AbcSimplexPrimal Class Reference

This solves LPs using the primal simplex method. More...

#include <AbcSimplexPrimal.hpp>

Inheritance diagram for AbcSimplexPrimal:
Inheritance graph
[legend]
Collaboration diagram for AbcSimplexPrimal:
Collaboration graph
[legend]

List of all members.

Classes

struct  pivotStruct

Public Member Functions

Description of algorithm



int primal (int ifValuesPass=0, int startFinishOptions=0)
 Primal algorithm.
For advanced users



void alwaysOptimal (bool onOff)
 Do not change infeasibility cost and always say optimal.
bool alwaysOptimal () const
 Do not change infeasibility cost and always say optimal.
void exactOutgoing (bool onOff)
 Normally outgoing variables can go out to slightly negative values (but within tolerance) - this is to help stability and and degeneracy.
bool exactOutgoing () const
 Do not change infeasibility cost and always say optimal.
Functions used in primal



int whileIterating (int valuesOption)
 This has the flow between re-factorizations.
int pivotResult (int ifValuesPass=0)
 Do last half of an iteration.
int pivotResult4 (int ifValuesPass=0)
 This has the flow between re-factorizations.
int updatePrimalsInPrimal (CoinIndexedVector *rowArray, double theta, double &objectiveChange, int valuesPass)
 The primals are updated by the given array.
void updatePrimalsInPrimal (CoinIndexedVector &rowArray, double theta, bool valuesPass)
 The primals are updated by the given array.
void createUpdateDuals (CoinIndexedVector &rowArray, const double *originalCost, const double extraCost[4], double &objectiveChange, int valuesPass)
 After rowArray will have cost changes for use next iteration.
double updateMinorCandidate (const CoinIndexedVector &updateBy, CoinIndexedVector &candidate, int sequenceIn)
 Update minor candidate vector - new reduced cost returned later try and get change in reduced cost (then may not need sequence in).
void updatePartialUpdate (CoinIndexedVector &partialUpdate)
 Update partial Ftran by R update.
int doFTUpdate (CoinIndexedVector *vector[4])
 Do FT update as separate function for minor iterations (nonzero return code on problems).
void primalRow (CoinIndexedVector *rowArray, CoinIndexedVector *rhsArray, CoinIndexedVector *spareArray, int valuesPass)
 Row array has pivot column This chooses pivot row.
void primalRow (CoinIndexedVector *rowArray, CoinIndexedVector *rhsArray, CoinIndexedVector *spareArray, pivotStruct &stuff)
 This has the flow between re-factorizations.
void primalColumn (CoinPartitionedVector *updateArray, CoinPartitionedVector *spareRow2, CoinPartitionedVector *spareColumn1)
 Chooses primal pivot column updateArray has cost updates (also use pivotRow_ from last iteration) Would be faster with separate region to scan and will have this (with square of infeasibility) when steepest For easy problems we can just choose one of the first columns we look at.
int checkUnbounded (CoinIndexedVector *ray, CoinIndexedVector *spare, double changeCost)
 Checks if tentative optimal actually means unbounded in primal Returns -3 if not, 2 if is unbounded.
void statusOfProblemInPrimal (int type)
 Refactorizes if necessary Checks if finished.
void perturb (int type)
 Perturbs problem (method depends on perturbation()).
bool unPerturb ()
 Take off effect of perturbation and say whether to try dual.
int unflag ()
 Unflag all variables and return number unflagged.
int nextSuperBasic (int superBasicType, CoinIndexedVector *columnArray)
 Get next superbasic -1 if none, Normal type is 1 If type is 3 then initializes sorted list if 2 uses list.
void primalRay (CoinIndexedVector *rowArray)
 Create primal ray.
void clearAll ()
 Clears all bits and clears rowArray[1] etc.
int lexSolve ()
 Sort of lexicographic resolve.

Detailed Description

This solves LPs using the primal simplex method.

It inherits from AbcSimplex. It has no data of its own and is never created - only cast from a AbcSimplex object at algorithm time.

Definition at line 23 of file AbcSimplexPrimal.hpp.


Member Function Documentation

int AbcSimplexPrimal::primal ( int  ifValuesPass = 0,
int  startFinishOptions = 0 
)

Primal algorithm.

Method

It tries to be a single phase approach with a weight of 1.0 being given to getting optimal and a weight of infeasibilityCost_ being given to getting primal feasible. In this version I have tried to be clever in a stupid way. The idea of fake bounds in dual seems to work so the primal analogue would be that of getting bounds on reduced costs (by a presolve approach) and using these for being above or below feasible region. I decided to waste memory and keep these explicitly. This allows for non-linear costs! I have not tested non-linear costs but will be glad to do something if a reasonable example is provided.

The code is designed to take advantage of sparsity so arrays are seldom zeroed out from scratch or gone over in their entirety. The only exception is a full scan to find incoming variable for Dantzig row choice. For steepest edge we keep an updated list of dual infeasibilities (actually squares). On easy problems we don't need full scan - just pick first reasonable. This method has not been coded.

One problem is how to tackle degeneracy and accuracy. At present I am using the modification of costs which I put in OSL and which was extended by Gill et al. I am still not sure whether we will also need explicit perturbation.

The flow of primal is three while loops as follows:

while (not finished) {

while (not clean solution) {

Factorize and/or clean up solution by changing bounds so primal feasible. If looks finished check fake primal bounds. Repeat until status is iterating (-1) or finished (0,1,2)

}

while (status==-1) {

Iterate until no pivot in or out or time to re-factorize.

Flow is:

choose pivot column (incoming variable). if none then we are primal feasible so looks as if done but we need to break and check bounds etc.

Get pivot column in tableau

Choose outgoing row. If we don't find one then we look primal unbounded so break and check bounds etc. (Also the pivot tolerance is larger after any iterations so that may be reason)

If we do find outgoing row, we may have to adjust costs to keep going forwards (anti-degeneracy). Check pivot will be stable and if unstable throw away iteration and break to re-factorize. If minor error re-factorize after iteration.

Update everything (this may involve changing bounds on variables to stay primal feasible.

}

}

TODO's (or maybe not)

At present we never check we are going forwards. I overdid that in OSL so will try and make a last resort.

Needs partial scan pivot in option.

May need other anti-degeneracy measures, especially if we try and use loose tolerances as a way to solve in fewer iterations.

I like idea of dynamic scaling. This gives opportunity to decouple different implications of scaling for accuracy, iteration count and feasibility tolerance.

for use of exotic parameter startFinishoptions see Clpsimplex.hpp

Reimplemented from ClpSimplex.

void AbcSimplexPrimal::alwaysOptimal ( bool  onOff  ) 

Do not change infeasibility cost and always say optimal.

bool AbcSimplexPrimal::alwaysOptimal (  )  const

Do not change infeasibility cost and always say optimal.

void AbcSimplexPrimal::exactOutgoing ( bool  onOff  ) 

Normally outgoing variables can go out to slightly negative values (but within tolerance) - this is to help stability and and degeneracy.

This can be switched off

bool AbcSimplexPrimal::exactOutgoing (  )  const

Do not change infeasibility cost and always say optimal.

int AbcSimplexPrimal::whileIterating ( int  valuesOption  ) 

This has the flow between re-factorizations.

Returns a code to say where decision to exit was made Problem status set to:

-2 re-factorize -4 Looks optimal/infeasible -5 Looks unbounded +3 max iterations

valuesOption has original value of valuesPass

int AbcSimplexPrimal::pivotResult ( int  ifValuesPass = 0  ) 

Do last half of an iteration.

This is split out so people can force incoming variable. If solveType_ is 2 then this may re-factorize while normally it would exit to re-factorize. Return codes Reasons to come out (normal mode/user mode): -1 normal -2 factorize now - good iteration/ NA -3 slight inaccuracy - refactorize - iteration done/ same but factor done -4 inaccuracy - refactorize - no iteration/ NA -5 something flagged - go round again/ pivot not possible +2 looks unbounded +3 max iterations (iteration done)

With solveType_ ==2 this should Pivot in a variable and choose an outgoing one. Assumes primal feasible - will not go through a bound. Returns step length in theta Returns ray in ray_

int AbcSimplexPrimal::pivotResult4 ( int  ifValuesPass = 0  ) 

This has the flow between re-factorizations.

Returns a code to say where decision to exit was made Problem status set to:

-2 re-factorize -4 Looks optimal/infeasible -5 Looks unbounded +3 max iterations

valuesOption has original value of valuesPass

int AbcSimplexPrimal::updatePrimalsInPrimal ( CoinIndexedVector rowArray,
double  theta,
double &  objectiveChange,
int  valuesPass 
)

The primals are updated by the given array.

Returns number of infeasibilities. After rowArray will have cost changes for use next iteration

void AbcSimplexPrimal::updatePrimalsInPrimal ( CoinIndexedVector rowArray,
double  theta,
bool  valuesPass 
)

The primals are updated by the given array.

costs are changed

void AbcSimplexPrimal::createUpdateDuals ( CoinIndexedVector rowArray,
const double *  originalCost,
const double  extraCost[4],
double &  objectiveChange,
int  valuesPass 
)

After rowArray will have cost changes for use next iteration.

double AbcSimplexPrimal::updateMinorCandidate ( const CoinIndexedVector updateBy,
CoinIndexedVector candidate,
int  sequenceIn 
)

Update minor candidate vector - new reduced cost returned later try and get change in reduced cost (then may not need sequence in).

void AbcSimplexPrimal::updatePartialUpdate ( CoinIndexedVector partialUpdate  ) 

Update partial Ftran by R update.

int AbcSimplexPrimal::doFTUpdate ( CoinIndexedVector vector[4]  ) 

Do FT update as separate function for minor iterations (nonzero return code on problems).

void AbcSimplexPrimal::primalRow ( CoinIndexedVector rowArray,
CoinIndexedVector rhsArray,
CoinIndexedVector spareArray,
int  valuesPass 
)

Row array has pivot column This chooses pivot row.

Rhs array is used for distance to next bound (for speed) For speed, we may need to go to a bucket approach when many variables go through bounds If valuesPass non-zero then compute dj for direction

void AbcSimplexPrimal::primalRow ( CoinIndexedVector rowArray,
CoinIndexedVector rhsArray,
CoinIndexedVector spareArray,
pivotStruct stuff 
)

This has the flow between re-factorizations.

Returns a code to say where decision to exit was made Problem status set to:

-2 re-factorize -4 Looks optimal/infeasible -5 Looks unbounded +3 max iterations

valuesOption has original value of valuesPass

void AbcSimplexPrimal::primalColumn ( CoinPartitionedVector updateArray,
CoinPartitionedVector spareRow2,
CoinPartitionedVector spareColumn1 
)

Chooses primal pivot column updateArray has cost updates (also use pivotRow_ from last iteration) Would be faster with separate region to scan and will have this (with square of infeasibility) when steepest For easy problems we can just choose one of the first columns we look at.

int AbcSimplexPrimal::checkUnbounded ( CoinIndexedVector ray,
CoinIndexedVector spare,
double  changeCost 
)

Checks if tentative optimal actually means unbounded in primal Returns -3 if not, 2 if is unbounded.

void AbcSimplexPrimal::statusOfProblemInPrimal ( int  type  ) 

Refactorizes if necessary Checks if finished.

Updates status. lastCleaned refers to iteration at which some objective/feasibility cleaning too place.

type - 0 initial so set up save arrays etc

  • 1 normal -if good update save

2 restoring from saved

void AbcSimplexPrimal::perturb ( int  type  ) 

Perturbs problem (method depends on perturbation()).

bool AbcSimplexPrimal::unPerturb (  ) 

Take off effect of perturbation and say whether to try dual.

int AbcSimplexPrimal::unflag (  ) 

Unflag all variables and return number unflagged.

int AbcSimplexPrimal::nextSuperBasic ( int  superBasicType,
CoinIndexedVector columnArray 
)

Get next superbasic -1 if none, Normal type is 1 If type is 3 then initializes sorted list if 2 uses list.

void AbcSimplexPrimal::primalRay ( CoinIndexedVector rowArray  ) 

Create primal ray.

void AbcSimplexPrimal::clearAll (  ) 

Clears all bits and clears rowArray[1] etc.

int AbcSimplexPrimal::lexSolve (  ) 

Sort of lexicographic resolve.


The documentation for this class was generated from the following file:

Generated on 5 Apr 2015 by  doxygen 1.6.1