Python Optimization Modeling Objects (Pyomo)

William E. Hart

Abstract We describe Pyomo, an open-source tool for modeling optimization appli-
cations in Python. Pyomo can be used to define abstract problems, create concrete
problem instances, and solve these instances with standard solvers. Pyomo provides
a capability that is commonly associated with algebraic modeling languages like
AMPL and GAMS. Pyomo leverages the capabilities of the Coopr software, which
integrates Python packages for defining optimizers, modeling optimization applica-
tions, and managing computational experiments.

Key words: Python, Modeling language, Optimization, Open Source Software

1 Introduction

Although high quality optimization solvers are commonly available, the effective
integration of these tools with an application model is often a challenge for many
users. Optimization solvers are typically written in low-level languages like Fortran
or C/C++ because these languages offer the performance needed to solve large nu-
merical problems. However, direct development of applications in these languages
is quite challenging. Low-level languages like these can be difficult to program; they
have complex syntax, enforce static typing, and require a compiler for development.

There are several ways that optimization technologies can be more effectively
integrated with application models. For restricted problem domains, optimizers can
be directly interfaced with application modeling tools. For example, modern spread-
sheets like Excel integrate optimizers that can be applied to linear programming and
simple nonlinear programming problems in a natural way. Similarly, engineering
design frameworks like the Dakota toolkit (Eldred et al, 2006) can apply optimizers

William E. Hart
Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185 e-mail: wehart@sandia.gov

2 William E. Hart

to nonlinear programming problems by executing separate application codes via a
system call interface that use standardized file 1/O.

Algebraic Modeling Languages (AMLs) are alternative approach that allows
applications to be interfaced with optimizers that can exploit problem structure.
AMLs are high-level programming languages for describing and solving mathemat-
ical problems, particularly optimization-related problems (Kallrath, 2004). AMLs
like AIMMS (AIMMS, 2008), AMPL (AMPL, 2008; Fourer et al, 2003) and
GAMS (GAMS, 2008) have programming languages with an intuitive mathemati-
cal syntax that supports concepts like sparse sets, indices, and algebraic expressions.
AMLs provide a mechanism for defining variables and generating constraints with
a concise mathematical representation, which is essential for large-scale, real-world
problems that involve thousands of constraints and variables.

A related strategy is to use a standard programming language in conjunction
with a software library that uses object-oriented design to support similar math-
ematical concepts. Although these modeling libraries sacrifice some of the intu-
itive mathematical syntax of an AML, they allow the user to leverage the greater
flexibility of standard programming languages. For example, modeling tools like
FlopC++ (FLOPC++, 2008), OPL (OPL, 2008) and OptimJ (OptimJ, 2008) enable
the solution of large, complex problems with application models defined within a
standard programming language.

The Python Optimization Modeling Objects (Pyomo) package described in this
paper represents a fourth strategy, where a high level programming language is used
to formulate a problem that can be solved by optimizers written in low-level lan-
guages. This two-language approach leverages the flexibility of the high-level lan-
guage for formulating optimization problems and the efficiency of the low-level lan-
guage for numerical computations. This approach is increasingly common in scien-
tific computing tools, and the Matlab TOMLAB Optimization Environment (TOM-
LAB, 2008) is probably the most mature optimization software using this approach.

Pyomo supports the definition and solution of optimization applications using the
Python scripting language. Python is a powerful dynamic programming language
that has a very clear, readable syntax and intuitive object orientation. Pyomo was
strongly influenced by the design of AMPL. It includes Python classes that can
concisely represent mixed-integer linear programming (MILP) models. Pyomo is
interated into Coopr, a COmmon Optimization Python Repository. The Coopr Opt
package supports the execution of models developed with Pyomo using standard
MILP solvers.

Section 2 describes the motivation and design philosophy behind Pyomo, includ-
ing why Python was chosen for the design of Pyomo. Section 3 describes Pyomo and
contrasts Pyomo with AMPL. Section 4 reviews other Python optimization pack-
ages that have been developed, and discusses the high-level design decisions that
distinguish Coopr. Section 5 describes the Coopr Opt package and contrasts its ca-
pabilities with other Python optimization tools. Finally, Section 6 describes future
Coopr developments that are planned.

Python Optimization Modeling Objects (Pyomo) 3

2 Pyomo Motivation and Design Philosophy

The design of Pyomo is motivated by a variety of factors that have impacted appli-
cations at Sandia National Laboratories. Sandia’s discrete mathematics group has
successfully used AMPL to model and solve large-scale integer programs for many
years. This application experience has highlighted the value of AMLs for real-world
applications, which are now an integral part of operations research solutions at San-
dia.

Pyomo was developed to provide an alternative platform for developing math
programming models that facilitates the application and deployment of optimiza-
tion capabilities. Consequently, Pyomo is not intended to perform modeling better
than existing tools. Instead, it supports a different modeling approach for which the
software is designed for flexibility, extensibility, portability, and maintainability.

2.1 Design Goals and Requirements

2.1.1 Open Source

A key goal of Pyomo is to provide an open-source math programming modeling
capability. Although open-source optimization solvers are widely available in pack-
ages like COIN-OR, surprisingly few open-source tools have been developed to
model optimization applications. An open-source capability for Pyomo is motivated
by several factors:

e Transparency and Reliability: When managed well, open-source projects facil-
itate transparency in the software design and implementation. Since any devel-
oper can study and modify the software, bugs and performance limitations can
be identified and resolved by a wide range of developers with diverse software
experience. Consequently, there is growing evidence that managing software as
open-source can improve its reliability.

e Customizable Capability: A key limitation of commercial modeling tools is
the ability to customize the modeling or optimization process. An open-source
project allows a diverse range of developers to prototype new capabilities. These
extensions can customize the software for specific applications, and they can
motivate capabilites that are integrated into future software releases.

o Flexible Licensing: A variety of significant operations research applications at
Sandia National Laboratories have required the use of a modeling tool with a
non-commercial license. Open-source license facilitate the free distribution of
Pyomo within other open-source projects.

Of course, the use of an open-source model is not a panacea. Ensuring high reliabil-
ity of the software requires careful software management and a commited developer
community. However, flexible licensing appears to be a distinct feature of open-

4 William E. Hart

source software. The Coopr software, which contains Pyomo, is licensed under the
BSD.

2.1.2 Flexible Modeling Language

Another goal of Pyomo is to directly use a modern programming language to sup-
port the definition of math programming models. In this manner, Pyomo is similar
to tools like FlopC++ and OptimJ, which support modeling in C++ and Java respec-
tively. The use of an existing programming language has several advantages:

o Extensibility and Robustness: A well-used modern programming language pro-
vides a robust foundation for developing and applying models, because the lan-
guage has been well-tested in a wide variety of contexts. Further, extensions typi-
cally do not require changes to the language but instead involve additional classes
and modeling routines that can be used in the modeling process. Thus, support
of the modeling language is not a long-term factor when managing the software.

e Documentation: Modern programming languages are typically well-documented,
and there is often a large on-line community to provide feedback to new users.

e Standard Libraries: Languages like Java and Python have a rich set of libraries
for tackling just about every programming task. For example, standard libraries
can support capabilities like data integration (e.g. working with spreadsheets),
thereby avoiding the need to directly support this in a modeling tool.

An additional aspect of general-purpose programming languages is that they can
support modern language features, like classes and first-class functions, that can be
critical when defining complex models.

Pyomo is implemented in Python, a powerful dynamic programming language
that has a very clear, readable syntax and intuitive object orientation. When com-
pared with AMLs like AMPL, Pyomo has a more verbose and complex syntax.
Thus, a key issue with this approach concerns the target user community and their
level of comfort with standard programming concepts. Our examples in this paper
compare and contrast AMPL and Pyomo models, which illustrate this trade-off.

2.1.3 Portability

A requirement of Pyomo’s design is that it work on a diverse range of compute
platforms. In particular, working well on both MS Windows and Linux platforms is
a key requirement for many Sandia applications. The main impact of this require-
ment has been to limit the choice of programming languages. For example, the .Net
languages were not considered for the design of Pyomo due to portability consider-
ations.

Python Optimization Modeling Objects (Pyomo) 5
2.1.4 Solver Integration

Modeling tools can be roughly categorized into two classes based on how they in-
tegrate with optimization solvers: tightly coupled modeling tools directly link in
optimization solver libraries (including dynamic linking), and loosely coupled mod-
eling tools apply external optimization executables (e.g. through system calls). Of
course, these options are not exclusive, and a goal of Pyomo is to support both types
of solver interfaces.

This design goal has led to a distinction in Pyomo between model formulation
and optimization execution. Pyomo uses a high level programming language to for-
mulate a problem that can be solved by optimizers written in low-level languages.
This two-language approach leverages the flexibility of the high-level language for
formulating optimization problems and the efficiency of the low-level language for
numerical computations.

2.1.5 Abstract Models

A requirement of Pyomo’s design is that it support the definition of abstract mod-
els in a manner similar to the AMPL. AMPL separates the declaration of a model
from the data that generates a model instance. This is supports an extremely flexible
modeling capability, which has been leveraged extensively in applications at Sandia.

To mimic this capability, Pyomo uses a symbolic representation of data, vari-
ables, constraints, etc. Model instances are then generated from external data sets
using construction routines that are provided by the user when defining sets, pa-
rameters, etc. Further, Pyomo is designed to use data sets in the AMPL format to
facilitate translation of models between AMPL and Pyomo.

2.2 Why Python?

Pyomo has been developed in Python for a variety of reasons. First, Python meets
the criteria outlined in the previous section:

e Open Source License: Python is freely available, and its liberal open source
license lets you modify and distribute a Python-based application with few re-
strictions.

e Features: Python has a rich set of datatypes, support for object oriented pro-
gramming, namespaces, exceptions, and dynamic loading.

e Support and Stability: Python is highly stable, and it is well supported through
newsgroups and special interest groups.

e Documentation: Users can learn about Python from extensive online documen-
tation, and a number of excellent books that are commonly available.

e Standard Library: Python includes a large number of useful modules.

6

William E. Hart

e Extendability and Customization: Python has a simple model for loading

Python code developed by a user. Additionally, compiled code packages that
optimize computational kernels can be easily used. Python includes support for
shared libraries and dynamic loading, so new capabilities can be dynamically
integrated into Python applications.

Portability: Python is available on a wide range of compute platforms, so porta-
bility is typically not a limitation for Python-based applications.

Another factor, not to be overlooked, is the increasing acceptance of Python in the
scientific community (Oliphant, 2007). Large Python projects like SciPy (Jones
et al, 2001-) and SAGE (Stein, 2008) strongly leverage a diverse set of Python
packages.

Finally, we note that several other popular programming languages were also

considered for Pyomo. However, in most cases Python appears to have distinct ad-
vantages:

e .Net: As mentioned earlier, the .Net languages are not portable to Linux plat-

forms, and thus they were not suitable for Pyomo.

Ruby: At the moment, Python and Ruby appear to be the two most widely rec-
ommended scripting languages that are portable to Linux platforms, and compar-
isons suggest that their core functionality is similar. Our preference for Python
is largely based on the fact that it has a nice syntax that does not require users to
type weird symbols (e.g. $, %, @). Thus, we expect this will be a more natural
language for expressing math programming models.

Java: Java has a lot of the same strengths as Python, and it is arguably as good a
choice for Pyomo. However, two aspects of Python recommended it for Pyomo
instead of Java. First, Python has a powerful interactive interpreter that allows
realtime code development and encourages experimentation with Python soft-
ware. Thus, users can work interactively with Pyomo models to become familiar
with these objects and to diagnose bugs. Second, it is widely acknowledged that
Python’s dynamic typing and compact, concise syntax makes software devel-
opment quick and easy. Although some very interesting optimization modeling
tools have been developed in languages like C++ and Java, there is anecdotal ev-
idence that users will not be as productive in these languages as they will when
using tools developed in languages like Python (PythonVSJava, 2008).

C++: Models formulated with the FlopC++ package are similar to models de-
veloped with Pyomo. They are be specified in a declarative style using classes
to represent model components (e.g. sets, variables and constraints). However,
C++ requires explicit compilation to execute code, and it does not support an
interactive interpreter. Thus, we believe that Python will provide a more flexible
language for users.

Python Optimization Modeling Objects (Pyomo) 7

3 Pyomo Overview

Pyomo can be used to define abstract problems, create concrete problem instances,
and solve these instances with standard solvers. Pyomo can generate problem in-
stances and apply optimization solvers with a fully expressive programming lan-
guage. Python’s clean syntax allows Pyomo to express mathematical concepts with
a reasonably intuitive syntax. Further, Pyomo can be used within an interactive
Python shell, thereby allowing a user to interactively interrogate Pyomo-based mod-
els. Thus, Pyomo has many of the advantages of both AML interfaces and modeling
libraries.

3.1 A Simple Example

In this section we illustrate Pyomo’s syntax and capabilities by demonstrating how
a simple AMPL example can be replicated with Pyomo Python code. Consider the
AMPL model, prod.mod:

set P;

param a {j in P};
param b;

param ¢ {j in P};
param u {j in P};

var X {j in P};

maximize Total_Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (l/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];

To translate this into Pyomo, the user must first import the Pyomo module and
create a Pyomo Model object:

#

Import Pyomo

#

from coopr.pyomo import x

#
Create model
#

8 William E. Hart
model = Model ()

This import assumes that Pyomo is available on the users’s Python path (see Python
documentation for PYTHONPATH for further details). Next, we create the sets and
parameters that correspond to the data used in the AMPL model. This can be done
very intuitively using the Set and Param classes.

model .P = Set ()

model.a = Param (model.P)
model .b = Param ()
model.c = Param(model.P)
model.u = Param (model.P)

Note that parameter b is a scalar, while parameters a, ¢ and u are arrays indexed by
the set P.
Next, we define the decision variables in this model.

model .X = Var(model.P)

Decision variables and model parameters are used to define the objectives and con-
straints in the model. Parameters define constants and the variables are the values
that are optimized. Parameter values are typically defined by a data file that is pro-
cessed by Pyomo.

Objectives and constraints are explicitly defined expressions in Pyomo. The Ob-
jective and Constraint classes require a rule option that specifies how these ex-
pressions are constructed. This is a function that takes one or more arguments: the
first arguments are indices into a set that defines the set of objectives or constraints
that are being defined, and the last argument is the model that is used to define the
expression.

def Objective_rule (model):

ans = 0
for j in model .P:
ans = ans + model.c[j] * model.X[]]

return ans
model. Total _Profit = Objective (rule=Objective_rule ,
sense=maximize)

def Time_rule (model):
ans = 0
for j in model.P:
ans = ans + (1.0/model.a[j]) % model.X[]]
return ans < model.b
model . Time = Constraint(rule=Time_rule)

Python Optimization Modeling Objects (Pyomo) 9

def Limit_rule(j, model):
return (0O, model.X[j], model.u[j])
model . Limit = Constraint (model.P, rule=Limit_rule)

The rules used to construct these objects use standard Python functions. The
Time_rule function includes the use of < and > operators on the expression, which
define upper and lower bounds on the constraints. The Limit_rule function illus-
trates another convention that is supported by Pyomo; a rule can return a tuple that
defines the lower bound, body and upper bound for a constraint. The value ’None’
can be returned for one of the limit values if a bound is not enforced.

Once an abstract model has been created, it can be printed as follows:

model . pprint ()

This summarize the information in the Pyomo model, but it does not print out ex-
plicit expressions. This is due to the fact that an abstract model needs to be instanted
with data to generate the model objectives and constraints:

instance = model.create (”prod.dat”)
instance . pprint ()

Once a model instance has been constructed, an optimizer can be applied to it to
find an optimal solution. For example, the PICO integer programming solver can be
used within Pyomo as follows:

opt = solvers.SolverFactory (” pico”)
opt. keepFiles=True
results = opt.solve(instance)

This creates an optimizer object for the PICO executable, and it indicates that tem-
porary files should be kept. The Pyomo model instance is optimized, and the opti-
mizer returns an object that contains the solutions generated during optimization.

3.2 Pyomo Commandline Script

Appendix 7 provides a complete Python script for the model described in the previ-
ous section. Although this Python script can be executed directly, Coopr includes a
pyomo script that can construct this model, apply an optimizer and summarize the
results. For example, the following command line executes Pyomo using a data file
in a format consistent with AMPL:

pyomo prod.py prod.dat

10 William E. Hart

The pyomo script has a variety of command line options to provide information
about the optimization process. Options can control how debugging information is
printed, including logging information generated by the optimizer and a summary
of the model generated by Pyomo. Further, Pyomo can be configured to keep all
intermediate files used during optimization, which can support debugging of the
model construction process.

4 Related Python Optimization Tools

A variety of related optimization packages have been developed in Python that are
designed to support the formulation and solution of specific classes of structure
optimization applications:

¢ CVXOPT: A Python package for convex optimization (CVXOPT, 2008).

e Pul.P: A Python package that can be used to describe linear programming and
mixed-integer linear programming optimization problems (PuLP, 2008).

e POAMS: A Python modeling tool for linear and mixed-integer linear programs
that defines Python objects for abstract sets, constraints, objectives, decision vari-
ables, and solver interfaces.

e OpenOpt: A relatively new numerical optimization framework that is closely
coupled with the SciPy scientific Python package (OpenOpt, 2008).

e NLPy: A Python optimization framework that leverages AMPL to create prob-
lem instances, which can then be processed in Python (NLPy, 2008).

e Pyiopt: A Python interface to the COIN-OR Ipopt solver (Pyipopt, 2008).

Pyomo is closely related to the modeling capabilities of PuLP and POAMS. Pyomo
defines Python objects that can be used to express models, and like POAMS, Pyomo
supports a clear distinction between abstract models and problem instances. The
main distinguishing feature of Pyomo is support for an instance construction process
that is automated by object properties. This is akin to the capabilities of AML’s like
AMPL and GAMS, and it provides a standardized technique for constructing model
instances. Pyomo models can be initialized with a generic data object, which can be
initialized with a variety of data sources (including AMPL *.dat files).

Like NLPy and OpenOpt, the goal of Coopr Opt is to support a diverse set of
optimization methods and applications. Coopr Opt includes a facility for transform-
ing problem formats, which allows optimizers to solve problems without the user
worrying about solver-specific implementation details. Further, Coopr Opt supports
mechanisms for reporting detailed information about optimization solutions, in a
manner akin to the OSrL data format supported by the COIN-OR OS project (Fourer
et al, 2008).

In the remainder of this section we use the following example to illustrate the
differences between PuLP, POAMS and Pyomo:

Python Optimization Modeling Objects (Pyomo) 11

minimize —4x; — S5x»

subject to 2x; +xp <3
X1 +2x <3
Xx1,x3 >0

ey

4.1 PuLP

PuLP relies on overloading operators and commonly used mathematical functions to
define expression objects that define objectives and constraints. A problem object is
defined, and the objective and constraints are added using the += operator. Further,
problem variables can be defined over index sets to enable compact specification of
constraints and objectives.

The following PuLP example minimizes the LP (1):

from pulp import

x1 = LpVariable(”x17,0)

x2 = LpVariable (”x27,0)

prob = LpProblem (”Example”, LpMinimize)
prob += —4xx1 — 5%x2

prob += 2xx1 + x2 <= 3

prob += x1 + 2xx2 <= 3

prob.solve ()

4.2 POAMS

POAMS is a Python modeling tool for linear and mixed-integer linear programs that
defines Python objects for abstract sets, constraints, objectives, decision variables,
and solver interfaces. These objects can be used to compose an abstract model defi-
nition, which is then used to construct a concrete problem instance from a given data
set. This separation of the problem instance from the data facilitates the definition
of abstract models that can be populated from a diverse range of data sources.

POAMS models are managed by classes derived from the POAMS LP object.
The following POAMS example minimizes the LP (1) by deriving a class, instanti-
ating it, and then running the model:

from poams import x*
class Example (LP):

index = Set(1,2)
x = Var(index)

12 William E. Hart

obj = Objective ()
cl = Constraint ()
c2 = Constraint ()

def model(self):
self.obj.min(—4xself.x[1] — Sxself.x[2])
self .cl.load(2xself.x[1] + self .x[2] <= 3.0)
self .c2.load(self . x[1] + 2xself . x[2] <= 3.0)

prob = Example (). model ()
prob.solve ()

4.3 Pyomo

The following Pyomo example minimizes LP (1) by instantiating an abstract model,
populating the model with symbols, generating an instance, and then applying the
PICO MIP optimizer:

from coopr.pyomo import x

model = Model ()

model . index = Set(initialize =[1,2])
model .x = Var(model.index)

def obj_rule (model):
return —4xmodel.x[1]—5+*model.x[2]

model . obj = Objective(rule=obj_rule)

def cl_rule (model):

ans = 2xmodel.x[1] + model.x[2]
return ans < 3.0
model.cl = Constraint(rule=cl _rule)

def c2_rule (model):

ans = model.x[1] + 2*model.x[2]
return ans < 3.0
model.c2 = Constraint(rule=c2_rule)
instance = model.create ()

opt = solvers.SolverFactory (” pico”)

Python Optimization Modeling Objects (Pyomo) 13

results = opt.solve(instance)

5 The Coopr Opt Package

The goal of the Coopr Opt package is to support the execution of optimizers in
a generic manner. Although Pyomo uses this package, Coopr Opt is designed to
support a wide range of optimizers. However, Coopr Opt is not as mature as the
OpenOpt package; it currently only supports interfaces to a limited number of opti-
mizers aside from the LP and MILP solvers used by Pyomo.

Coopr Opt is supports a simple strategy for setting up and executing an optimizer,
which is illustrated by the following script:

opt = SolverFactory (name)
opt.reset ()
results = opt.solve(problem)

results . write ()

This script illustrates several design principles that Coopr follows:

¢ Dynamic Registration of Optimizers: Optimizers are registered via a plugin
mechanism that provides an extensible architecture for developers of third-party
optimizers. This plugin mechanism includes the specification of parameters that
can be initialized from a configuration file.

e Separation of Problems and Solvers: Coopr Opt treats problems and solvers
as separate entities. This promotes the development of tools like Pyomo that
support flexible definition of optimization applications, and it enables automatic
transformation of problem instances.

e Problem Transformation: A key challenge for optimization packages is the
need to support a diverse set of problem formats. This is an issue even for LP
and MILP solver packages, where MPS is the least common denominator for
users. Coopr Opt supports an automatic problem transformation mechanism that
enables the application of optimizers to problems with a wide range of formats.

o Generic Representation of Optimizer Results: Coopr Opt borrows and extends
the representation used by the COIN-OR OS project to support a general repre-
sentation of optimizer results. The results object returned by a Coopr optimizer
includes information about the problem, the solver execution, and one or more
solutions generated during optimization.

If the problem in Appendix 7 is being solved, this script would print the following
information that is contained in the results object:

—— Solver Results —_

14 William E. Hart

Problem Information

name: None
num_constraints: 5
num_nonzeros: 6
num_objectives: 1
num_variables: 2
sense: maximize
upper_bound: 192000

Solver Information

error_rc: 0
nbounded: None
ncreated : None
status: ok
systime : None
usrtime : None

Solution 0

gap: 0.0

status: optimal
value: 192000
Primal Variables

X _bands_ 6000

X_coils_ 1400
Dual Variables

c.u_Limit_1 4

c_u_Time_0 4200

It is worth noting that Coopr Opt currently does not support direct library inter-
faces to optimizers, which is a feature that is strongly supported by Python. How-
ever, this is not a design limitation, but instead has been a matter of development
priorities. Efforts are planned with the POAMS and PuLP developers to adapt the
direct solver interfaces used in these packages for use within Coopr.

Although Coopr Opt development has focused on developing interfaces to LP
and MILP solvers, we have recently begun developing interfaces to general-purpose
nonlinear programming methods. One of the goals of this effort is to develop appli-
cation interfaces that are consistent with the interfaces supported by Acro’s COLIN
optimization library (ACRO, 2008). COLIN has recently been extended to support
a system call interface that uses standardized file I/O. An XML format has been
developed that can be more rigorously checked than the file format used by the

Python Optimization Modeling Objects (Pyomo) 15

Dakota toolkit (Eldred et al, 2006), and this format can be readily extended to new
application results. Coopr Opt supports applications defined using this system call
interface, which will simplify the integration of COLIN optimizers into Coopr Opt.

6 Discussion

Coopr is being actively developed to support real-world applications at Sandia Na-
tional Laboratories. This experience has validated our assessment that Python is
an effective language for supporting the solution of optimization applications. Al-
though it is clear that custom languages can support a much more mathematically
intuitive syntax, Python’s clean syntax and programming model make it a natural
choice for optimization tools like Coopr.

Coopr will be publicly released as an open source project in 2008. Future devel-
opment will focus on several key design issues:

e Interoperable with commonly available optimization solvers, and the relationship
of Coopr and OpenOpt.

e Exploiting synergy with POAMS and PuLP. Developers of Coopr, POAMS and
PuLP are assessing this intersection to identify where synergistic efforts can be
leveraged. For example, the direct solver interface used by POAMS and PulLP
can be adapted for use in Pyomo.

e Extending Pyomo to support the definition of general nonlinear models. Concep-
tually, this is straightforward, but the model generation and expression mecha-
nisms need to be re-designed to support capabilities like automatic differentia-
tion.

Acknowledgements We thank the ICS reviewers for their critical feedback. We also thank Jon
Berry, Robert Carr and Cindy Phillips for their critical feedback on the design of Pyomo, and David
Gay for developing the Coopr interface to AMPL NL and SOL files. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-
AL85000.

References

ACRO (2008) ACRO optimization framework. http://software.sandia.
gov/acro

AIMMS (2008) AIMMS home page. http://www.aimms.com

AMPL (2008) AMPL home page. http://www.ampl.com/

CVXOPT (2008) CVXOPT home page. http://abel.ee.ucla.edu/
cvxopt

16 William E. Hart

Eldred MS, Brown SL, Dunlavy DM, Gay DM, Swiler LP, Giunta AA, Hart WE,
Watson JP, Eddy JP, Griffin JD, Hough PD, Kolda TG, Martinez-Canales ML,
Williams PJ (2006) DAKOTA, a multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sensi-
tivity analysis: Version 4.0 users manual. Tech. Rep. SAND2006-6337, Sandia
National Laboratories

FLOPC++ (2008) FLOPC++ home page. https://projects.coin-or.
org/FlopC++

Fourer R, Gay DM, Kernighan BW (2003) AMPL: A Modeling Language for Math-
ematical Programming, 2nd Ed. Brooks/Cole-Thomson Learning, Pacific Grove,
CA

Fourer R, Ma J, Martin K (2008) Optimization services: A framework for distributed
optimization. Mathematical Programming (submitted)

GAMS (2008) GAMS home page. http://www.gams.com

Jones E, Oliphant T, Peterson P, et al (2001-) SciPy: Open source scientific tools
for Python. URL http://www.scipy.org/

Kallrath J (2004) Modeling Languages in Mathematical Optimization. Kluwer Aca-
demic Publishers

NLPy (2008) NLPy home page. http://nlpy.sourceforge.net/

Oliphant TE (2007) Python for scientific computing. Computing in Science and
Engineering pp 10-20

OpenOpt (2008) OpenOpt home page. http://scipy.org/scipy/
scikits/wiki/OpenOpt

OPL (2008) OPL home page. http://www.ilog.com/products/
oplstudio

OptimJ (2008) Ateji home page. http://www.ateji.com

PuLP (2008) PuLP: A python linear programming modeler. http://130.216.
209.237/engsci392/pulp/FrontPage

Pyipopt (2008) Pyipopt home page. http://code.google.com/p/
pyipopt/

PythonVSJava (2008) Python & java: A side-by-side comparison. http: //www.
ferg.org/projects/python_java_side-by-side.html

Stein W (2008) Sage: Open Source Mathematical Software (Version 2.10.2). The
Sage Group, http://www.sagemath.org

TOMLAB (2008) TOMLAB optimization environment. http: //www .t omopt .
com/tomlab

Python Optimization Modeling Objects (Pyomo)

7 A Complete Pyomo Example

#

Imports

#

from coopr.pyomo import x

#

Setup the model

#

model = Model ()

model .P = Set ()

model.a = Param (model.P)
model .b = Param ()
model.c = Param(model.P)
model.u = Param(model.P)

model .X = Var(model.P)

def Objective_rule (model):

ans = 0
for j in model.P:
ans = ans + model.c[j] % model .X[]]

return ans
model. Total _Profit = Objective(rule=Objective_rule ,
sense=maximize)

def Time_rule (model):
ans = 0
for j in model .P:
ans = ans + (1.0/model.a[j]) * model .X[]]
return ans < model.b
model . Time = Constraint(rule=Time_rule)

def Limit_rule(j, model):
return (0, model.X[j], model.u[j])
model . Limit = Constraint(model.P, rule=Limit_rule)

