ClpSimplex Class Reference

This solves LPs using the simplex method. More...

#include <ClpSimplex.hpp>

Inheritance diagram for ClpSimplex:

Inheritance graph
[legend]
Collaboration diagram for ClpSimplex:

Collaboration graph
[legend]
List of all members.

Functions less likely to be useful to casual user

int getSolution (const double *rowActivities, const double *columnActivities)
 Given an existing factorization computes and checks primal and dual solutions.
int getSolution ()
 Given an existing factorization computes and checks primal and dual solutions.
int createPiecewiseLinearCosts (const int *starts, const double *lower, const double *gradient)
 Constructs a non linear cost from list of non-linearities (columns only) First lower of each column is taken as real lower Last lower is taken as real upper and cost ignored.
void returnModel (ClpSimplex &otherModel)
 Return model - updates any scalars.
int internalFactorize (int solveType)
 Factorizes using current basis.
ClpDataSave saveData ()
 Save data.
void restoreData (ClpDataSave saved)
 Restore data.
void cleanStatus ()
 Clean up status.
int factorize ()
 Factorizes using current basis. For external use.
void computeDuals (double *givenDjs)
 Computes duals from scratch.
void computePrimals (const double *rowActivities, const double *columnActivities)
 Computes primals from scratch.
void add (double *array, int column, double multiplier) const
 Adds multiple of a column into an array.
void unpack (CoinIndexedVector *rowArray) const
 Unpacks one column of the matrix into indexed array Uses sequenceIn_ Also applies scaling if needed.
void unpack (CoinIndexedVector *rowArray, int sequence) const
 Unpacks one column of the matrix into indexed array Slack if sequence>= numberColumns Also applies scaling if needed.
void unpackPacked (CoinIndexedVector *rowArray)
 Unpacks one column of the matrix into indexed array as packed vector Uses sequenceIn_ Also applies scaling if needed.
void unpackPacked (CoinIndexedVector *rowArray, int sequence)
 Unpacks one column of the matrix into indexed array as packed vector Slack if sequence>= numberColumns Also applies scaling if needed.
void setValuesPassAction (float incomingInfeasibility, float allowedInfeasibility)
 For advanced use.
int housekeeping (double objectiveChange)
 This does basis housekeeping and does values for in/out variables.
void checkPrimalSolution (const double *rowActivities=NULL, const double *columnActivies=NULL)
 This sets largest infeasibility and most infeasible and sum and number of infeasibilities (Primal).
void checkDualSolution ()
 This sets largest infeasibility and most infeasible and sum and number of infeasibilities (Dual).
void checkBothSolutions ()
 This sets sum and number of infeasibilities (Dual and Primal).

most useful gets and sets

double largeValue () const
 Large bound value (for complementarity etc).
void setLargeValue (double value)
 Large bound value (for complementarity etc).
double largestPrimalError () const
 Largest error on Ax-b.
double largestDualError () const
 Largest error on basic duals.
void setLargestPrimalError (double value)
 Largest error on Ax-b.
void setLargestDualError (double value)
 Largest error on basic duals.
int * pivotVariable () const
 Basic variables pivoting on which rows.
bool automaticScaling () const
 If automatic scaling on.
void setAutomaticScaling (bool onOff)
 Large bound value (for complementarity etc).
double currentDualTolerance () const
 Current dual tolerance.
void setCurrentDualTolerance (double value)
 Large bound value (for complementarity etc).
double currentPrimalTolerance () const
 Current primal tolerance.
void setCurrentPrimalTolerance (double value)
 Large bound value (for complementarity etc).
int numberRefinements () const
 How many iterative refinements to do.
void setNumberRefinements (int value)
 Large bound value (for complementarity etc).
double alpha () const
 Alpha (pivot element) for use by classes e.g. steepestedge.
void setAlpha (double value)
 Large bound value (for complementarity etc).
double dualIn () const
 Reduced cost of last incoming for use by classes e.g. steepestedge.
int pivotRow () const
 Pivot Row for use by classes e.g. steepestedge.
void setPivotRow (int value)
 Large bound value (for complementarity etc).
double valueIncomingDual () const
 value of incoming variable (in Dual)
double columnPrimalInfeasibility () const
 Worst column primal infeasibility.
int columnPrimalSequence () const
 Sequence of worst (-1 if feasible).
double rowPrimalInfeasibility () const
 Worst row primal infeasibility.
int rowPrimalSequence () const
 Sequence of worst (-1 if feasible).
double columnDualInfeasibility () const
 Worst column dual infeasibility (note - these may not be as meaningful if the problem is primal infeasible.
int columnDualSequence () const
 Sequence of worst (-1 if feasible).
double rowDualInfeasibility () const
 Worst row dual infeasibility.
int rowDualSequence () const
 Sequence of worst (-1 if feasible).
double primalToleranceToGetOptimal () const
 Primal tolerance needed to make dual feasible (<largeTolerance).
double remainingDualInfeasibility () const
 Remaining largest dual infeasibility.
double largestSolutionError () const
 Largest difference between input primal solution and computed.

data. Many arrays have a row part and a column part.

There is a single array with both - columns then rows and then normally two arrays pointing to rows and columns. The single array is the owner of memory

int spareIntArray_ [4]
 Spare int array for passing information [0]!=0 switches on.
double spareDoubleArray_ [4]
 Spare double array for passing information [0]!=0 switches on.
double columnPrimalInfeasibility_
 Worst column primal infeasibility.
double rowPrimalInfeasibility_
 Worst row primal infeasibility.
int columnPrimalSequence_
 Sequence of worst (-1 if feasible).
int rowPrimalSequence_
 Sequence of worst (-1 if feasible).
double columnDualInfeasibility_
 Worst column dual infeasibility.
double rowDualInfeasibility_
 Worst row dual infeasibility.
int columnDualSequence_
 Sequence of worst (-1 if feasible).
int rowDualSequence_
 Sequence of worst (-1 if feasible).
double primalToleranceToGetOptimal_
 Primal tolerance needed to make dual feasible (<largeTolerance).
double remainingDualInfeasibility_
 Remaining largest dual infeasibility.
double largeValue_
 Large bound value (for complementarity etc).
double largestPrimalError_
 Largest error on Ax-b.
double largestDualError_
 Largest error on basic duals.
double largestSolutionError_
 Largest difference between input primal solution and computed.
double dualBound_
 Dual bound.
double alpha_
 Alpha (pivot element).
double theta_
 Theta (pivot change).
double lowerIn_
 Lower Bound on In variable.
double valueIn_
 Value of In variable.
double upperIn_
 Upper Bound on In variable.
double dualIn_
 Reduced cost of In variable.
double lowerOut_
 Lower Bound on Out variable.
double valueOut_
 Value of Out variable.
double upperOut_
 Upper Bound on Out variable.
double dualOut_
 Infeasibility (dual) or ? (primal) of Out variable.
double dualTolerance_
 Current dual tolerance for algorithm.
double primalTolerance_
 Current primal tolerance for algorithm.
double sumDualInfeasibilities_
 Sum of dual infeasibilities.
double sumPrimalInfeasibilities_
 Sum of primal infeasibilities.
double infeasibilityCost_
 Weight assigned to being infeasible in primal.
double sumOfRelaxedDualInfeasibilities_
 Sum of Dual infeasibilities using tolerance based on error in duals.
double sumOfRelaxedPrimalInfeasibilities_
 Sum of Primal infeasibilities using tolerance based on error in primals.
double acceptablePivot_
 Acceptable pivot value just after factorization.
double * lower_
 Working copy of lower bounds (Owner of arrays below).
double * rowLowerWork_
 Row lower bounds - working copy.
double * columnLowerWork_
 Column lower bounds - working copy.
double * upper_
 Working copy of upper bounds (Owner of arrays below).
double * rowUpperWork_
 Row upper bounds - working copy.
double * columnUpperWork_
 Column upper bounds - working copy.
double * cost_
 Working copy of objective (Owner of arrays below).
double * rowObjectiveWork_
 Row objective - working copy.
double * objectiveWork_
 Column objective - working copy.
CoinIndexedVectorrowArray_ [6]
 Useful row length arrays.
CoinIndexedVectorcolumnArray_ [6]
 Useful column length arrays.
int sequenceIn_
 Sequence of In variable.
int directionIn_
 Direction of In, 1 going up, -1 going down, 0 not a clude.
int sequenceOut_
 Sequence of Out variable.
int directionOut_
 Direction of Out, 1 to upper bound, -1 to lower bound, 0 - superbasic.
int pivotRow_
 Pivot Row.
int lastGoodIteration_
 Last good iteration (immediately after a re-factorization).
double * dj_
 Working copy of reduced costs (Owner of arrays below).
double * rowReducedCost_
 Reduced costs of slacks not same as duals (or - duals).
double * reducedCostWork_
 Possible scaled reduced costs.
double * solution_
 Working copy of primal solution (Owner of arrays below).
double * rowActivityWork_
 Row activities - working copy.
double * columnActivityWork_
 Column activities - working copy.
ClpSimplexauxiliaryModel_
 Auxiliary model.
int numberDualInfeasibilities_
 Number of dual infeasibilities.
int numberDualInfeasibilitiesWithoutFree_
 Number of dual infeasibilities (without free).
int numberPrimalInfeasibilities_
 Number of primal infeasibilities.
int numberRefinements_
 How many iterative refinements to do.
ClpDualRowPivotdualRowPivot_
 dual row pivot choice
ClpPrimalColumnPivotprimalColumnPivot_
 primal column pivot choice
int * pivotVariable_
 Basic variables pivoting on which rows.
ClpFactorizationfactorization_
 factorization
double * savedSolution_
 Saved version of solution.
int numberTimesOptimal_
 Number of times code has tentatively thought optimal.
int changeMade_
 If change has been made (first attempt at stopping looping).
int algorithm_
 Algorithm >0 == Primal, <0 == Dual.
int forceFactorization_
 Now for some reliability aids This forces re-factorization early.
int perturbation_
 Perturbation: -50 to +50 - perturb by this power of ten (-6 sounds good) 100 - auto perturb if takes too long (1.0e-6 largest nonzero) 101 - we are perturbed 102 - don't try perturbing again default is 100.
unsigned char * saveStatus_
 Saved status regions.
ClpNonLinearCostnonLinearCost_
 Very wasteful way of dealing with infeasibilities in primal.
unsigned int specialOptions_
 For advanced options See get and set for meaning.
int lastBadIteration_
 So we know when to be cautious.
int lastFlaggedIteration_
 So we know when to open up again.
int numberFake_
 Can be used for count of fake bounds (dual) or fake costs (primal).
int numberChanged_
 Can be used for count of changed costs (dual) or changed bounds (primal).
int progressFlag_
 Progress flag - at present 0 bit says artificials out, 1 free in.
int firstFree_
 First free/super-basic variable (-1 if none).
int numberExtraRows_
 Number of extra rows.
int maximumBasic_
 Maximum number of basic variables - can be more than number of rows if GUB.
float incomingInfeasibility_
 For advanced use.
float allowedInfeasibility_
 Spare int array for passing information [0]!=0 switches on.
int automaticScale_
 Automatic scaling of objective and rhs and bounds.
ClpSimplexProgressprogress_
 For dealing with all issues of cycling etc.
class OsiClpSolverInterface
 Allow OsiClp certain perks.

Public Types

 isFree = 0x00
 basic = 0x01
 atUpperBound = 0x02
 atLowerBound = 0x03
 superBasic = 0x04
 isFixed = 0x05
 noFake = 0x00
 bothFake = 0x01
 upperFake = 0x02
 lowerFake = 0x03
enum  Status {
  isFree = 0x00, basic = 0x01, atUpperBound = 0x02, atLowerBound = 0x03,
  superBasic = 0x04, isFixed = 0x05
}
 enums for status of various sorts. More...
enum  FakeBound { noFake = 0x00, bothFake = 0x01, upperFake = 0x02, lowerFake = 0x03 }

Public Member Functions

Constructors and destructor and copy
 ClpSimplex ()
 Default constructor.
 ClpSimplex (const ClpSimplex &rhs, int scalingMode=-1)
 Copy constructor.
 ClpSimplex (const ClpModel &rhs, int scalingMode=-1)
 Copy constructor from model.
 ClpSimplex (const ClpModel *wholeModel, int numberRows, const int *whichRows, int numberColumns, const int *whichColumns, bool dropNames=true, bool dropIntegers=true, bool fixOthers=false)
 Subproblem constructor.
 ClpSimplex (ClpSimplex *wholeModel, int numberColumns, const int *whichColumns)
 This constructor modifies original ClpSimplex and stores original stuff in created ClpSimplex.
void originalModel (ClpSimplex *miniModel)
 This copies back stuff from miniModel and then deletes miniModel.
void auxiliaryModel (int options)
 If you are re-using the same matrix again and again then the setup time to do scaling may be significant.
void deleteAuxiliaryModel ()
 Switch off e.g. if people using presolve.
bool usingAuxiliaryModel () const
 See if we have auxiliary model.
ClpSimplexoperator= (const ClpSimplex &rhs)
 Assignment operator. This copies the data.
 ~ClpSimplex ()
 Destructor.
void loadProblem (const ClpMatrixBase &matrix, const double *collb, const double *colub, const double *obj, const double *rowlb, const double *rowub, const double *rowObjective=NULL)
 Loads a problem (the constraints on the rows are given by lower and upper bounds).
void loadProblem (const CoinPackedMatrix &matrix, const double *collb, const double *colub, const double *obj, const double *rowlb, const double *rowub, const double *rowObjective=NULL)
 Default constructor.
void loadProblem (const int numcols, const int numrows, const CoinBigIndex *start, const int *index, const double *value, const double *collb, const double *colub, const double *obj, const double *rowlb, const double *rowub, const double *rowObjective=NULL)
 Just like the other loadProblem() method except that the matrix is given in a standard column major ordered format (without gaps).
void loadProblem (const int numcols, const int numrows, const CoinBigIndex *start, const int *index, const double *value, const int *length, const double *collb, const double *colub, const double *obj, const double *rowlb, const double *rowub, const double *rowObjective=NULL)
 This one is for after presolve to save memory.
int loadProblem (CoinModel &modelObject, bool keepSolution=false)
 This loads a model from a coinModel object - returns number of errors.
int readMps (const char *filename, bool keepNames=false, bool ignoreErrors=false)
 Read an mps file from the given filename.
int readGMPL (const char *filename, const char *dataName, bool keepNames=false)
 Read GMPL files from the given filenames.
void borrowModel (ClpModel &otherModel)
 Borrow model.
void borrowModel (ClpSimplex &otherModel)
 Default constructor.
void passInEventHandler (const ClpEventHandler *eventHandler)
 Pass in Event handler (cloned and deleted at end).
void getbackSolution (const ClpSimplex &smallModel, const int *whichRow, const int *whichColumn)
 Puts solution back into small model.
Functions most useful to user
int initialSolve (ClpSolve &options)
 General solve algorithm which can do presolve.
int initialSolve ()
 Default initial solve.
int initialDualSolve ()
 Dual initial solve.
int initialPrimalSolve ()
 Primal initial solve.
int dual (int ifValuesPass=0, int startFinishOptions=0)
 Dual algorithm - see ClpSimplexDual.hpp for method.
int dualDebug (int ifValuesPass=0, int startFinishOptions=0)
 General solve algorithm which can do presolve.
int primal (int ifValuesPass=0, int startFinishOptions=0)
 Primal algorithm - see ClpSimplexPrimal.hpp for method.
int nonlinearSLP (int numberPasses, double deltaTolerance)
 Solves nonlinear problem using SLP - may be used as crash for other algorithms when number of iterations small.
int barrier (bool crossover=true)
 Solves using barrier (assumes you have good cholesky factor code).
int reducedGradient (int phase=0)
 Solves non-linear using reduced gradient.
int cleanup (int cleanupScaling)
 When scaling is on it is possible that the scaled problem is feasible but the unscaled is not.
int dualRanging (int numberCheck, const int *which, double *costIncrease, int *sequenceIncrease, double *costDecrease, int *sequenceDecrease)
 Dual ranging.
int primalRanging (int numberCheck, const int *which, double *valueIncrease, int *sequenceIncrease, double *valueDecrease, int *sequenceDecrease)
 Primal ranging.
int writeBasis (const char *filename, bool writeValues=false, int formatType=0) const
 Write the basis in MPS format to the specified file.
int readBasis (const char *filename)
 Read a basis from the given filename, returns -1 on file error, 0 if no values, 1 if values.
CoinWarmStartBasisgetBasis () const
 Returns a basis (to be deleted by user).
void setFactorization (ClpFactorization &factorization)
 Passes in factorization.
int tightenPrimalBounds (double factor=0.0, int doTight=0)
 Tightens primal bounds to make dual faster.
int crash (double gap, int pivot)
 Crash - at present just aimed at dual, returns -2 if dual preferred and crash basis created -1 if dual preferred and all slack basis preferred 0 if basis going in was not all slack 1 if primal preferred and all slack basis preferred 2 if primal preferred and crash basis created.
void setDualRowPivotAlgorithm (ClpDualRowPivot &choice)
 Sets row pivot choice algorithm in dual.
void setPrimalColumnPivotAlgorithm (ClpPrimalColumnPivot &choice)
 Sets column pivot choice algorithm in primal.
int strongBranching (int numberVariables, const int *variables, double *newLower, double *newUpper, double **outputSolution, int *outputStatus, int *outputIterations, bool stopOnFirstInfeasible=true, bool alwaysFinish=false, int startFinishOptions=0)
 For strong branching.
Needed for functionality of OsiSimplexInterface
int pivot ()
 Pivot in a variable and out a variable.
int primalPivotResult ()
 Pivot in a variable and choose an outgoing one.
int dualPivotResult ()
 Pivot out a variable and choose an incoing one.
int startup (int ifValuesPass, int startFinishOptions=0)
 Common bits of coding for dual and primal.
void finish (int startFinishOptions=0)
 Pivot in a variable and out a variable.
bool statusOfProblem (bool initial=false)
 Factorizes and returns true if optimal.
void defaultFactorizationFrequency ()
 If user left factorization frequency then compute.
most useful gets and sets
bool primalFeasible () const
 If problem is primal feasible.
bool dualFeasible () const
 If problem is dual feasible.
ClpFactorizationfactorization () const
 factorization
bool sparseFactorization () const
 Sparsity on or off.
void setSparseFactorization (bool value)
 If problem is primal feasible.
int factorizationFrequency () const
 Factorization frequency.
void setFactorizationFrequency (int value)
 If problem is primal feasible.
double dualBound () const
 Dual bound.
void setDualBound (double value)
 If problem is primal feasible.
double infeasibilityCost () const
 Infeasibility cost.
void setInfeasibilityCost (double value)
 If problem is primal feasible.
int perturbation () const
 Perturbation: 50 - switch on perturbation 100 - auto perturb if takes too long (1.0e-6 largest nonzero) 101 - we are perturbed 102 - don't try perturbing again default is 100 others are for playing.
void setPerturbation (int value)
 If problem is primal feasible.
int algorithm () const
 Current (or last) algorithm.
void setAlgorithm (int value)
 Set algorithm.
double sumDualInfeasibilities () const
 Sum of dual infeasibilities.
void setSumDualInfeasibilities (double value)
 If problem is primal feasible.
double sumOfRelaxedDualInfeasibilities () const
 Sum of relaxed dual infeasibilities.
void setSumOfRelaxedDualInfeasibilities (double value)
 If problem is primal feasible.
int numberDualInfeasibilities () const
 Number of dual infeasibilities.
void setNumberDualInfeasibilities (int value)
 If problem is primal feasible.
double sumPrimalInfeasibilities () const
 Sum of primal infeasibilities.
void setSumPrimalInfeasibilities (double value)
 If problem is primal feasible.
double sumOfRelaxedPrimalInfeasibilities () const
 Sum of relaxed primal infeasibilities.
void setSumOfRelaxedPrimalInfeasibilities (double value)
 If problem is primal feasible.
int numberPrimalInfeasibilities () const
 Number of primal infeasibilities.
void setNumberPrimalInfeasibilities (int value)
 If problem is primal feasible.
int saveModel (const char *fileName)
 Save model to file, returns 0 if success.
int restoreModel (const char *fileName)
 Restore model from file, returns 0 if success, deletes current model.
void checkSolution (int setToBounds=false)
 Just check solution (for external use) - sets sum of infeasibilities etc.
void checkSolutionInternal ()
 Just check solution (for internal use) - sets sum of infeasibilities etc.
CoinIndexedVectorrowArray (int index) const
 Useful row length arrays (0,1,2,3,4,5).
CoinIndexedVectorcolumnArray (int index) const
 Useful column length arrays (0,1,2,3,4,5).
public methods
double * solutionRegion (int section) const
 Return row or column sections - not as much needed as it once was.
double * djRegion (int section) const
 Return row or column sections - not as much needed as it once was.
double * lowerRegion (int section) const
 Return row or column sections - not as much needed as it once was.
double * upperRegion (int section) const
 Return row or column sections - not as much needed as it once was.
double * costRegion (int section) const
 Return row or column sections - not as much needed as it once was.
double * solutionRegion () const
 Return region as single array.
double * djRegion () const
 Return row or column sections - not as much needed as it once was.
double * lowerRegion () const
 Return row or column sections - not as much needed as it once was.
double * upperRegion () const
 Return row or column sections - not as much needed as it once was.
double * costRegion () const
 Return row or column sections - not as much needed as it once was.
Status getStatus (int sequence) const
 Return row or column sections - not as much needed as it once was.
void setStatus (int sequence, Status status)
 Return row or column sections - not as much needed as it once was.
void setInitialDenseFactorization (bool onOff)
 Normally the first factorization does sparse coding because the factorization could be singular.
bool initialDenseFactorization () const
 Return row or column sections - not as much needed as it once was.
int sequenceIn () const
 Return sequence In or Out.
int sequenceOut () const
 Return row or column sections - not as much needed as it once was.
void setSequenceIn (int sequence)
 Set sequenceIn or Out.
void setSequenceOut (int sequence)
 Return row or column sections - not as much needed as it once was.
int directionIn () const
 Return direction In or Out.
int directionOut () const
 Return row or column sections - not as much needed as it once was.
void setDirectionIn (int direction)
 Set directionIn or Out.
void setDirectionOut (int direction)
 Return row or column sections - not as much needed as it once was.
double valueOut () const
 Value of Out variable.
int isColumn (int sequence) const
 Returns 1 if sequence indicates column.
int sequenceWithin (int sequence) const
 Returns sequence number within section.
double solution (int sequence)
 Return row or column values.
double & solutionAddress (int sequence)
 Return address of row or column values.
double reducedCost (int sequence)
 Return row or column sections - not as much needed as it once was.
double & reducedCostAddress (int sequence)
 Return row or column sections - not as much needed as it once was.
double lower (int sequence)
 Return row or column sections - not as much needed as it once was.
double & lowerAddress (int sequence)
 Return address of row or column lower bound.
double upper (int sequence)
 Return row or column sections - not as much needed as it once was.
double & upperAddress (int sequence)
 Return address of row or column upper bound.
double cost (int sequence)
 Return row or column sections - not as much needed as it once was.
double & costAddress (int sequence)
 Return address of row or column cost.
double originalLower (int iSequence) const
 Return original lower bound.
double originalUpper (int iSequence) const
 Return original lower bound.
double theta () const
 Theta (pivot change).
ClpNonLinearCostnonLinearCost () const
 Return pointer to details of costs.
status methods
void setFakeBound (int sequence, FakeBound fakeBound)
FakeBound getFakeBound (int sequence) const
void setRowStatus (int sequence, Status status)
Status getRowStatus (int sequence) const
void setColumnStatus (int sequence, Status status)
Status getColumnStatus (int sequence) const
void setPivoted (int sequence)
void clearPivoted (int sequence)
bool pivoted (int sequence) const
void setFlagged (int sequence)
 To flag a variable (not inline to allow for column generation).
void clearFlagged (int sequence)
bool flagged (int sequence) const
void setActive (int iRow)
 To say row active in primal pivot row choice.
void clearActive (int iRow)
bool active (int iRow) const
void createStatus ()
 Set up status array (can be used by OsiClp).
void allSlackBasis (bool resetSolution=false)
 Sets up all slack basis and resets solution to as it was after initial load or readMps.
int lastBadIteration () const
 So we know when to be cautious.
int progressFlag () const
 Progress flag - at present 0 bit says artificials out.
void forceFactorization (int value)
 Force re-factorization early.
double rawObjectiveValue () const
 Raw objective value (so always minimize in primal).
void computeObjectiveValue ()
 Compute objective value from solution and put in objectiveValue_.
int numberExtraRows () const
 Number of extra rows.
int maximumBasic () const
 Maximum number of basic variables - can be more than number of rows if GUB.
void generateCpp (FILE *fp, bool defaultFactor=false)
 Create C++ lines to get to current state.
unsigned int specialOptions () const
void setSpecialOptions (unsigned int value)
Basis handling
void getBInvARow (int row, double *z, double *slack=NULL)
 Get a row of the tableau (slack part in slack if not NULL).
void getBInvRow (int row, double *z)
 Get a row of the basis inverse.
void getBInvACol (int col, double *vec)
 Get a column of the tableau.
void getBInvCol (int col, double *vec)
 Get a column of the basis inverse.
void getBasics (int *index)
 Get basic indices (order of indices corresponds to the order of elements in a vector retured by getBInvACol() and getBInvCol()).
Changing bounds on variables and constraints
void setObjectiveCoefficient (int elementIndex, double elementValue)
 Set an objective function coefficient.
void setObjCoeff (int elementIndex, double elementValue)
 Set an objective function coefficient.
void setColumnLower (int elementIndex, double elementValue)
 Set a single column lower bound
Use -DBL_MAX for -infinity.
void setColumnUpper (int elementIndex, double elementValue)
 Set a single column upper bound
Use DBL_MAX for infinity.
void setColumnBounds (int elementIndex, double lower, double upper)
 Set a single column lower and upper bound.
void setColumnSetBounds (const int *indexFirst, const int *indexLast, const double *boundList)
 Set the bounds on a number of columns simultaneously
The default implementation just invokes setColLower() and setColUpper() over and over again.
void setColLower (int elementIndex, double elementValue)
 Set a single column lower bound
Use -DBL_MAX for -infinity.
void setColUpper (int elementIndex, double elementValue)
 Set a single column upper bound
Use DBL_MAX for infinity.
void setColBounds (int elementIndex, double lower, double upper)
 Set a single column lower and upper bound.
void setColSetBounds (const int *indexFirst, const int *indexLast, const double *boundList)
 Set the bounds on a number of columns simultaneously
.
void setRowLower (int elementIndex, double elementValue)
 Set a single row lower bound
Use -DBL_MAX for -infinity.
void setRowUpper (int elementIndex, double elementValue)
 Set a single row upper bound
Use DBL_MAX for infinity.
void setRowBounds (int elementIndex, double lower, double upper)
 Set a single row lower and upper bound.
void setRowSetBounds (const int *indexFirst, const int *indexLast, const double *boundList)
 Set the bounds on a number of rows simultaneously
.

Protected Member Functions

protected methods
int gutsOfSolution (double *givenDuals, const double *givenPrimals, bool valuesPass=false)
 May change basis and then returns number changed.
void gutsOfDelete (int type)
 Does most of deletion (0 = all, 1 = most, 2 most + factorization).
void gutsOfCopy (const ClpSimplex &rhs)
 Does most of copying.
bool createRim (int what, bool makeRowCopy=false, int startFinishOptions=0)
 puts in format I like (rowLower,rowUpper) also see StandardMatrix 1 bit does rows, 2 bit does column bounds, 4 bit does objective(s).
void deleteRim (int getRidOfFactorizationData=2)
 releases above arrays and does solution scaling out.
bool sanityCheck ()
 Sanity check on input rim data (after scaling) - returns true if okay.

Friends

void ClpSimplexUnitTest (const std::string &mpsDir, const std::string &netlibDir)
 A function that tests the methods in the ClpSimplex class.

Detailed Description

This solves LPs using the simplex method.

It inherits from ClpModel and all its arrays are created at algorithm time. Originally I tried to work with model arrays but for simplicity of coding I changed to single arrays with structural variables then row variables. Some coding is still based on old style and needs cleaning up.

For a description of algorithms:

for dual see ClpSimplexDual.hpp and at top of ClpSimplexDual.cpp for primal see ClpSimplexPrimal.hpp and at top of ClpSimplexPrimal.cpp

There is an algorithm data member. + for primal variations and - for dual variations

This file also includes (at end) a very simple class ClpSimplexProgress which is where anti-looping stuff should migrate to

Definition at line 54 of file ClpSimplex.hpp.


Member Enumeration Documentation

enum ClpSimplex::Status

enums for status of various sorts.

First 4 match CoinWarmStartBasis, isFixed means fixed at lower bound and out of basis

Enumerator:
isFree 
basic 
atUpperBound 
atLowerBound 
superBasic 
isFixed 

Definition at line 63 of file ClpSimplex.hpp.

enum ClpSimplex::FakeBound

Enumerator:
noFake 
bothFake 
upperFake 
lowerFake 

Definition at line 72 of file ClpSimplex.hpp.


Constructor & Destructor Documentation

ClpSimplex::ClpSimplex (  ) 

Default constructor.

ClpSimplex::ClpSimplex ( const ClpSimplex rhs,
int  scalingMode = -1 
)

Copy constructor.

May scale depending on mode -1 leave mode as is 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later)

ClpSimplex::ClpSimplex ( const ClpModel rhs,
int  scalingMode = -1 
)

Copy constructor from model.

May scale depending on mode -1 leave mode as is 0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later)

ClpSimplex::ClpSimplex ( const ClpModel wholeModel,
int  numberRows,
const int *  whichRows,
int  numberColumns,
const int *  whichColumns,
bool  dropNames = true,
bool  dropIntegers = true,
bool  fixOthers = false 
)

Subproblem constructor.

A subset of whole model is created from the row and column lists given. The new order is given by list order and duplicates are allowed. Name and integer information can be dropped Can optionally modify rhs to take into account variables NOT in list in this case duplicates are not allowed (also see getbackSolution)

ClpSimplex::ClpSimplex ( ClpSimplex wholeModel,
int  numberColumns,
const int *  whichColumns 
)

This constructor modifies original ClpSimplex and stores original stuff in created ClpSimplex.

It is only to be used in conjunction with originalModel

ClpSimplex::~ClpSimplex (  ) 

Destructor.


Member Function Documentation

void ClpSimplex::originalModel ( ClpSimplex miniModel  ) 

This copies back stuff from miniModel and then deletes miniModel.

Only to be used with mini constructor

void ClpSimplex::auxiliaryModel ( int  options  ) 

If you are re-using the same matrix again and again then the setup time to do scaling may be significant.

Also you may not want to initialize all values or return all values (especially if infeasible). While an auxiliary model exists it will be faster. If options -1 then model is switched off. Otherwise switched on with following options. 1 - rhs is constant 2 - bounds are constant 4 - objective is constant 8 - solution in by basis and no djs etc in 16 - no duals out (but reduced costs) 32 - no output if infeasible

void ClpSimplex::deleteAuxiliaryModel (  ) 

Switch off e.g. if people using presolve.

bool ClpSimplex::usingAuxiliaryModel (  )  const [inline]

See if we have auxiliary model.

Definition at line 130 of file ClpSimplex.hpp.

References auxiliaryModel_.

ClpSimplex& ClpSimplex::operator= ( const ClpSimplex rhs  ) 

Assignment operator. This copies the data.

void ClpSimplex::loadProblem ( const ClpMatrixBase matrix,
const double *  collb,
const double *  colub,
const double *  obj,
const double *  rowlb,
const double *  rowub,
const double *  rowObjective = NULL 
)

Loads a problem (the constraints on the rows are given by lower and upper bounds).

If a pointer is 0 then the following values are the default:

Reimplemented from ClpModel.

void ClpSimplex::loadProblem ( const CoinPackedMatrix matrix,
const double *  collb,
const double *  colub,
const double *  obj,
const double *  rowlb,
const double *  rowub,
const double *  rowObjective = NULL 
)

Default constructor.

Reimplemented from ClpModel.

void ClpSimplex::loadProblem ( const int  numcols,
const int  numrows,
const CoinBigIndex start,
const int *  index,
const double *  value,
const double *  collb,
const double *  colub,
const double *  obj,
const double *  rowlb,
const double *  rowub,
const double *  rowObjective = NULL 
)

Just like the other loadProblem() method except that the matrix is given in a standard column major ordered format (without gaps).

Reimplemented from ClpModel.

void ClpSimplex::loadProblem ( const int  numcols,
const int  numrows,
const CoinBigIndex start,
const int *  index,
const double *  value,
const int *  length,
const double *  collb,
const double *  colub,
const double *  obj,
const double *  rowlb,
const double *  rowub,
const double *  rowObjective = NULL 
)

This one is for after presolve to save memory.

Reimplemented from ClpModel.

int ClpSimplex::loadProblem ( CoinModel modelObject,
bool  keepSolution = false 
)

This loads a model from a coinModel object - returns number of errors.

If keepSolution true and size is same as current then keeps current status and solution

Reimplemented from ClpModel.

int ClpSimplex::readMps ( const char *  filename,
bool  keepNames = false,
bool  ignoreErrors = false 
)

Read an mps file from the given filename.

Reimplemented from ClpModel.

int ClpSimplex::readGMPL ( const char *  filename,
const char *  dataName,
bool  keepNames = false 
)

Read GMPL files from the given filenames.

Reimplemented from ClpModel.

void ClpSimplex::borrowModel ( ClpModel otherModel  ) 

Borrow model.

This is so we dont have to copy large amounts of data around. It assumes a derived class wants to overwrite an empty model with a real one - while it does an algorithm. This is same as ClpModel one, but sets scaling on etc.

Reimplemented from ClpModel.

void ClpSimplex::borrowModel ( ClpSimplex otherModel  ) 

Default constructor.

void ClpSimplex::passInEventHandler ( const ClpEventHandler eventHandler  ) 

Pass in Event handler (cloned and deleted at end).

Reimplemented from ClpModel.

void ClpSimplex::getbackSolution ( const ClpSimplex smallModel,
const int *  whichRow,
const int *  whichColumn 
)

Puts solution back into small model.

int ClpSimplex::initialSolve ( ClpSolve options  ) 

General solve algorithm which can do presolve.

See ClpSolve.hpp for options

int ClpSimplex::initialSolve (  ) 

Default initial solve.

int ClpSimplex::initialDualSolve (  ) 

Dual initial solve.

int ClpSimplex::initialPrimalSolve (  ) 

Primal initial solve.

int ClpSimplex::dual ( int  ifValuesPass = 0,
int  startFinishOptions = 0 
)

Dual algorithm - see ClpSimplexDual.hpp for method.

ifValuesPass==2 just does values pass and then stops.

startFinishOptions - bits 1 - do not delete work areas and factorization at end 2 - use old factorization if same number of rows 4 - skip as much initialization of work areas as possible (based on whatsChanged in clpmodel.hpp) ** work in progress maybe other bits later

Reimplemented in ClpSimplexDual.

int ClpSimplex::dualDebug ( int  ifValuesPass = 0,
int  startFinishOptions = 0 
)

General solve algorithm which can do presolve.

See ClpSolve.hpp for options

int ClpSimplex::primal ( int  ifValuesPass = 0,
int  startFinishOptions = 0 
)

Primal algorithm - see ClpSimplexPrimal.hpp for method.

ifValuesPass==2 just does values pass and then stops.

startFinishOptions - bits 1 - do not delete work areas and factorization at end 2 - use old factorization if same number of rows 4 - skip as much initialization of work areas as possible (based on whatsChanged in clpmodel.hpp) ** work in progress maybe other bits later

Reimplemented in ClpSimplexPrimal.

int ClpSimplex::nonlinearSLP ( int  numberPasses,
double  deltaTolerance 
)

Solves nonlinear problem using SLP - may be used as crash for other algorithms when number of iterations small.

Also exits if all problematical variables are changing less than deltaTolerance

int ClpSimplex::barrier ( bool  crossover = true  ) 

Solves using barrier (assumes you have good cholesky factor code).

Does crossover to simplex if asked

int ClpSimplex::reducedGradient ( int  phase = 0  ) 

Solves non-linear using reduced gradient.

Phase = 0 get feasible, =1 use solution

int ClpSimplex::cleanup ( int  cleanupScaling  ) 

When scaling is on it is possible that the scaled problem is feasible but the unscaled is not.

Clp returns a secondary status code to that effect. This option allows for a cleanup. If you use it I would suggest 1. This only affects actions when scaled optimal 0 - no action 1 - clean up using dual if primal infeasibility 2 - clean up using dual if dual infeasibility 3 - clean up using dual if primal or dual infeasibility 11,12,13 - as 1,2,3 but use primal

return code as dual/primal

int ClpSimplex::dualRanging ( int  numberCheck,
const int *  which,
double *  costIncrease,
int *  sequenceIncrease,
double *  costDecrease,
int *  sequenceDecrease 
)

Dual ranging.

This computes increase/decrease in cost for each given variable and corresponding sequence numbers which would change basis. Sequence numbers are 0..numberColumns and numberColumns.. for artificials/slacks. For non-basic variables the information is trivial to compute and the change in cost is just minus the reduced cost and the sequence number will be that of the non-basic variables. For basic variables a ratio test is between the reduced costs for non-basic variables and the row of the tableau corresponding to the basic variable. The increase/decrease value is always >= 0.0

Up to user to provide correct length arrays where each array is of length numberCheck. which contains list of variables for which information is desired. All other arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays will information for variable 7.

Returns non-zero if infeasible unbounded etc

Reimplemented in ClpSimplexOther.

int ClpSimplex::primalRanging ( int  numberCheck,
const int *  which,
double *  valueIncrease,
int *  sequenceIncrease,
double *  valueDecrease,
int *  sequenceDecrease 
)

Primal ranging.

This computes increase/decrease in value for each given variable and corresponding sequence numbers which would change basis. Sequence numbers are 0..numberColumns and numberColumns.. for artificials/slacks. For basic variables the sequence number will be that of the basic variables.

Up to user to provide correct length arrays where each array is of length numberCheck. which contains list of variables for which information is desired. All other arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays will information for variable 7.

Returns non-zero if infeasible unbounded etc

Reimplemented in ClpSimplexOther.

int ClpSimplex::writeBasis ( const char *  filename,
bool  writeValues = false,
int  formatType = 0 
) const

Write the basis in MPS format to the specified file.

If writeValues true writes values of structurals (and adds VALUES to end of NAME card)

Row and column names may be null. formatType is

Returns non-zero on I/O error

Reimplemented in ClpSimplexOther.

int ClpSimplex::readBasis ( const char *  filename  ) 

Read a basis from the given filename, returns -1 on file error, 0 if no values, 1 if values.

Reimplemented in ClpSimplexOther.

CoinWarmStartBasis* ClpSimplex::getBasis (  )  const

Returns a basis (to be deleted by user).

void ClpSimplex::setFactorization ( ClpFactorization factorization  ) 

Passes in factorization.

int ClpSimplex::tightenPrimalBounds ( double  factor = 0.0,
int  doTight = 0 
)

Tightens primal bounds to make dual faster.

Unless fixed or doTight>10, bounds are slightly looser than they could be. This is to make dual go faster and is probably not needed with a presolve. Returns non-zero if problem infeasible.

Fudge for branch and bound - put bounds on columns of factor * largest value (at continuous) - should improve stability in branch and bound on infeasible branches (0.0 is off)

int ClpSimplex::crash ( double  gap,
int  pivot 
)

Crash - at present just aimed at dual, returns -2 if dual preferred and crash basis created -1 if dual preferred and all slack basis preferred 0 if basis going in was not all slack 1 if primal preferred and all slack basis preferred 2 if primal preferred and crash basis created.

if gap between bounds <="gap" variables can be flipped ( If pivot -1 then can be made super basic!)

If "pivot" is -1 No pivoting - always primal 0 No pivoting (so will just be choice of algorithm) 1 Simple pivoting e.g. gub 2 Mini iterations

void ClpSimplex::setDualRowPivotAlgorithm ( ClpDualRowPivot choice  ) 

Sets row pivot choice algorithm in dual.

void ClpSimplex::setPrimalColumnPivotAlgorithm ( ClpPrimalColumnPivot choice  ) 

Sets column pivot choice algorithm in primal.

int ClpSimplex::strongBranching ( int  numberVariables,
const int *  variables,
double *  newLower,
double *  newUpper,
double **  outputSolution,
int *  outputStatus,
int *  outputIterations,
bool  stopOnFirstInfeasible = true,
bool  alwaysFinish = false,
int  startFinishOptions = 0 
)

For strong branching.

On input lower and upper are new bounds while on output they are change in objective function values (>1.0e50 infeasible). Return code is 0 if nothing interesting, -1 if infeasible both ways and +1 if infeasible one way (check values to see which one(s)) Solutions are filled in as well - even down, odd up - also status and number of iterations

Reimplemented in ClpSimplexDual.

int ClpSimplex::pivot (  ) 

Pivot in a variable and out a variable.

Returns 0 if okay, 1 if inaccuracy forced re-factorization, -1 if would be singular. Also updates primal/dual infeasibilities. Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out.

int ClpSimplex::primalPivotResult (  ) 

Pivot in a variable and choose an outgoing one.

Assumes primal feasible - will not go through a bound. Returns step length in theta Returns ray in ray_ (or NULL if no pivot) Return codes as before but -1 means no acceptable pivot

int ClpSimplex::dualPivotResult (  ) 

Pivot out a variable and choose an incoing one.

Assumes dual feasible - will not go through a reduced cost. Returns step length in theta Returns ray in ray_ (or NULL if no pivot) Return codes as before but -1 means no acceptable pivot

int ClpSimplex::startup ( int  ifValuesPass,
int  startFinishOptions = 0 
)

Common bits of coding for dual and primal.

Return 0 if okay, 1 if bad matrix, 2 if very bad factorization

startFinishOptions - bits 1 - do not delete work areas and factorization at end 2 - use old factorization if same number of rows 4 - skip as much initialization of work areas as possible (based on whatsChanged in clpmodel.hpp) ** work in progress maybe other bits later

void ClpSimplex::finish ( int  startFinishOptions = 0  ) 

Pivot in a variable and out a variable.

Returns 0 if okay, 1 if inaccuracy forced re-factorization, -1 if would be singular. Also updates primal/dual infeasibilities. Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out.

bool ClpSimplex::statusOfProblem ( bool  initial = false  ) 

Factorizes and returns true if optimal.

Used by user

void ClpSimplex::defaultFactorizationFrequency (  ) 

If user left factorization frequency then compute.

bool ClpSimplex::primalFeasible (  )  const [inline]

If problem is primal feasible.

Definition at line 418 of file ClpSimplex.hpp.

References numberPrimalInfeasibilities_.

bool ClpSimplex::dualFeasible (  )  const [inline]

If problem is dual feasible.

Definition at line 421 of file ClpSimplex.hpp.

References numberDualInfeasibilities_.

ClpFactorization* ClpSimplex::factorization (  )  const [inline]

factorization

Definition at line 424 of file ClpSimplex.hpp.

References factorization_.

bool ClpSimplex::sparseFactorization (  )  const

Sparsity on or off.

void ClpSimplex::setSparseFactorization ( bool  value  ) 

If problem is primal feasible.

int ClpSimplex::factorizationFrequency (  )  const

Factorization frequency.

void ClpSimplex::setFactorizationFrequency ( int  value  ) 

If problem is primal feasible.

double ClpSimplex::dualBound (  )  const [inline]

Dual bound.

Definition at line 433 of file ClpSimplex.hpp.

References dualBound_.

void ClpSimplex::setDualBound ( double  value  ) 

If problem is primal feasible.

double ClpSimplex::infeasibilityCost (  )  const [inline]

Infeasibility cost.

Definition at line 437 of file ClpSimplex.hpp.

References infeasibilityCost_.

void ClpSimplex::setInfeasibilityCost ( double  value  ) 

If problem is primal feasible.

int ClpSimplex::perturbation (  )  const [inline]

Perturbation: 50 - switch on perturbation 100 - auto perturb if takes too long (1.0e-6 largest nonzero) 101 - we are perturbed 102 - don't try perturbing again default is 100 others are for playing.

Definition at line 456 of file ClpSimplex.hpp.

References perturbation_.

void ClpSimplex::setPerturbation ( int  value  ) 

If problem is primal feasible.

int ClpSimplex::algorithm (  )  const [inline]

Current (or last) algorithm.

Definition at line 460 of file ClpSimplex.hpp.

References algorithm_.

void ClpSimplex::setAlgorithm ( int  value  )  [inline]

Set algorithm.

Definition at line 463 of file ClpSimplex.hpp.

References algorithm_.

double ClpSimplex::sumDualInfeasibilities (  )  const [inline]

Sum of dual infeasibilities.

Definition at line 466 of file ClpSimplex.hpp.

References sumDualInfeasibilities_.

void ClpSimplex::setSumDualInfeasibilities ( double  value  )  [inline]

If problem is primal feasible.

Definition at line 468 of file ClpSimplex.hpp.

References sumDualInfeasibilities_.

double ClpSimplex::sumOfRelaxedDualInfeasibilities (  )  const [inline]

Sum of relaxed dual infeasibilities.

Definition at line 471 of file ClpSimplex.hpp.

References sumOfRelaxedDualInfeasibilities_.

void ClpSimplex::setSumOfRelaxedDualInfeasibilities ( double  value  )  [inline]

If problem is primal feasible.

Definition at line 473 of file ClpSimplex.hpp.

References sumOfRelaxedDualInfeasibilities_.

int ClpSimplex::numberDualInfeasibilities (  )  const [inline]

Number of dual infeasibilities.

Definition at line 476 of file ClpSimplex.hpp.

References numberDualInfeasibilities_.

void ClpSimplex::setNumberDualInfeasibilities ( int  value  )  [inline]

If problem is primal feasible.

Definition at line 478 of file ClpSimplex.hpp.

References numberDualInfeasibilities_.

double ClpSimplex::sumPrimalInfeasibilities (  )  const [inline]

Sum of primal infeasibilities.

Definition at line 481 of file ClpSimplex.hpp.

References sumPrimalInfeasibilities_.

void ClpSimplex::setSumPrimalInfeasibilities ( double  value  )  [inline]

If problem is primal feasible.

Definition at line 483 of file ClpSimplex.hpp.

References sumPrimalInfeasibilities_.

double ClpSimplex::sumOfRelaxedPrimalInfeasibilities (  )  const [inline]

Sum of relaxed primal infeasibilities.

Definition at line 486 of file ClpSimplex.hpp.

References sumOfRelaxedPrimalInfeasibilities_.

void ClpSimplex::setSumOfRelaxedPrimalInfeasibilities ( double  value  )  [inline]

If problem is primal feasible.

Definition at line 488 of file ClpSimplex.hpp.

References sumOfRelaxedPrimalInfeasibilities_.

int ClpSimplex::numberPrimalInfeasibilities (  )  const [inline]

Number of primal infeasibilities.

Definition at line 491 of file ClpSimplex.hpp.

References numberPrimalInfeasibilities_.

void ClpSimplex::setNumberPrimalInfeasibilities ( int  value  )  [inline]

If problem is primal feasible.

Definition at line 493 of file ClpSimplex.hpp.

References numberPrimalInfeasibilities_.

int ClpSimplex::saveModel ( const char *  fileName  ) 

Save model to file, returns 0 if success.

This is designed for use outside algorithms so does not save iterating arrays etc. It does not save any messaging information. Does not save scaling values. It does not know about all types of virtual functions.

int ClpSimplex::restoreModel ( const char *  fileName  ) 

Restore model from file, returns 0 if success, deletes current model.

void ClpSimplex::checkSolution ( int  setToBounds = false  ) 

Just check solution (for external use) - sets sum of infeasibilities etc.

If setToBounds 0 then primal column values not changed and used to compute primal row activity values. If 1 or 2 then status used - so all nonbasic variables set to indicated bound and if any values changed (or ==2) basic values re-computed.

void ClpSimplex::checkSolutionInternal (  ) 

Just check solution (for internal use) - sets sum of infeasibilities etc.

CoinIndexedVector* ClpSimplex::rowArray ( int  index  )  const [inline]

Useful row length arrays (0,1,2,3,4,5).

Definition at line 518 of file ClpSimplex.hpp.

References rowArray_.

CoinIndexedVector* ClpSimplex::columnArray ( int  index  )  const [inline]

Useful column length arrays (0,1,2,3,4,5).

Definition at line 521 of file ClpSimplex.hpp.

References columnArray_.

int ClpSimplex::getSolution ( const double *  rowActivities,
const double *  columnActivities 
)

Given an existing factorization computes and checks primal and dual solutions.

Uses input arrays for variables at bounds. Returns feasibility states

int ClpSimplex::getSolution (  ) 

Given an existing factorization computes and checks primal and dual solutions.

Uses current problem arrays for bounds. Returns feasibility states

int ClpSimplex::createPiecewiseLinearCosts ( const int *  starts,
const double *  lower,
const double *  gradient 
)

Constructs a non linear cost from list of non-linearities (columns only) First lower of each column is taken as real lower Last lower is taken as real upper and cost ignored.

Returns nonzero if bad data e.g. lowers not monotonic

void ClpSimplex::returnModel ( ClpSimplex otherModel  ) 

Return model - updates any scalars.

int ClpSimplex::internalFactorize ( int  solveType  ) 

Factorizes using current basis.

solveType - 1 iterating, 0 initial, -1 external If 10 added then in primal values pass Return codes are as from ClpFactorization unless initial factorization when total number of singularities is returned. Special case is numberRows_+1 -> all slack basis.

ClpDataSave ClpSimplex::saveData (  ) 

Save data.

void ClpSimplex::restoreData ( ClpDataSave  saved  ) 

Restore data.

void ClpSimplex::cleanStatus (  ) 

Clean up status.

int ClpSimplex::factorize (  ) 

Factorizes using current basis. For external use.

void ClpSimplex::computeDuals ( double *  givenDjs  ) 

Computes duals from scratch.

If givenDjs then allows for nonzero basic djs

void ClpSimplex::computePrimals ( const double *  rowActivities,
const double *  columnActivities 
)

Computes primals from scratch.

void ClpSimplex::add ( double *  array,
int  column,
double  multiplier 
) const

Adds multiple of a column into an array.

void ClpSimplex::unpack ( CoinIndexedVector rowArray  )  const

Unpacks one column of the matrix into indexed array Uses sequenceIn_ Also applies scaling if needed.

void ClpSimplex::unpack ( CoinIndexedVector rowArray,
int  sequence 
) const

Unpacks one column of the matrix into indexed array Slack if sequence>= numberColumns Also applies scaling if needed.

void ClpSimplex::unpackPacked ( CoinIndexedVector rowArray  ) 

Unpacks one column of the matrix into indexed array as packed vector Uses sequenceIn_ Also applies scaling if needed.

void ClpSimplex::unpackPacked ( CoinIndexedVector rowArray,
int  sequence 
)

Unpacks one column of the matrix into indexed array as packed vector Slack if sequence>= numberColumns Also applies scaling if needed.

int ClpSimplex::housekeeping ( double  objectiveChange  )  [protected]

This does basis housekeeping and does values for in/out variables.

Can also decide to re-factorize

void ClpSimplex::checkPrimalSolution ( const double *  rowActivities = NULL,
const double *  columnActivies = NULL 
) [protected]

This sets largest infeasibility and most infeasible and sum and number of infeasibilities (Primal).

void ClpSimplex::checkDualSolution (  )  [protected]

This sets largest infeasibility and most infeasible and sum and number of infeasibilities (Dual).

void ClpSimplex::checkBothSolutions (  )  [protected]

This sets sum and number of infeasibilities (Dual and Primal).

void ClpSimplex::setValuesPassAction ( float  incomingInfeasibility,
float  allowedInfeasibility 
)

For advanced use.

When doing iterative solves things can get nasty so on values pass if incoming solution has largest infeasibility < incomingInfeasibility throw out variables from basis until largest infeasibility < allowedInfeasibility or incoming largest infeasibility. If allowedInfeasibility>= incomingInfeasibility this is always possible altough you may end up with an all slack basis.

Defaults are 1.0,10.0

double ClpSimplex::columnPrimalInfeasibility (  )  const [inline, private]

Worst column primal infeasibility.

Definition at line 632 of file ClpSimplex.hpp.

References columnPrimalInfeasibility_.

int ClpSimplex::columnPrimalSequence (  )  const [inline, private]

Sequence of worst (-1 if feasible).

Definition at line 635 of file ClpSimplex.hpp.

References columnPrimalSequence_.

double ClpSimplex::rowPrimalInfeasibility (  )  const [inline, private]

Worst row primal infeasibility.

Definition at line 638 of file ClpSimplex.hpp.

References rowPrimalInfeasibility_.

int ClpSimplex::rowPrimalSequence (  )  const [inline, private]

Sequence of worst (-1 if feasible).

Definition at line 641 of file ClpSimplex.hpp.

References rowPrimalSequence_.

double ClpSimplex::columnDualInfeasibility (  )  const [inline, private]

Worst column dual infeasibility (note - these may not be as meaningful if the problem is primal infeasible.

Definition at line 645 of file ClpSimplex.hpp.

References columnDualInfeasibility_.

int ClpSimplex::columnDualSequence (  )  const [inline, private]

Sequence of worst (-1 if feasible).

Definition at line 648 of file ClpSimplex.hpp.

References columnDualSequence_.

double ClpSimplex::rowDualInfeasibility (  )  const [inline, private]

Worst row dual infeasibility.

Definition at line 651 of file ClpSimplex.hpp.

References rowDualInfeasibility_.

int ClpSimplex::rowDualSequence (  )  const [inline, private]

Sequence of worst (-1 if feasible).

Definition at line 654 of file ClpSimplex.hpp.

References rowDualSequence_.

double ClpSimplex::primalToleranceToGetOptimal (  )  const [inline, private]

Primal tolerance needed to make dual feasible (<largeTolerance).

Definition at line 657 of file ClpSimplex.hpp.

References primalToleranceToGetOptimal_.

double ClpSimplex::remainingDualInfeasibility (  )  const [inline, private]

Remaining largest dual infeasibility.

Definition at line 660 of file ClpSimplex.hpp.

References remainingDualInfeasibility_.

double ClpSimplex::largestSolutionError (  )  const [inline, private]

Largest difference between input primal solution and computed.

Definition at line 663 of file ClpSimplex.hpp.

References largestSolutionError_.

double ClpSimplex::largeValue (  )  const [inline]

Large bound value (for complementarity etc).

Definition at line 667 of file ClpSimplex.hpp.

References largeValue_.

void ClpSimplex::setLargeValue ( double  value  ) 

Large bound value (for complementarity etc).

double ClpSimplex::largestPrimalError (  )  const [inline]

Largest error on Ax-b.

Definition at line 671 of file ClpSimplex.hpp.

References largestPrimalError_.

double ClpSimplex::largestDualError (  )  const [inline]

Largest error on basic duals.

Definition at line 674 of file ClpSimplex.hpp.

References largestDualError_.

void ClpSimplex::setLargestPrimalError ( double  value  )  [inline]

Largest error on Ax-b.

Definition at line 677 of file ClpSimplex.hpp.

References largestPrimalError_.

void ClpSimplex::setLargestDualError ( double  value  )  [inline]

Largest error on basic duals.

Definition at line 680 of file ClpSimplex.hpp.

References largestDualError_.

int* ClpSimplex::pivotVariable (  )  const [inline]

Basic variables pivoting on which rows.

Definition at line 683 of file ClpSimplex.hpp.

References pivotVariable_.

bool ClpSimplex::automaticScaling (  )  const [inline]

If automatic scaling on.

Definition at line 686 of file ClpSimplex.hpp.

References automaticScale_.

void ClpSimplex::setAutomaticScaling ( bool  onOff  )  [inline]

Large bound value (for complementarity etc).

Definition at line 688 of file ClpSimplex.hpp.

References automaticScale_.

double ClpSimplex::currentDualTolerance (  )  const [inline]

Current dual tolerance.

Definition at line 691 of file ClpSimplex.hpp.

References dualTolerance_.

void ClpSimplex::setCurrentDualTolerance ( double  value  )  [inline]

Large bound value (for complementarity etc).

Definition at line 693 of file ClpSimplex.hpp.

References dualTolerance_.

double ClpSimplex::currentPrimalTolerance (  )  const [inline]

Current primal tolerance.

Definition at line 696 of file ClpSimplex.hpp.

References primalTolerance_.

void ClpSimplex::setCurrentPrimalTolerance ( double  value  )  [inline]

Large bound value (for complementarity etc).

Definition at line 698 of file ClpSimplex.hpp.

References primalTolerance_.

int ClpSimplex::numberRefinements (  )  const [inline]

How many iterative refinements to do.

Definition at line 701 of file ClpSimplex.hpp.

References numberRefinements_.

void ClpSimplex::setNumberRefinements ( int  value  ) 

Large bound value (for complementarity etc).

double ClpSimplex::alpha (  )  const [inline]

Alpha (pivot element) for use by classes e.g. steepestedge.

Definition at line 705 of file ClpSimplex.hpp.

References alpha_.

void ClpSimplex::setAlpha ( double  value  )  [inline]

Large bound value (for complementarity etc).

Definition at line 706 of file ClpSimplex.hpp.

References alpha_.

double ClpSimplex::dualIn (  )  const [inline]

Reduced cost of last incoming for use by classes e.g. steepestedge.

Definition at line 708 of file ClpSimplex.hpp.

References dualIn_.

int ClpSimplex::pivotRow (  )  const [inline]

Pivot Row for use by classes e.g. steepestedge.

Definition at line 710 of file ClpSimplex.hpp.

References pivotRow_.

void ClpSimplex::setPivotRow ( int  value  )  [inline]

Large bound value (for complementarity etc).

Definition at line 711 of file ClpSimplex.hpp.

References pivotRow_.

double ClpSimplex::valueIncomingDual (  )  const

value of incoming variable (in Dual)

int ClpSimplex::gutsOfSolution ( double *  givenDuals,
const double *  givenPrimals,
bool  valuesPass = false 
) [protected]

May change basis and then returns number changed.

Computation of solutions may be overriden by given pi and solution

void ClpSimplex::gutsOfDelete ( int  type  )  [protected]

Does most of deletion (0 = all, 1 = most, 2 most + factorization).

void ClpSimplex::gutsOfCopy ( const ClpSimplex rhs  )  [protected]

Does most of copying.

bool ClpSimplex::createRim ( int  what,
bool  makeRowCopy = false,
int  startFinishOptions = 0 
) [protected]

puts in format I like (rowLower,rowUpper) also see StandardMatrix 1 bit does rows, 2 bit does column bounds, 4 bit does objective(s).

8 bit does solution scaling in 16 bit does rowArray and columnArray indexed vectors and makes row copy if wanted, also sets columnStart_ etc Also creates scaling arrays if needed. It does scaling if needed. 16 also moves solutions etc in to work arrays On 16 returns false if problem "bad" i.e. matrix or bounds bad If startFinishOptions is -1 then called by user in getSolution so do arrays but keep pivotVariable_

void ClpSimplex::deleteRim ( int  getRidOfFactorizationData = 2  )  [protected]

releases above arrays and does solution scaling out.

May also get rid of factorization data - 0 get rid of nothing, 1 get rid of arrays, 2 also factorization

bool ClpSimplex::sanityCheck (  )  [protected]

Sanity check on input rim data (after scaling) - returns true if okay.

double* ClpSimplex::solutionRegion ( int  section  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 754 of file ClpSimplex.hpp.

References columnActivityWork_, and rowActivityWork_.

double* ClpSimplex::djRegion ( int  section  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 756 of file ClpSimplex.hpp.

References reducedCostWork_, and rowReducedCost_.

double* ClpSimplex::lowerRegion ( int  section  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 758 of file ClpSimplex.hpp.

References columnLowerWork_, and rowLowerWork_.

Referenced by ClpNonLinearCost::changeInCost().

double* ClpSimplex::upperRegion ( int  section  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 760 of file ClpSimplex.hpp.

References columnUpperWork_, and rowUpperWork_.

Referenced by ClpNonLinearCost::changeInCost().

double* ClpSimplex::costRegion ( int  section  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 762 of file ClpSimplex.hpp.

References objectiveWork_, and rowObjectiveWork_.

double* ClpSimplex::solutionRegion (  )  const [inline]

Return region as single array.

Definition at line 765 of file ClpSimplex.hpp.

References solution_.

double* ClpSimplex::djRegion (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 767 of file ClpSimplex.hpp.

References dj_.

double* ClpSimplex::lowerRegion (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 769 of file ClpSimplex.hpp.

References lower_.

double* ClpSimplex::upperRegion (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 771 of file ClpSimplex.hpp.

References upper_.

double* ClpSimplex::costRegion (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 773 of file ClpSimplex.hpp.

References cost_.

Status ClpSimplex::getStatus ( int  sequence  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 775 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setStatus ( int  sequence,
Status  status 
) [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 777 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setInitialDenseFactorization ( bool  onOff  ) 

Normally the first factorization does sparse coding because the factorization could be singular.

This allows initial dense factorization when it is known to be safe

bool ClpSimplex::initialDenseFactorization (  )  const

Return row or column sections - not as much needed as it once was.

These just map into single arrays

int ClpSimplex::sequenceIn (  )  const [inline]

Return sequence In or Out.

Definition at line 790 of file ClpSimplex.hpp.

References sequenceIn_.

int ClpSimplex::sequenceOut (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 792 of file ClpSimplex.hpp.

References sequenceOut_.

void ClpSimplex::setSequenceIn ( int  sequence  )  [inline]

Set sequenceIn or Out.

Definition at line 795 of file ClpSimplex.hpp.

References sequenceIn_.

void ClpSimplex::setSequenceOut ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 797 of file ClpSimplex.hpp.

References sequenceOut_.

int ClpSimplex::directionIn (  )  const [inline]

Return direction In or Out.

Definition at line 800 of file ClpSimplex.hpp.

References directionIn_.

int ClpSimplex::directionOut (  )  const [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 802 of file ClpSimplex.hpp.

References directionOut_.

void ClpSimplex::setDirectionIn ( int  direction  )  [inline]

Set directionIn or Out.

Definition at line 805 of file ClpSimplex.hpp.

References directionIn_.

void ClpSimplex::setDirectionOut ( int  direction  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 807 of file ClpSimplex.hpp.

References directionOut_.

double ClpSimplex::valueOut (  )  const [inline]

Value of Out variable.

Definition at line 810 of file ClpSimplex.hpp.

References valueOut_.

int ClpSimplex::isColumn ( int  sequence  )  const [inline]

Returns 1 if sequence indicates column.

Definition at line 813 of file ClpSimplex.hpp.

References ClpModel::numberColumns_.

int ClpSimplex::sequenceWithin ( int  sequence  )  const [inline]

Returns sequence number within section.

Definition at line 816 of file ClpSimplex.hpp.

References ClpModel::numberColumns_.

double ClpSimplex::solution ( int  sequence  )  [inline]

Return row or column values.

Definition at line 819 of file ClpSimplex.hpp.

References solution_.

double& ClpSimplex::solutionAddress ( int  sequence  )  [inline]

Return address of row or column values.

Definition at line 822 of file ClpSimplex.hpp.

References solution_.

double ClpSimplex::reducedCost ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 824 of file ClpSimplex.hpp.

References dj_.

double& ClpSimplex::reducedCostAddress ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 826 of file ClpSimplex.hpp.

References dj_.

double ClpSimplex::lower ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 828 of file ClpSimplex.hpp.

References lower_.

double& ClpSimplex::lowerAddress ( int  sequence  )  [inline]

Return address of row or column lower bound.

Definition at line 831 of file ClpSimplex.hpp.

References lower_.

double ClpSimplex::upper ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 833 of file ClpSimplex.hpp.

References upper_.

double& ClpSimplex::upperAddress ( int  sequence  )  [inline]

Return address of row or column upper bound.

Definition at line 836 of file ClpSimplex.hpp.

References upper_.

double ClpSimplex::cost ( int  sequence  )  [inline]

Return row or column sections - not as much needed as it once was.

These just map into single arrays

Definition at line 838 of file ClpSimplex.hpp.

References cost_.

double& ClpSimplex::costAddress ( int  sequence  )  [inline]

Return address of row or column cost.

Definition at line 841 of file ClpSimplex.hpp.

References cost_.

double ClpSimplex::originalLower ( int  iSequence  )  const [inline]

Return original lower bound.

Definition at line 844 of file ClpSimplex.hpp.

References ClpModel::columnLower_, ClpModel::numberColumns_, and ClpModel::rowLower_.

double ClpSimplex::originalUpper ( int  iSequence  )  const [inline]

Return original lower bound.

Definition at line 848 of file ClpSimplex.hpp.

References ClpModel::columnUpper_, ClpModel::numberColumns_, and ClpModel::rowUpper_.

double ClpSimplex::theta (  )  const [inline]

Theta (pivot change).

Definition at line 852 of file ClpSimplex.hpp.

References theta_.

ClpNonLinearCost* ClpSimplex::nonLinearCost (  )  const [inline]

Return pointer to details of costs.

Definition at line 855 of file ClpSimplex.hpp.

References nonLinearCost_.

void ClpSimplex::setFakeBound ( int  sequence,
FakeBound  fakeBound 
) [inline]

Definition at line 860 of file ClpSimplex.hpp.

References ClpModel::status_.

FakeBound ClpSimplex::getFakeBound ( int  sequence  )  const [inline]

Definition at line 866 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setRowStatus ( int  sequence,
Status  status 
) [inline]

Definition at line 868 of file ClpSimplex.hpp.

References ClpModel::numberColumns_, and ClpModel::status_.

Status ClpSimplex::getRowStatus ( int  sequence  )  const [inline]

Definition at line 874 of file ClpSimplex.hpp.

References ClpModel::numberColumns_, and ClpModel::status_.

void ClpSimplex::setColumnStatus ( int  sequence,
Status  status 
) [inline]

Definition at line 876 of file ClpSimplex.hpp.

References ClpModel::status_.

Status ClpSimplex::getColumnStatus ( int  sequence  )  const [inline]

Definition at line 882 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setPivoted ( int  sequence  )  [inline]

Definition at line 884 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::clearPivoted ( int  sequence  )  [inline]

Definition at line 886 of file ClpSimplex.hpp.

References ClpModel::status_.

bool ClpSimplex::pivoted ( int  sequence  )  const [inline]

Definition at line 888 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setFlagged ( int  sequence  ) 

To flag a variable (not inline to allow for column generation).

void ClpSimplex::clearFlagged ( int  sequence  )  [inline]

Definition at line 892 of file ClpSimplex.hpp.

References ClpModel::status_.

bool ClpSimplex::flagged ( int  sequence  )  const [inline]

Definition at line 896 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::setActive ( int  iRow  )  [inline]

To say row active in primal pivot row choice.

Definition at line 899 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::clearActive ( int  iRow  )  [inline]

Definition at line 903 of file ClpSimplex.hpp.

References ClpModel::status_.

bool ClpSimplex::active ( int  iRow  )  const [inline]

Definition at line 907 of file ClpSimplex.hpp.

References ClpModel::status_.

void ClpSimplex::createStatus (  ) 

Set up status array (can be used by OsiClp).

Also can be used to set up all slack basis

void ClpSimplex::allSlackBasis ( bool  resetSolution = false  ) 

Sets up all slack basis and resets solution to as it was after initial load or readMps.

int ClpSimplex::lastBadIteration (  )  const [inline]

So we know when to be cautious.

Definition at line 917 of file ClpSimplex.hpp.

References lastBadIteration_.

int ClpSimplex::progressFlag (  )  const [inline]

Progress flag - at present 0 bit says artificials out.

Definition at line 920 of file ClpSimplex.hpp.

References progressFlag_.

void ClpSimplex::forceFactorization ( int  value  )  [inline]

Force re-factorization early.

Definition at line 923 of file ClpSimplex.hpp.

References forceFactorization_.

double ClpSimplex::rawObjectiveValue (  )  const [inline]

Raw objective value (so always minimize in primal).

Reimplemented from ClpModel.

Definition at line 926 of file ClpSimplex.hpp.

References ClpModel::objectiveValue_.

void ClpSimplex::computeObjectiveValue (  ) 

Compute objective value from solution and put in objectiveValue_.

int ClpSimplex::numberExtraRows (  )  const [inline]

Number of extra rows.

These are ones which will be dynamically created each iteration. This is for GUB but may have other uses.

Definition at line 933 of file ClpSimplex.hpp.

References numberExtraRows_.

int ClpSimplex::maximumBasic (  )  const [inline]

Maximum number of basic variables - can be more than number of rows if GUB.

Definition at line 937 of file ClpSimplex.hpp.

References maximumBasic_.

void ClpSimplex::generateCpp ( FILE *  fp,
bool  defaultFactor = false 
)

Create C++ lines to get to current state.

unsigned int ClpSimplex::specialOptions (  )  const [inline]

Definition at line 968 of file ClpSimplex.hpp.

References specialOptions_.

void ClpSimplex::setSpecialOptions ( unsigned int  value  )  [inline]

Definition at line 970 of file ClpSimplex.hpp.

References specialOptions_.

void ClpSimplex::getBInvARow ( int  row,
double *  z,
double *  slack = NULL 
)

Get a row of the tableau (slack part in slack if not NULL).

void ClpSimplex::getBInvRow ( int  row,
double *  z 
)

Get a row of the basis inverse.

void ClpSimplex::getBInvACol ( int  col,
double *  vec 
)

Get a column of the tableau.

void ClpSimplex::getBInvCol ( int  col,
double *  vec 
)

Get a column of the basis inverse.

void ClpSimplex::getBasics ( int *  index  ) 

Get basic indices (order of indices corresponds to the order of elements in a vector retured by getBInvACol() and getBInvCol()).

void ClpSimplex::setObjectiveCoefficient ( int  elementIndex,
double  elementValue 
)

Set an objective function coefficient.

Reimplemented from ClpModel.

Referenced by setObjCoeff().

void ClpSimplex::setObjCoeff ( int  elementIndex,
double  elementValue 
) [inline]

Set an objective function coefficient.

Reimplemented from ClpModel.

Definition at line 1003 of file ClpSimplex.hpp.

References setObjectiveCoefficient().

void ClpSimplex::setColumnLower ( int  elementIndex,
double  elementValue 
)

Set a single column lower bound
Use -DBL_MAX for -infinity.

Reimplemented from ClpModel.

Referenced by setColLower().

void ClpSimplex::setColumnUpper ( int  elementIndex,
double  elementValue 
)

Set a single column upper bound
Use DBL_MAX for infinity.

Reimplemented from ClpModel.

Referenced by setColUpper().

void ClpSimplex::setColumnBounds ( int  elementIndex,
double  lower,
double  upper 
)

Set a single column lower and upper bound.

Reimplemented from ClpModel.

Referenced by setColBounds().

void ClpSimplex::setColumnSetBounds ( const int *  indexFirst,
const int *  indexLast,
const double *  boundList 
)

Set the bounds on a number of columns simultaneously
The default implementation just invokes setColLower() and setColUpper() over and over again.

Parameters:
indexFirst,indexLast pointers to the beginning and after the end of the array of the indices of the variables whose either bound changes
boundList the new lower/upper bound pairs for the variables

Reimplemented from ClpModel.

Referenced by setColSetBounds().

void ClpSimplex::setColLower ( int  elementIndex,
double  elementValue 
) [inline]

Set a single column lower bound
Use -DBL_MAX for -infinity.

Reimplemented from ClpModel.

Definition at line 1032 of file ClpSimplex.hpp.

References setColumnLower().

void ClpSimplex::setColUpper ( int  elementIndex,
double  elementValue 
) [inline]

Set a single column upper bound
Use DBL_MAX for infinity.

Reimplemented from ClpModel.

Definition at line 1036 of file ClpSimplex.hpp.

References setColumnUpper().

void ClpSimplex::setColBounds ( int  elementIndex,
double  lower,
double  upper 
) [inline]

Set a single column lower and upper bound.

Reimplemented from ClpModel.

Definition at line 1040 of file ClpSimplex.hpp.

References setColumnBounds().

void ClpSimplex::setColSetBounds ( const int *  indexFirst,
const int *  indexLast,
const double *  boundList 
) [inline]

Set the bounds on a number of columns simultaneously
.

Parameters:
indexFirst,indexLast pointers to the beginning and after the end of the array of the indices of the variables whose either bound changes
boundList the new lower/upper bound pairs for the variables

Reimplemented from ClpModel.

Definition at line 1050 of file ClpSimplex.hpp.

References setColumnSetBounds().

void ClpSimplex::setRowLower ( int  elementIndex,
double  elementValue 
)

Set a single row lower bound
Use -DBL_MAX for -infinity.

Reimplemented from ClpModel.

void ClpSimplex::setRowUpper ( int  elementIndex,
double  elementValue 
)

Set a single row upper bound
Use DBL_MAX for infinity.

Reimplemented from ClpModel.

void ClpSimplex::setRowBounds ( int  elementIndex,
double  lower,
double  upper 
)

Set a single row lower and upper bound.

Reimplemented from ClpModel.

void ClpSimplex::setRowSetBounds ( const int *  indexFirst,
const int *  indexLast,
const double *  boundList 
)

Set the bounds on a number of rows simultaneously
.

Parameters:
indexFirst,indexLast pointers to the beginning and after the end of the array of the indices of the constraints whose either bound changes
boundList the new lower/upper bound pairs for the constraints

Reimplemented from ClpModel.


Friends And Related Function Documentation

friend class OsiClpSolverInterface [friend]

Allow OsiClp certain perks.

Definition at line 1289 of file ClpSimplex.hpp.

void ClpSimplexUnitTest ( const std::string &  mpsDir,
const std::string &  netlibDir 
) [friend]

A function that tests the methods in the ClpSimplex class.

The only reason for it not to be a member method is that this way it doesn't have to be compiled into the library. And that's a gain, because the library should be compiled with optimization on, but this method should be compiled with debugging.

It also does some testing of ClpFactorization class


Member Data Documentation

double ClpSimplex::columnPrimalInfeasibility_ [protected]

Worst column primal infeasibility.

Definition at line 1089 of file ClpSimplex.hpp.

Referenced by columnPrimalInfeasibility().

double ClpSimplex::rowPrimalInfeasibility_ [protected]

Worst row primal infeasibility.

Definition at line 1091 of file ClpSimplex.hpp.

Referenced by rowPrimalInfeasibility().

int ClpSimplex::columnPrimalSequence_ [protected]

Sequence of worst (-1 if feasible).

Definition at line 1093 of file ClpSimplex.hpp.

Referenced by columnPrimalSequence().

int ClpSimplex::rowPrimalSequence_ [protected]

Sequence of worst (-1 if feasible).

Definition at line 1095 of file ClpSimplex.hpp.

Referenced by rowPrimalSequence().

double ClpSimplex::columnDualInfeasibility_ [protected]

Worst column dual infeasibility.

Definition at line 1097 of file ClpSimplex.hpp.

Referenced by columnDualInfeasibility().

double ClpSimplex::rowDualInfeasibility_ [protected]

Worst row dual infeasibility.

Definition at line 1099 of file ClpSimplex.hpp.

Referenced by rowDualInfeasibility().

int ClpSimplex::columnDualSequence_ [protected]

Sequence of worst (-1 if feasible).

Definition at line 1101 of file ClpSimplex.hpp.

Referenced by columnDualSequence().

int ClpSimplex::rowDualSequence_ [protected]

Sequence of worst (-1 if feasible).

Definition at line 1103 of file ClpSimplex.hpp.

Referenced by rowDualSequence().

double ClpSimplex::primalToleranceToGetOptimal_ [protected]

Primal tolerance needed to make dual feasible (<largeTolerance).

Definition at line 1105 of file ClpSimplex.hpp.

Referenced by primalToleranceToGetOptimal().

double ClpSimplex::remainingDualInfeasibility_ [protected]

Remaining largest dual infeasibility.

Definition at line 1107 of file ClpSimplex.hpp.

Referenced by remainingDualInfeasibility().

double ClpSimplex::largeValue_ [protected]

Large bound value (for complementarity etc).

Definition at line 1109 of file ClpSimplex.hpp.

Referenced by largeValue().

double ClpSimplex::largestPrimalError_ [protected]

Largest error on Ax-b.

Definition at line 1111 of file ClpSimplex.hpp.

Referenced by largestPrimalError(), and setLargestPrimalError().

double ClpSimplex::largestDualError_ [protected]

Largest error on basic duals.

Definition at line 1113 of file ClpSimplex.hpp.

Referenced by largestDualError(), and setLargestDualError().

double ClpSimplex::largestSolutionError_ [protected]

Largest difference between input primal solution and computed.

Definition at line 1115 of file ClpSimplex.hpp.

Referenced by largestSolutionError().

double ClpSimplex::dualBound_ [protected]

Dual bound.

Definition at line 1117 of file ClpSimplex.hpp.

Referenced by dualBound().

double ClpSimplex::alpha_ [protected]

Alpha (pivot element).

Definition at line 1119 of file ClpSimplex.hpp.

Referenced by alpha(), and setAlpha().

double ClpSimplex::theta_ [protected]

Theta (pivot change).

Definition at line 1121 of file ClpSimplex.hpp.

Referenced by theta().

double ClpSimplex::lowerIn_ [protected]

Lower Bound on In variable.

Definition at line 1123 of file ClpSimplex.hpp.

double ClpSimplex::valueIn_ [protected]

Value of In variable.

Definition at line 1125 of file ClpSimplex.hpp.

double ClpSimplex::upperIn_ [protected]

Upper Bound on In variable.

Definition at line 1127 of file ClpSimplex.hpp.

double ClpSimplex::dualIn_ [protected]

Reduced cost of In variable.

Definition at line 1129 of file ClpSimplex.hpp.

Referenced by dualIn().

double ClpSimplex::lowerOut_ [protected]

Lower Bound on Out variable.

Definition at line 1131 of file ClpSimplex.hpp.

double ClpSimplex::valueOut_ [protected]

Value of Out variable.

Definition at line 1133 of file ClpSimplex.hpp.

Referenced by valueOut().

double ClpSimplex::upperOut_ [protected]

Upper Bound on Out variable.

Definition at line 1135 of file ClpSimplex.hpp.

double ClpSimplex::dualOut_ [protected]

Infeasibility (dual) or ? (primal) of Out variable.

Definition at line 1137 of file ClpSimplex.hpp.

double ClpSimplex::dualTolerance_ [protected]

Current dual tolerance for algorithm.

Definition at line 1139 of file ClpSimplex.hpp.

Referenced by currentDualTolerance(), and setCurrentDualTolerance().

double ClpSimplex::primalTolerance_ [protected]

Current primal tolerance for algorithm.

Definition at line 1141 of file ClpSimplex.hpp.

Referenced by currentPrimalTolerance(), and setCurrentPrimalTolerance().

double ClpSimplex::sumDualInfeasibilities_ [protected]

Sum of dual infeasibilities.

Definition at line 1143 of file ClpSimplex.hpp.

Referenced by setSumDualInfeasibilities(), and sumDualInfeasibilities().

double ClpSimplex::sumPrimalInfeasibilities_ [protected]

Sum of primal infeasibilities.

Definition at line 1145 of file ClpSimplex.hpp.

Referenced by setSumPrimalInfeasibilities(), and sumPrimalInfeasibilities().

double ClpSimplex::infeasibilityCost_ [protected]

Weight assigned to being infeasible in primal.

Definition at line 1147 of file ClpSimplex.hpp.

Referenced by infeasibilityCost().

double ClpSimplex::sumOfRelaxedDualInfeasibilities_ [protected]

Sum of Dual infeasibilities using tolerance based on error in duals.

Definition at line 1149 of file ClpSimplex.hpp.

Referenced by setSumOfRelaxedDualInfeasibilities(), and sumOfRelaxedDualInfeasibilities().

double ClpSimplex::sumOfRelaxedPrimalInfeasibilities_ [protected]

Sum of Primal infeasibilities using tolerance based on error in primals.

Definition at line 1151 of file ClpSimplex.hpp.

Referenced by setSumOfRelaxedPrimalInfeasibilities(), and sumOfRelaxedPrimalInfeasibilities().

double ClpSimplex::acceptablePivot_ [protected]

Acceptable pivot value just after factorization.

Definition at line 1153 of file ClpSimplex.hpp.

double* ClpSimplex::lower_ [protected]

Working copy of lower bounds (Owner of arrays below).

Definition at line 1155 of file ClpSimplex.hpp.

Referenced by lower(), lowerAddress(), and lowerRegion().

double* ClpSimplex::rowLowerWork_ [protected]

Row lower bounds - working copy.

Definition at line 1157 of file ClpSimplex.hpp.

Referenced by lowerRegion().

double* ClpSimplex::columnLowerWork_ [protected]

Column lower bounds - working copy.

Definition at line 1159 of file ClpSimplex.hpp.

Referenced by lowerRegion().

double* ClpSimplex::upper_ [protected]

Working copy of upper bounds (Owner of arrays below).

Definition at line 1161 of file ClpSimplex.hpp.

Referenced by upper(), upperAddress(), and upperRegion().

double* ClpSimplex::rowUpperWork_ [protected]

Row upper bounds - working copy.

Definition at line 1163 of file ClpSimplex.hpp.

Referenced by upperRegion().

double* ClpSimplex::columnUpperWork_ [protected]

Column upper bounds - working copy.

Definition at line 1165 of file ClpSimplex.hpp.

Referenced by upperRegion().

double* ClpSimplex::cost_ [protected]

Working copy of objective (Owner of arrays below).

Definition at line 1167 of file ClpSimplex.hpp.

Referenced by cost(), costAddress(), and costRegion().

double* ClpSimplex::rowObjectiveWork_ [protected]

Row objective - working copy.

Definition at line 1169 of file ClpSimplex.hpp.

Referenced by costRegion().

double* ClpSimplex::objectiveWork_ [protected]

Column objective - working copy.

Definition at line 1171 of file ClpSimplex.hpp.

Referenced by costRegion().

CoinIndexedVector* ClpSimplex::rowArray_[6] [protected]

Useful row length arrays.

Definition at line 1173 of file ClpSimplex.hpp.

Referenced by rowArray().

CoinIndexedVector* ClpSimplex::columnArray_[6] [protected]

Useful column length arrays.

Definition at line 1175 of file ClpSimplex.hpp.

Referenced by columnArray().

int ClpSimplex::sequenceIn_ [protected]

Sequence of In variable.

Definition at line 1177 of file ClpSimplex.hpp.

Referenced by sequenceIn(), and setSequenceIn().

int ClpSimplex::directionIn_ [protected]

Direction of In, 1 going up, -1 going down, 0 not a clude.

Definition at line 1179 of file ClpSimplex.hpp.

Referenced by directionIn(), and setDirectionIn().

int ClpSimplex::sequenceOut_ [protected]

Sequence of Out variable.

Definition at line 1181 of file ClpSimplex.hpp.

Referenced by sequenceOut(), and setSequenceOut().

int ClpSimplex::directionOut_ [protected]

Direction of Out, 1 to upper bound, -1 to lower bound, 0 - superbasic.

Definition at line 1183 of file ClpSimplex.hpp.

Referenced by directionOut(), and setDirectionOut().

int ClpSimplex::pivotRow_ [protected]

Pivot Row.

Definition at line 1185 of file ClpSimplex.hpp.

Referenced by pivotRow(), and setPivotRow().

int ClpSimplex::lastGoodIteration_ [protected]

Last good iteration (immediately after a re-factorization).

Definition at line 1187 of file ClpSimplex.hpp.

double* ClpSimplex::dj_ [protected]

Working copy of reduced costs (Owner of arrays below).

Definition at line 1189 of file ClpSimplex.hpp.

Referenced by djRegion(), reducedCost(), and reducedCostAddress().

double* ClpSimplex::rowReducedCost_ [protected]

Reduced costs of slacks not same as duals (or - duals).

Definition at line 1191 of file ClpSimplex.hpp.

Referenced by djRegion().

double* ClpSimplex::reducedCostWork_ [protected]

Possible scaled reduced costs.

Definition at line 1193 of file ClpSimplex.hpp.

Referenced by djRegion().

double* ClpSimplex::solution_ [protected]

Working copy of primal solution (Owner of arrays below).

Definition at line 1195 of file ClpSimplex.hpp.

Referenced by solution(), solutionAddress(), and solutionRegion().

double* ClpSimplex::rowActivityWork_ [protected]

Row activities - working copy.

Definition at line 1197 of file ClpSimplex.hpp.

Referenced by solutionRegion().

double* ClpSimplex::columnActivityWork_ [protected]

Column activities - working copy.

Definition at line 1199 of file ClpSimplex.hpp.

Referenced by solutionRegion().

ClpSimplex* ClpSimplex::auxiliaryModel_ [protected]

Auxiliary model.

Definition at line 1201 of file ClpSimplex.hpp.

Referenced by usingAuxiliaryModel().

int ClpSimplex::numberDualInfeasibilities_ [protected]

Number of dual infeasibilities.

Definition at line 1203 of file ClpSimplex.hpp.

Referenced by dualFeasible(), numberDualInfeasibilities(), and setNumberDualInfeasibilities().

int ClpSimplex::numberDualInfeasibilitiesWithoutFree_ [protected]

Number of dual infeasibilities (without free).

Definition at line 1205 of file ClpSimplex.hpp.

int ClpSimplex::numberPrimalInfeasibilities_ [protected]

Number of primal infeasibilities.

Definition at line 1207 of file ClpSimplex.hpp.

Referenced by numberPrimalInfeasibilities(), primalFeasible(), and setNumberPrimalInfeasibilities().

int ClpSimplex::numberRefinements_ [protected]

How many iterative refinements to do.

Definition at line 1209 of file ClpSimplex.hpp.

Referenced by numberRefinements().

ClpDualRowPivot* ClpSimplex::dualRowPivot_ [protected]

dual row pivot choice

Definition at line 1211 of file ClpSimplex.hpp.

ClpPrimalColumnPivot* ClpSimplex::primalColumnPivot_ [protected]

primal column pivot choice

Definition at line 1213 of file ClpSimplex.hpp.

int* ClpSimplex::pivotVariable_ [protected]

Basic variables pivoting on which rows.

Definition at line 1215 of file ClpSimplex.hpp.

Referenced by pivotVariable().

ClpFactorization* ClpSimplex::factorization_ [protected]

factorization

Definition at line 1217 of file ClpSimplex.hpp.

Referenced by factorization().

double* ClpSimplex::savedSolution_ [protected]

Saved version of solution.

Definition at line 1219 of file ClpSimplex.hpp.

int ClpSimplex::numberTimesOptimal_ [protected]

Number of times code has tentatively thought optimal.

Definition at line 1221 of file ClpSimplex.hpp.

int ClpSimplex::changeMade_ [protected]

If change has been made (first attempt at stopping looping).

Definition at line 1223 of file ClpSimplex.hpp.

int ClpSimplex::algorithm_ [protected]

Algorithm >0 == Primal, <0 == Dual.

Definition at line 1225 of file ClpSimplex.hpp.

Referenced by algorithm(), and setAlgorithm().

int ClpSimplex::forceFactorization_ [protected]

Now for some reliability aids This forces re-factorization early.

Definition at line 1228 of file ClpSimplex.hpp.

Referenced by forceFactorization().

int ClpSimplex::perturbation_ [protected]

Perturbation: -50 to +50 - perturb by this power of ten (-6 sounds good) 100 - auto perturb if takes too long (1.0e-6 largest nonzero) 101 - we are perturbed 102 - don't try perturbing again default is 100.

Definition at line 1236 of file ClpSimplex.hpp.

Referenced by perturbation().

unsigned char* ClpSimplex::saveStatus_ [protected]

Saved status regions.

Definition at line 1238 of file ClpSimplex.hpp.

ClpNonLinearCost* ClpSimplex::nonLinearCost_ [protected]

Very wasteful way of dealing with infeasibilities in primal.

However it will allow non-linearities and use of dual analysis. If it doesn't work it can easily be replaced.

Definition at line 1243 of file ClpSimplex.hpp.

Referenced by nonLinearCost().

unsigned int ClpSimplex::specialOptions_ [protected]

For advanced options See get and set for meaning.

Definition at line 1247 of file ClpSimplex.hpp.

Referenced by setSpecialOptions(), and specialOptions().

int ClpSimplex::lastBadIteration_ [protected]

So we know when to be cautious.

Definition at line 1249 of file ClpSimplex.hpp.

Referenced by lastBadIteration().

int ClpSimplex::lastFlaggedIteration_ [protected]

So we know when to open up again.

Definition at line 1251 of file ClpSimplex.hpp.

int ClpSimplex::numberFake_ [protected]

Can be used for count of fake bounds (dual) or fake costs (primal).

Definition at line 1253 of file ClpSimplex.hpp.

int ClpSimplex::numberChanged_ [protected]

Can be used for count of changed costs (dual) or changed bounds (primal).

Definition at line 1255 of file ClpSimplex.hpp.

int ClpSimplex::progressFlag_ [protected]

Progress flag - at present 0 bit says artificials out, 1 free in.

Definition at line 1257 of file ClpSimplex.hpp.

Referenced by progressFlag().

int ClpSimplex::firstFree_ [protected]

First free/super-basic variable (-1 if none).

Definition at line 1259 of file ClpSimplex.hpp.

int ClpSimplex::numberExtraRows_ [protected]

Number of extra rows.

These are ones which will be dynamically created each iteration. This is for GUB but may have other uses.

Definition at line 1263 of file ClpSimplex.hpp.

Referenced by numberExtraRows().

int ClpSimplex::maximumBasic_ [protected]

Maximum number of basic variables - can be more than number of rows if GUB.

Definition at line 1266 of file ClpSimplex.hpp.

Referenced by maximumBasic().

float ClpSimplex::incomingInfeasibility_ [protected]

For advanced use.

When doing iterative solves things can get nasty so on values pass if incoming solution has largest infeasibility < incomingInfeasibility throw out variables from basis until largest infeasibility < allowedInfeasibility. if allowedInfeasibility>= incomingInfeasibility this is always possible altough you may end up with an all slack basis.

Defaults are 1.0,10.0

Definition at line 1276 of file ClpSimplex.hpp.

float ClpSimplex::allowedInfeasibility_ [protected]

Spare int array for passing information [0]!=0 switches on.

Definition at line 1277 of file ClpSimplex.hpp.

int ClpSimplex::automaticScale_ [protected]

Automatic scaling of objective and rhs and bounds.

Definition at line 1279 of file ClpSimplex.hpp.

Referenced by automaticScaling(), and setAutomaticScaling().

ClpSimplexProgress* ClpSimplex::progress_ [protected]

For dealing with all issues of cycling etc.

Definition at line 1281 of file ClpSimplex.hpp.

int ClpSimplex::spareIntArray_[4] [mutable]

Spare int array for passing information [0]!=0 switches on.

Definition at line 1284 of file ClpSimplex.hpp.

double ClpSimplex::spareDoubleArray_[4] [mutable]

Spare double array for passing information [0]!=0 switches on.

Definition at line 1286 of file ClpSimplex.hpp.


The documentation for this class was generated from the following file:
Generated on Thu May 15 22:00:27 2008 by  doxygen 1.4.7