodes of a tree to indicate which variables are associ-
ated with which realization at each stage. The data for each scenario is provided in separate
data files, one for each scenario.

4.2 File Structure

• ReferenceModel.py (A pyomo model file)

• ReferenceModel.dat (data for an arbitrary scenario)

• ScenarioStructure.py (do not edit this file)

• ScenarioStructure.dat (among other things: the scenario names: Sname)

• *Sname.dat (full data for now) one file for each scenario

In this list we use “Sname” as the generic scenario name. The file scenariostructure.dat
gives the names of all the scenarios and for each scenario there is a data file with the same
name and the suffix “.dat” that contains the full specification of data for the scenario.

4.2.1 ScenarioStructure.dat

The file ScenarioStructure.py defines the python sets and parameters needed to describe
stochastic elements. This file should not be edited. Data to instantiate these sets and
parameters is provided by users in the file ScenarioStructure.dat, which can be given in
AMPL [3] format. This file contains the following data:

• set Scenarios: List of the names of the scenarios. These names will subsequently be
used as indexes in this data file and these names will also be used as the root file names
for the scenario data files (each of these will have a .dat extension).

item set Stages: List of the names of the time stages, which must be given in time
order. In the sequel we will use StageName to represent a node name used as an
index.

• set Nodes: List of the names of the nodes in the scenario tree. In the sequel we will
use NodeName to represent a node name used as an index.

• param NodeStage: A list of pairs of nodes and stages to indicate the stage for each
node.

22

PySP

• param Parent: A list of node pairs to indicate the parent of each node that has a
parent (the root node will not be listed).

• set Children[NodeName]: For each node that has children, provide the list of children.
No sets will be give for leaf nodes.

• param ConditionalProbability: For each node in the scenario tree, give the conditional
probability. For the root node it must be given as 1 and for the children of any node
with children, the conditional probabilities must sum to 1.

• param ScenarioLeafNode: A list of scenario and node pairs to indicate the leaf node
for each scenario.

• set StageVariables[StageName]: For each stage, list the pyomo model variables asso-
ciated with that stage.

The default behavior is one file per scenario and each file has the full data for the scenario.
An alternative is to specify just the data that changes from the root node in one file per tree
node. To select this option, add the following line to ScenarioStructure.dat:

param ScenarioBasedData := False ;

This will set it up to want a per-node file, something along the lines of what’s in
examples/pysp/farmer/NODEDATA.

4.3 Extensions via Callbacks

Basic PH can converge slowly, so it is usually advisable to extend it or modify it. In PYSP,
this is done via the pyomo plug-in mechanism. The basic PH implementation provides
callbacks that enable access to the data structures used by the algorithm. In §4.3.1 we
describe extensions that are provided with the release. In §4.3.3, we provide information to
power users who may wish to modify or replace the extensions.

4.3.1 Watson and Woodruff Extensions

Watson and Woodruff describe innovations for accelerating PH [37], some of which are im-
plemented in the file wwextension.py. Many of the examples described in §4.4 use this
plug-in. The main concept is that some integer variables should be fixed as the algorithm
progresses for two reasons:

23

PySP

• Convergence detection: A detailed analysis of PH algorithm behavior on the prob-
lems indicates that individual decision variables frequently converge to specific, fixed
values scenarios in early PH iterations. Further, despite interactions among the the
variables, the value frequently does not change in subsequent PH iterations. Such vari-
able “fixing” behaviors lead to a potentially powerful, albeit obvious, heuristic: once
a particular variable has been the same in all scenarios for some number of iterations,
fix it to that value. For problems where the constraints effectively limit x from both
sides, these methods may result in PH encountering infeasible scenario sub-problems
even though the problem is ultimately feasible.

• Cycle detection: When there are integer variables, cycling is sometimes encountered,
consequently, cycle detection and avoidance mechanisms are required to force eventual
convergence of the PH algorithm in the mixed-integer case. To detect cycles, we focus
on repeated occurrences of the weights, implemented using a simple hashing scheme
[38] to minimize impact on run-time. Once a cycle in the weight vectors associated
with any decision variable is detected, the value of that variable is fixed.

Variable Specific Parameters

The plug-in makes use of parameters to control behaviour at the variable level. Global
defaults (to override the defaults stated here) should be set using methods described in
§4.3.2. Values for each variable should be set using methods described in §4.3.2. Note that
for variable fixing based on convergence detection, iteration zero is treated separately. The
parameters are as follows:

• fix continuous variables: True or False. If true, fixing applies to all variables. If false,
then fixing applies only to discrete variables.

• Iter0FixIfConvergedAtLB: 1 (True) or 0 (False). If 1, then discrete variables that are
at their lower bound in all scenarios after the iteration zero solves will be fixed at that
bound.

• Iter0FixIfConvergedAtUB: 1 (True) or 0 (False). If 1, then discrete variables that are
at their upper bound in all scenarios after the iteration zero solves will be fixed at that
bound.

• Iter0FixIfConvergedAtNB: = 1 1 (True) or 0 (False). If 1, then discrete variables that
are at the same value in all scenarios after the iteration zero solves will be fixed at
that value, without regard to whether it is a bound. If this is true, it takes precedence.
A value of zero, on the other hand, implies that variables will not be fixed at at a
non-bound.

• FixWhenItersConvergedAtLB: The number of consecutive PH iterations that discrete
variables must be their lower bound in all scenarios before they will be fixed at that
bound. A value of zero implies that variables will not be fixed at the bound.

24

PySP

• FixWhenItersConvergedAtUB: The number of consecutive PH iterations that discrete
variables must be their upper bound in all scenarios before they will be fixed at that
bound. A value of zero implies that variables will not be fixed at the bound.

• FixWhenItersConvergedAtNB: The number of consecutive PH iterations that discrete
variables must be at the same, consistent value in all scenarios before they will be
fixed at that value, without regard to whether it is a bound. If this is true, it takes
precedence. A value of zero, on the other hand, implies that variables will not be fixed
at at a non-bound.

• FixWhenItersConvergedContinuous: The number of consecutive PH iterations that
continuous variables must be at the same, consistent value in all scenarios before they
will be fixed at that value. A value of zero implies that continuous variables will not
be fixed.

• CanSlamToLB: True or False. If True, then slamming can be to the lower bound for
any variable.

• CanSlamToMin: True or False. If True, then slamming can be to the minimum across
scenarios for any variable.

• CanSlamToAnywhere: True or False. If True, then slamming can be to any value.

• CanSlamToMax: True or False. If True, then slamming can be to the maximum across
scenarios for any variable.

• CanSlamToUB: True of False. If True, then slamming can be to the upper bound for
any variable.

4.3.2 General Parameters

The plug-in also makes use of the following parameters, which should be set using methods
described in §4.3.2.

• SlamAfterIter: Iteration number after which one variable every other iteration will be
slammed to force convergence. Default: the number of scenarios.

• hash hit len to slam: Ignore possible cycles for which the only evidence of a cycle is
less than this. Default: the number of scenarios.

Setting Parameter Values

The parameters of ph and of any callbacks can be set using the file wwph.cfg, which is
executed by the python interpreter.

25

PySP

Setting Suffix Values

Suffixes are set using the data file named wwph.suffixes using this syntax:

VARSPEC SUFFIX VALUE ...

where VARSPEC is replaced by a variable specification, SUFFIX is replaced by a suffix
name and VALUE is replaced by the value of the suffix for that variable or those variables.
Here is an example:

Delta CanSlamToLB False

Gamma[*,Ano1] SlammingPriority 10

Gamma[*,Ano2] SlammingPriority 20

...

4.3.3 Callback Details

A callback class definition named iphextension is in the file iphextension.py and can be used
to implement callbacks at a variety of points in PH. For example, the method post iteration 0 solves
is called immediately after all iteration zero solves, but before averages and weights have been
computed while the method post iteration 0 is called after averages and weights based on
iteration zero have been computed. The file iphextension is in the coopr/pysp directory and
is not intended to be edited by users.

The user defines a class derived from SingletonPlugin that implements iphextension.
Its name is given to phdriver as an option (e.g., on the command line). This class will
be automatically instantiated by phdriver. It has access to data and methods in the PH
class, which are defined in the file ph.py. An example of such a class is in the file named
testphextension.py in the pysp example directory.

If you copy testphextension.py to your working directory or create it there, you can have
it used by adding a line to phdriver.py:

from testphextension import *

Here are the callbacks:

• post iteration 0 solves: Called after iteration zero solutions and some statistics about
solutions have been computed, but before averages weights are updated.

• post iteration 0: Called after all processing for iteration zero is complete.

• post iteration k solves: Called after solutions some statistics about solutions have been
computed, but before averages weights are updated for iterations after iteration zero.

• post iteration k: Called after all processing for each iteration after iteration 0 is com-
plete.

• post ph execution:

26

PySP

4.4 Examples

A number of examples are provided with pysp.

4.4.1 Farmer Example

This two-stage example is composed of models and data for the ”Farmer” stochastic pro-
gram, introduced in Section 1.1 of ”Introduction to Stochastic Programming” by Birge and
Louveaux [5].

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will do - used
to flush out variable and constraint index sets)

• ScenarioStructure.py: defines the scenario tree structure for the SP. SHOULD NOT
BE MODIFIED.

• ScenarioStructure.dat: data file defining the scenario tree.

• AboveAverageScenario.dat: one of the scenario data files.

• BelowAverageScenario.dat: one of the scenario data files.

• AverageScenario.dat: one of the scenario data files.

The file phdriver.py executes PH, assuming the ReferenceModel.* and ScenarioStruc-
ture.* files are present and correct. This example is probably in a directory with a name
something like:

pyomodist\packages\coopr\examples\pysp\farmer

The data is in a subdirectory called SCENARIODATA.

To invoke PH for this problem, connect to the directory containing the data files and use
the command:

python ..\phdriver.py

or a similar command so that Python version 2.6 is passed the name of the file phdriver.py.

27

PySP

4.4.2 Forestry Example

This four-stage example is composed of models and data for the “forestry” stochastic program
[], which consists of the following files:

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will do - used
to flush out variable and constraint index sets)

• ScenarioStructure.py: defines the scenario tree structure for the SP. SHOULD NOT
BE MODIFIED.

• ScenarioStructure.dat: data file defining the scenario tree.

• Scenario1.dat: one of the scenario data files.

• Scenario2.dat: one of the scenario data files.

• ...

The file phdriver.py executes PH, assuming the ReferenceModel.* and ScenarioStruc-
ture.* files are present and correct. This example is probably in a directory with a name
something like:

pyomodist\packages\coopr\examples\pysp\sizes

There are two families of instances: “Chile” and “Davis,” each with four stages and
eighteen scenarios. This is also a small two-stage, four scenario instances in the subdirectory
DAVIS2STAGE.

To invoke PH for this problem, connect to the directory containing the data files and use
the command:

python ..\phdriver.py

or a similar command so that Python version 2.6 is passed the name of the file phdriver.py.

4.4.3 Sizes Example

This two-stage example is composed of models and data for the ”Sizes” stochastic program
[17, 20], which consists of the following files:

• ReferenceModel.py: a single-scenario model for the SP

• ReferenceModel.dat: a single-scenario data file for the SP (any scenario will do - used
to flush out variable and constraint index sets)

28

PySP

• ScenarioStructure.py: defines the scenario tree structure for the SP. SHOULD NOT
BE MODIFIED.

• ScenarioStructure.dat: data file defining the scenario tree.

• Scenario1.dat: one of the scenario data files.

• Scenario2.dat: one of the scenario data files.

• ...

The file phdriver.py executes PH, assuming the ReferenceModel.* and ScenarioStruc-
ture.* files are present and correct. This example is probably in a directory with a name
something like:

pyomodist\packages\coopr\examples\pysp\sizes

The data for a three scenario version is in a subdirectory called SIZES3 and a ten scenario
dataset is in SIZES10.

To invoke PH for this problem, connect to the directory containing the data files and use
the command:

python ..\phdriver.py

or a similar command so that Python version 2.6 is passed the name of the file phdriver.py.

29

PySP

30

Chapter 5

Advanced Pyomo Examples

5.1 XXX Advanced Pyomo Examples

5.1.1 Parallel Benders Decomposition

TODO: Does the following paragraph go here? I think that Dave’s talking about the abilities
that we’re leveraging in PH, but we haven’t discussed that in this paper. Perhaps this should
go back into the introduction, but if so then the intent needs to be clarified for me (BILL).

An important consequence of the design using Python and integration with the Coopr en-
vironment is that modularity is fully supported over a range of abstraction. At one extreme,
the model elements can be manipulated explicitly by specifying their names and the values of
their indexes. This sort of reference can be made more abstract, as is the case with algebraic
modeling languages, by specifying various types of named sets so that the dimensions and
details of the data can be separated from the specification of the model. Separation of an
abstract declarative model from the data specification is a hallmark of structure modeling
techniques for efficient modeling [13]. At the other extreme, elements of a mathematical pro-
gram can be treated in their fully canonical form as is supported by callable solver libraries.
Methods can be written that operate, for example, on objective functions or constraints in
a fully general way. This capability is a fundamental tool for general algorithm development
and extension [21]. Pyomo provides the full continuum of abstraction between these two
extremes to support modeling and development. Furthermore, methods are extensible via
overloading of all defined operations. Both modelers and developers can alter the behavior
of the package or add new functionality.

31

Advanced Pyomo Examples

32

Chapter 6

Discussion

6.1 XXX Discussion

Pyomo is being actively developed to support real-world applications at Sandia National
Laboratories. Our experience with Pyomo and Coopr has validated our initial assessment
that Python is an effective language for supporting the solution of optimization applications.
Although it is clear that custom languages can support a more concise, mathematically
intuitive syntax, Python’s clean syntax and programming model make it a natural choice
for optimization tools like Pyomo.

Coopr was publicly released as an open source project in 2008. Future development will
focus on several key design issues:

• Nonlinear Problems - Conceptually, it is straightforward to extend Pyomo to sup-
port the definition of general nonlinear models. However, the model generation and
expression mechanisms need to be re-designed to support capabilities like automatic
differentiation.

• Optimized Expression Trees - Our scaling experiments suggest that Pyomo’s runtime
performance can be improved by using a different representation for expression trees.
The representation of expression trees could be reworked to avoid frequent object
construction, either through a low-level representation or a Python extension library.

• Python Optimizers - A variety of Python optimization packages are now available,
which we would like to leverage. In particular, these will be important when nonlinear
problems are supported in Pyomo.

• Direct Optimizer Interfaces - Coopr currently does not support direct library interfaces
to optimizers, although this is a capability that is strongly supported by Python. This
is not a design limitation of Coopr, but instead has been a matter of development prior-
ities. Similarlly, extensions to external solver packages like Acro’s COLIN optimization
library [1] will be quite natural; Coopr has preliminary support for applications that
are defined using a system call interface.

33

Discussion

Finally, it should be straightforward to extend Coopr to support remote solver execution
with NEOS [8] and Optimization Services [11].

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Admin-
istration under Contract DE-AC04-94-AL85000.

34

Bibliography

[1] ACRO optimization framework. http://software.sandia.gov/acro, 2009.

[2] AIMMS home page. http://www.aimms.com, 2008.

[3] AMPL home page. http://www.ampl.com/, 2008.

[4] APLEpy: An open source algebraic programming language extension for python. http:
//aplepy.sourceforge.net/, 2005.

[5] J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, 1997.

[6] F. Consulting, Open source softwares expanding role in the enterprise.
http://www.unisys.com/eprise/main/admin/corporate/doc/Forrester

research-open source buying behaviors.pdf, 2007.

[7] CVXOPT home page. http://abel.ee.ucla.edu/cvxopt, 2008.

[8] E. D. Dolan, R. Fourer, J.-P. Goux, T. S. Munson, and J. Sarich, Kestrel:
An interface from optimization modeling systems to the NEOS server, INFORMS Jour-
nal on Computing, 20 (2008), pp. 525–538.

[9] FLOPC++ home page. https://projects.coin-or.org/FlopC++, 2008.

[10] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for
Mathematical Programming, 2nd Ed., Brooks/Cole–Thomson Learning, Pacific Grove,
CA, 2003.

[11] R. Fourer, J. Ma, and K. Martin, Optimization services: A framework for dis-
tributed optimization, Mathematical Programming, (2008). (submitted).

[12] GAMS home page. http://www.gams.com, 2008.

[13] A. M. Geoffrion, An introduction to structured modeling, Management Science, 33
(1987), pp. 547–588.

[14] Glpk: Gnu linear programming toolkit. http://www.gnu.org/software/glpk/, 2009.

35

BIBLIOGRAPHY BIBLIOGRAPHY

[15] W. E. Hart, Python Optimization Modeling Objects (Pyomo), in Operations Research
and Cyber-Infrastructure, J. W. Chinneck, B. Kristjansson, and M. J. Saltzman, eds.,
2009, pp. 3–+.

[16] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools
for Python, 2001–.

[17] S. Jorjani, C. Scott, and D. Woodruff, Selection of an optimal subset of sizes,
International journal of production research, 37 (1999), pp. 3697–3710.

[18] J. Kallrath, Modeling Languages in Mathematical Optimization, Kluwer Academic
Publishers, 2004.

[19] S. Karabuk and F. H. Grant, A common medium for programming operations-
research models, IEEE Software, (2007), pp. 39–47.

[20] A. Løkketangen and D. Woodruff, Progressive hedging and tabu search applied to
mixed-integer (0,1) multistage stochastic programming, Journal of Heuristics, 2 (1996),
pp. 111–128.

[21] R. E. Marsten, The design of the xmp programming library, ACM Transactions on
Mathematical Software, 7 (1981), pp. 481–497.

[22] NLPy home page. http://nlpy.sourceforge.net/, 2008.

[23] T. E. Oliphant, Python for scientific computing, Computing in Science and Engi-
neering, (2007), pp. 10–20.

[24] OpenOpt home page. http://scipy.org/scipy/scikits/wiki/OpenOpt, 2008.

[25] OPL home page. http://www.ilog.com/products/oplstudio, 2008.

[26] Ateji home page. http://www.ateji.com, 2008.

[27] L. Prechelt, An empirical comparison of seven programming languages, Computer,
33 (2000), pp. 23–29.

[28] PuLP: A python linear programming modeler. http://130.216.209.237/engsci392/

pulp/FrontPage, 2008.

[29] Python & java: A side-by-side comparison. http://www.ferg.org/projects/python
java side-by-side.html, 2008.

[30] PyUtilib optimization framework. http://software.sandia.gov/pyutilib, 2009.

[31] R. Rockafellar and R. J.-B. Wets, Scenarios and policy aggregation in optimiza-
tion under uncertainty, Mathematics of Operations Research, (1991), pp. 119–147.

36

BIBLIOGRAPHY BIBLIOGRAPHY

[32] G. Sayfan, Building your own plugin framework, Dr. Dobbs Journal, (2007).

[33] W. Stein, Sage: Open Source Mathematical Software (Version 2.10.2), The
Sage Group, 2008. http://www.sagemath.org.

[34] C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM
Press, 1998.

[35] TOMLAB optimization environment. http://www.tomopt.com/tomlab, 2008.

[36] L. Tratt, Dynamically typed languages, Advances in Computers, 77 (2009), pp. 149–
184.

[37] J.-P. Watson and D. Woodruff, Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems, tech. rep., Sandia National Labo-
ratories, 2007.

[38] D. Woodruff and E. Zemel, Hashing vectors for tabu search, Annals of Operations
Research, 41 (1993), pp. 123–137.

37

