#include <exprExp.hpp>
Inheritance diagram for exprExp:


Public Member Functions | |
| exprExp (expression *al) | |
| Constructor. | |
| expression * | clone (Domain *d=NULL) const |
| Cloning method. | |
| unary_function | F () |
| The operator's function. | |
| std::string | printOp () const |
| Print operator. | |
| CouNumber | gradientNorm (const double *x) |
| return l-2 norm of gradient at given point | |
| expression * | differentiate (int index) |
| Differentiation. | |
| void | getBounds (expression *&, expression *&) |
| Get lower and upper bound of an expression (if any). | |
| virtual void | getBounds (CouNumber &lb, CouNumber &ub) |
| Get expression of lower and upper bound of an expression (if any). | |
| void | generateCuts (expression *w, OsiCuts &cs, const CouenneCutGenerator *cg, t_chg_bounds *=NULL, int=-1, CouNumber=-COUENNE_INFINITY, CouNumber=COUENNE_INFINITY) |
| Generate convexification cuts for this expression. | |
| virtual enum expr_type | code () |
| Code for comparisons. | |
| bool | impliedBound (int, CouNumber *, CouNumber *, t_chg_bounds *) |
| Implied bound processing. | |
| virtual CouNumber | selectBranch (const CouenneObject *obj, const OsiBranchingInformation *info, expression *&var, double *&brpts, double *&brDist, int &way) |
| Set up branching object by evaluating many branching points for each expression's arguments. | |
| virtual bool | isBijective () const |
| return true if bijective | |
| virtual CouNumber | inverse (expression *vardep) const |
| inverse of exponential | |
| virtual bool | isCuttable (CouenneProblem *problem, int index) const |
| can this expression be further linearized or are we on its concave ("bad") side | |
Definition at line 20 of file exprExp.hpp.
| exprExp::exprExp | ( | expression * | al | ) | [inline] |
| expression* exprExp::clone | ( | Domain * | d = NULL |
) | const [inline, virtual] |
Cloning method.
Reimplemented from expression.
Definition at line 29 of file exprExp.hpp.
References exprUnary::argument_, and exprExp().
| unary_function exprExp::F | ( | ) | [inline, virtual] |
The operator's function.
Reimplemented from exprUnary.
Definition at line 33 of file exprExp.hpp.
References exp().
| std::string exprExp::printOp | ( | ) | const [inline, virtual] |
| CouNumber exprExp::gradientNorm | ( | const double * | x | ) | [inline, virtual] |
return l-2 norm of gradient at given point
Reimplemented from expression.
Definition at line 40 of file exprExp.hpp.
References exprUnary::argument_, exp(), and expression::Index().
| expression* exprExp::differentiate | ( | int | index | ) | [virtual] |
| void exprExp::getBounds | ( | expression *& | , | |
| expression *& | ||||
| ) | [virtual] |
| void exprExp::generateCuts | ( | expression * | w, | |
| OsiCuts & | cs, | |||
| const CouenneCutGenerator * | cg, | |||
| t_chg_bounds * | = NULL, |
|||
| int | = -1, |
|||
| CouNumber | = -COUENNE_INFINITY, |
|||
| CouNumber | = COUENNE_INFINITY | |||
| ) | [virtual] |
| virtual enum expr_type exprExp::code | ( | ) | [inline, virtual] |
Code for comparisons.
Reimplemented from exprUnary.
Definition at line 60 of file exprExp.hpp.
References COU_EXPREXP.
| bool exprExp::impliedBound | ( | int | , | |
| CouNumber * | , | |||
| CouNumber * | , | |||
| t_chg_bounds * | ||||
| ) | [virtual] |
| virtual CouNumber exprExp::selectBranch | ( | const CouenneObject * | obj, | |
| const OsiBranchingInformation * | info, | |||
| expression *& | var, | |||
| double *& | brpts, | |||
| double *& | brDist, | |||
| int & | way | |||
| ) | [virtual] |
Set up branching object by evaluating many branching points for each expression's arguments.
Reimplemented from expression.
| virtual bool exprExp::isBijective | ( | ) | const [inline, virtual] |
| virtual CouNumber exprExp::inverse | ( | expression * | vardep | ) | const [inline, virtual] |
inverse of exponential
Reimplemented from expression.
Definition at line 79 of file exprExp.hpp.
References log().
| virtual bool exprExp::isCuttable | ( | CouenneProblem * | problem, | |
| int | index | |||
| ) | const [virtual] |
can this expression be further linearized or are we on its concave ("bad") side
Reimplemented from expression.
1.4.7