Prev Next Hessian.cpp Headings

Hessian: Example and Test
 

# include <cppad/cppad.hpp>
namespace { // ---------------------------------------------------------
// define the template function HessianCases<Vector> in empty namespace
template <typename Vector> 
bool HessianCases()
{	bool ok = true;
	using CppAD::AD;
	using CppAD::NearEqual;
	using CppAD::exp;
	using CppAD::sin;
	using CppAD::cos;

	// domain space vector
	size_t n = 2;
	CPPAD_TEST_VECTOR< AD<double> >  X(n);
	X[0] = 1.;
	X[1] = 2.;

	// declare independent variables and starting recording
	CppAD::Independent(X);

	// a calculation between the domain and range values
	AD<double> Square = X[0] * X[0];

	// range space vector
	size_t m = 3;
	CPPAD_TEST_VECTOR< AD<double> >  Y(m);
	Y[0] = Square * exp( X[1] );
	Y[1] = Square * sin( X[1] );
	Y[2] = Square * cos( X[1] );

	// create f: X -> Y and stop tape recording
	CppAD::ADFun<double> f(X, Y);

	// new value for the independent variable vector
	Vector x(n);
	x[0] = 2.;
	x[1] = 1.;

	// second derivative of y[1] 
	Vector hes( n * n );
	hes = f.Hessian(x, 1);
	/*
	F_1       = x[0] * x[0] * sin(x[1])

	F_1^{(1)} = [ 2 * x[0] * sin(x[1]) , x[0] * x[0] * cos(x[1]) ]

	F_1^{(2)} = [        2 * sin(x[1]) ,      2 * x[0] * cos(x[1]) ]
	            [ 2 * x[0] * cos(x[1]) , - x[0] * x[0] * sin(x[1]) ]
	*/
	ok &=  NearEqual(          2.*sin(x[1]), hes[0*n+0], 1e-10, 1e-10 );
	ok &=  NearEqual(     2.*x[0]*cos(x[1]), hes[0*n+1], 1e-10, 1e-10 );
	ok &=  NearEqual(     2.*x[0]*cos(x[1]), hes[1*n+0], 1e-10, 1e-10 );
	ok &=  NearEqual( - x[0]*x[0]*sin(x[1]), hes[1*n+1], 1e-10, 1e-10 );

	return ok;
}
} // End empty namespace 
# include <vector>
# include <valarray>
bool Hessian(void)
{	bool ok = true;
	// Run with Vector equal to three different cases
	// all of which are Simple Vectors with elements of type double.
	ok &= HessianCases< CppAD::vector  <double> >();
	ok &= HessianCases< std::vector    <double> >();
	ok &= HessianCases< std::valarray  <double> >();
	return ok;
}

Input File: example/hessian.cpp