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Chapter 1

Introduction

1.1 Introducing SYMPHONY 5.0

Welcome to the SYMPHONY user’s manual. Whether you are a new user or simply upgrading
to version 5.0, this manual will help you get started with what we hope you will find to be a
very useful framework for solving mixed-integer linear programs either using the generic tools
provided or by developing a custom branch, cut, and price algorithm. There have been some
very significant developments since the last version of SYMPHONY was released. IN particular,
SYMPHONY is now a callable library with an interface whose look and feel is similar to other
popular solvers. This change allows SYMPHONY to be used in a variety of new and powerful ways
that were not possible before. For existing users, there have been a few minor changes to the API
needed to make SYMPHONY thread-safe. Code written for previous versions of SYMPHONY
will have to be ported. Instructions for porting from previous version are contained in the file
SYMPHONY-5.0/README-5.0. As always, these changes have undoubtedly introduced bugs. There
are now an even larger number of configurations in which SYMPHONY can be used and we have
tested many of them, but it is simply not possible to test them all. Please keep this in mind and
report all bugs that you find. Among the new enhancements and features are:

• SYMPHONY is now a C callable library with an interface whose look and feel is similar to
other popular solvers. This interface works for SYMPHONY’s built-in generic MILP solver, as
well as any customized algorithm developed by implementing one or more of SYMPHONY’s
user callback functions. The interface is exactly the same for both sequential and parallel
versions of the code.

• The callable library also has a C++ interface conforming to COIN-OR’s Open Solver Interface
standard for accessing LP and MILP solvers.

• SYMPHONY has been made thread-safe in order to allow multiple environments to be opened
within a single executable.

• It is now possible to stop SYMPHONY during the solution process and then restart the
computation later, even after modifying the problem data. The user can also save warm
start information outside the solver environment and then reload it later into a different
environment, in much the same way as can be done with a simplex-based linear programming
solver. This allows the user to efficiently implement procedures, such as those for multi-criteria
optimization, in which a series of similar MILPs must be solved.

1



2 1.2 HOW TO USE THIS MANUAL

• Along with the ability to perform warm starts, the user call also define permanent cut pools
that persist between solver calls. This is useful for situations in which a series of MILPs needs
to be solved and the cuts generated during one solution call are still valid during later calls.

• SYMPHONY now has the ability to enumerate the efficient solutions of a bicriteria MILP if
the user specifies a second objective function. This is done using a new algorithm described
in [33] and takes advantage of the warm starting capabilities of SYMPHONY.

• SYMPHONY has a very rudimentary to perform sensitivity analysis for MILP. This capability
is till very much in the development stages, but is present in version 5.0.

1.2 How to Use This Manual

The manual is divided into seven chapters. The first is the introduction, which you are reading
now. Chapter 2 contains background information. Those not familiar with the basic methodology
of branch, cut, and price may want to read these sections, especially Section 2.3, where we briefly
describe the techniques involved. Chapter 3 contains an overview of the API, both for the callable
library and for the user callback functions. Chapter 4 contains further depth and a more complete
description of the design and implementation of SYMPHONY. In Section 4.1, we describe the
overall design of SYMPHONY without reference to the implementational details and with only
passing reference to parallelism. In Section 4.2, we discuss the details of the implementation.
In Section 4.3, we briefly discuss issues involved in parallel execution of SYMPHONY. It is not
necessary to read Chapters 2 and 4 before undertaking development of a SYMPHONY application.
Chapter 5 describes how to install and compile SYMPHONY. Many users will want to go straight
to this section of the manual to get started quickly. Chapter 6 describes in detail how to develop a
custom application using SYMPHONY. Chapter 7 contains reference material. Section 7.1 contains
a description of the native C interface for the callable library. Section 7.2 contains a description
of the interface for C++ environments. Section 7.3 contains a description of the user callback
functions. SYMPHONY’s parameters are described in Section 7.4. Please note that for reference
use, the HTML version of this manual may be more practical, as the embedded hyperlinks make it
easier to navigate.



Chapter 2

Technical Background

2.1 A Brief History

Since the inception of optimization as a recognized field of study in mathematics, researchers have
been both intrigued and stymied by the difficulty of solving many of the most interesting classes of
discrete optimization problems. Even combinatorial problems, though conceptually easy to model
as integer programs, have long remained challenging to solve in practice. The last two decades
have seen tremendous progress in our ability to solve large-scale discrete optimization problems.
These advances have culminated in the approach that we now call branch and cut, a technique (see
[20, 31, 21]) which brings the computational tools of branch and bound algorithms together with
the theoretical tools of polyhedral combinatorics. Indeed, in 1998, Applegate, Bixby, Chvátal, and
Cook used this technique to solve a Traveling Salesman Problem instance with 13,509 cities, a full
order of magnitude larger than what had been possible just a decade earlier [2] and two orders of
magnitude larger than the largest problem that had been solved up until 1978. This feat becomes
even more impressive when one realizes that the number of variables in the standard formulation
for this problem is approximately the square of the number of cities. Hence, we are talking about
solving a problem with roughly 100 million variables.

There are several reasons for this impressive progress. Perhaps the most important is the dra-
matic increase in available computing power over the last decade, both in terms of processor speed
and memory. This increase in the power of hardware has subsequently facilitated the development
of increasingly sophisticated software for optimization, built on a wealth of theoretical results. As
software development has become a central theme of optimization research efforts, many theoretical
results have been “re-discovered” in light of their new-found computational importance. Finally,
the use of parallel computing has allowed researchers to further leverage their gains.

Because of the rapidly increasing sophistication of computational techniques, one of the main
difficulties faced by researchers who wish to apply these techniques is the level of effort required
to develop an efficient implementation. The inherent need for incorporating problem-dependent
methods (most notably for dynamic generation of variables and cutting planes) has typically re-
quired the time-consuming development of custom implementations. Around 1993, this led to the
development by two independent research groups of software libraries aimed at providing a generic
framework that users could easily customize for use in a particular problem setting. One of these
groups, headed by Jünger and Thienel, eventually produced ABACUS (A Branch And CUt Sys-
tem) [23], while the other, headed by the authors, produced what was then known as COMPSys
(Combinatorial Optimization Multi-processing System). After several revisions to enable more
broad functionality, COMPSys became SYMPHONY (Single- or Multi-Process Optimization over

3



4 2.3 INTRODUCTION TO BRANCH, CUT, AND PRICE

Networks). A version of SYMPHONY written in C++, which we call COIN/BCP has also been
produced at IBM under the COIN-OR project [26]. The COIN/BCP package takes substantially the
same approach and has the same functionality as SYMPHONY, but has extended SYMPHONY’s
capabilities in some areas.

2.2 Related Work

The 1990’s witnessed a broad development of software for discrete optimization. Almost without
exception, these new software packages were based on the techniques of branch, cut, and price.
The packages fell into two main categories—those based on general-purpose algorithms for solving
mixed-integer linear programs (MILPs) (without the use of special structure) and those facilitating
the use of special structure by interfacing with user-supplied, problem-specific subroutines. We will
call packages in this second category frameworks. There have also been numerous special-purpose
codes developed for use in particular problem settings.

Of the two categories, MILP solvers are the most common. Among the dozens of offerings
in this category are MINTO [29], MIPO [3], bc-opt [9], and SIP [28]. Generic frameworks, on
the other hand, are far less numerous. The three frameworks we have already mentioned (SYM-
PHONY, ABACUS, and COIN/BCP) are the most full-featured packages available. Several others,
such as MINTO, originated as MILP solvers but have the capability of utilizing problem-specific
subroutines. CONCORDE [2, 1], a package for solving the Traveling Salesman Problem (TSP),
also deserves mention as the most sophisticated special-purpose code developed to date.

Other related software includes several frameworks for implementing parallel branch and bound.
Frameworks for general parallel branch and bound include PUBB [35], BoB [5], PPBB-Lib [37],
and PICO [11]. PARINO [25] and FATCOP [7] are parallel MILP solvers.

2.3 Introduction to Branch, Cut, and Price

2.3.1 Branch and Bound

Branch and bound is the broad class of algorithms from which branch, cut, and price is descended.
A branch and bound algorithm uses a divide and conquer strategy to partition the solution space
into subproblems and then optimizes individually over each subproblem. For instance, let S be the
set of solutions to a given problem, and let c ∈ RS be a vector of costs associated with members
of S. Suppose we wish to determine a least cost member of S and we are given ŝ ∈ S, a “good”
solution determined heuristically. Using branch and bound, we initially examine the entire solution
space S. In the processing or bounding phase, we relax the problem. In so doing, we admit solutions
that are not in the feasible set S. Solving this relaxation yields a lower bound on the value of an
optimal solution. If the solution to this relaxation is a member of S or has cost equal to ŝ, then we
are done—either the new solution or ŝ, respectively, is optimal. Otherwise, we identify n subsets
of S, S1, . . . , Sn, such that ∪n

i=1Si = S. Each of these subsets is called a subproblem; S1, . . . , Sn are
sometimes called the children of S. We add the children of S to the list of candidate subproblems
(those which need processing). This is called branching.

To continue the algorithm, we select one of the candidate subproblems and process it. There
are four possible results. If we find a feasible solution better than ŝ, then we replace ŝ with the
new solution and continue. We may also find that the subproblem has no solutions, in which case
we discard, or prune it. Otherwise, we compare the lower bound to our global upper bound. If it
is greater than or equal to our current upper bound, then we may again prune the subproblem.
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Bounding Operation
Input: A subproblem S, described in terms of a “small” set of inequalities L′ such that
S = {xs : s ∈ F and axs ≤ β ∀ (a, β) ∈ L′} and α, an upper bound on the global optimal
value.
Output: Either (1) an optimal solution s∗ ∈ S to the subproblem, (2) a lower bound on the
optimal value of the subproblem, or (3) a message pruned indicating that the subproblem
should not be considered further.
Step 1. Set C ← L′.
Step 2. Solve the LP min{cx : ax ≤ β ∀ (a, β) ∈ C}.
Step 3. If the LP has a feasible solution x̂, then go to Step 4. Otherwise, STOP and
output pruned. This subproblem has no feasible solutions.
Step 4. If cx̂ < α, then go to Step 5. Otherwise, STOP and output pruned. This
subproblem cannot produce a solution of value better than α.
Step 5. If x̂ is the incidence vector of some ŝ ∈ S, then ŝ is the optimal solution to
this subproblem. STOP and output ŝ as s∗. Otherwise, apply separation algorithms and
heuristics to x̂ to get a set of violated inequalities C′. If C′ = ∅, then cx̂ is a lower bound
on the value of an optimal element of S. STOP and return x̂ and the lower bound cx̂.
Otherwise, set C ← C ∪ C′ and go to Step 2.

Figure 2.1: Bounding in the branch and cut algorithm

Finally, if we cannot prune the subproblem, we are forced to branch and add the children of
this subproblem to the list of active candidates. We continue in this way until the list of active
subproblems is empty, at which point our current best solution is the optimal one.

2.3.2 Branch, Cut, and Price

In many applications, the bounding operation is accomplished using the tools of linear programming
(LP), a technique first described in full generality by Hoffman and Padberg [21]. This general class
of algorithms is known as LP-based branch and bound. Typically, the integrality constraints of an
integer programming formulation of the problem are relaxed to obtain a LP relaxation, which is
then solved to obtain a lower bound for the problem. In [31], Padberg and Rinaldi improved on
this basic idea by describing a method of using globally valid inequalities (i.e., inequalities valid for
the convex hull of integer solutions) to strengthen the LP relaxation. They called this technique
branch and cut. Since then, many implementations (including ours) have been fashioned around
the framework they described for solving the Traveling Salesman Problem.

As an example, let a combinatorial optimization problem CP = (E,F) with ground set E
and feasible set F ⊆ 2E be given along with a cost function c ∈ RE . The incidence vectors
corresponding to the members of F are sometimes specified as the the set of all incidence vectors
obeying a (relatively) small set of inequalities. These inequalities are typically the ones used in the
initial LP relaxation. Now let P be the convex hull of incidence vectors of members of F . Then we
know by Weyl’s Theorem (see [30]) that there exists a finite set L of inequalities valid for P such
that

P = {x ∈ Rn : ax ≤ β ∀ (a, β) ∈ L}. (2.1)

The inequalities in L are the potential cutting planes to be added to the relaxation as needed.
Unfortunately, it is usually difficult, if not impossible, to enumerate all of inequalities in L or we
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Branching Operation
Input: A subproblem S and x̂, the LP solution yielding the lower bound.
Output: S1, . . . , Sp such that S = ∪p

i=1Si.
Step 1. Determine sets L1, . . . ,Lp of inequalities such that S = ∪n

i=1{x ∈ S : ax ≤
β ∀ (a, β) ∈ Li} and x̂ /∈ ∪n

i=1Si.
Step 2. Set Si = {x ∈ S : ax ≤ β ∀ (a, β) ∈ Li ∪ L′} where L′ is the set of inequalities
used to describe S.

Figure 2.2: Branching in the branch and cut algorithm

Generic Branch and Cut Algorithm
Input: A data array specifying the problem instance.
Output: The global optimal solution s∗ to the problem instance.
Step 1. Generate a “good” feasible solution ŝ using heuristics. Set α ← c(ŝ).
Step 2. Generate the first subproblem SI by constructing a small set L′ of inequalities
valid for P. Set A ← {SI}.
Step 3. If A = ∅, STOP and output ŝ as the global optimum s∗. Otherwise, choose some
S ∈ A. Set A ← A \ {S}. Process S.
Step 4. If the result of Step 3 is a feasible solution s, then cs < cŝ. Set ŝ ← s and α ← c(s)
and go to Step 3. If the subproblem was pruned, go to Step 3. Otherwise, go to Step 5.
Step 5. Perform the branching operation. Add the set of subproblems generated to A and
go to Step 3.

Figure 2.3: Description of the generic branch and cut algorithm

could simply solve the problem using linear programming. Instead, they are defined implicitly and
we use separation algorithms and heuristics to generate these inequalities when they are violated.
In Figure 2.1, we describe more precisely how the bounding operation is carried out in branch and
cut.

Once we have failed to either prune the current subproblem or separate the current fractional
solution from P, we are forced to branch. The branching operation is accomplished by specifying a
set of hyperplanes which divide the current subproblem in such a way that the current solution is
not feasible for the LP relaxation of any of the new subproblems. For example, in a combinatorial
optimization problem, branching could be accomplished simply by fixing a variable whose current
value is fractional to 0 in one branch and 1 in the other. The procedure is described more formally
in Figure 2.2. Figure 2.3 gives a high level description of the generic branch and cut algorithm.

As with cutting planes, the columns of A can also be defined implicitly if n is large. If column
i is not present in the current matrix, then variable xi is implicitly taken to have value zero. The
process of dynamically generating variables is called pricing in the jargon of linear programming,
but can also be viewed as that of generating cutting planes for the dual of the current LP relaxation.
Hence, LP-based branch and bound algorithms in which the variables are generated dynamically
when needed are known as branch and price algorithms. In [4], Barnhart, et al. provide a thorough
review of these methods.

When both variables and cutting planes are generated dynamically during LP-based branch
and bound, the technique becomes known as branch, cut, and price (BCP). In such a scheme, there
is a pleasing symmetry between the treatment of cuts and that of variables. We further examine



2.3.2 Branch, Cut, and Price 7

this symmetry later in the manual. For now, however, it is important to note that while branch,
cut, and price does combine ideas from both branch and cut and branch and price (which are very
similar to each other anyway), combining the two techniques requires much more sophisticated
methods than either one requires on its own. This is an important idea that is at the core of our
design.

In the remainder of the manual, we often use the term search tree. This term derives from the
common representation of the list of subproblems as the nodes of a graph in which each subproblem
is connected only to its parent and its children. Storing the subproblems in such a form is an
important aspect of our global data structures. Since the subproblems correspond to the nodes of
this graph, they are sometimes be referred to as nodes in the search tree or simply as nodes. The
root node or root of the tree is the node representing the initial subproblem.
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Chapter 3

API Overview

SYMPHONY 5.0 is the first version of SYMPHONY to be implemented as a callable library with
a new interface derived from the COIN-OR Open Solver Interface. This change markedly improves
SYMPHONY’s usability and flexibility. Below, we briefly describe the new API, the C++ interface,
and the use of the user callback functions.

3.1 The Callable Library

SYMPHONY’s callable library consists of a complete set of subroutines for loading and modifying
problem data, setting parameters, and invoking solution algorithms. The user invokes these sub-
routines through the API specified in the header file sym api.h. Some of the basic commands are
described below. For the sake of brevity, the arguments have been left out.

sym open environment() Opens a new environment, and returns a pointer to it. This pointer
then has to be passed as an argument to all other API subroutines (in the C++ interface, this
pointer is maintained for the user).

sym parse command line() Invokes the built-in parser for setting commonly used parameters,
such as the file name which to read the problem data, via command-line switches. A call to this
subroutine instructs SYMPHONY to parse the command line and set the appropriate parameters.
This subroutine also sets all other parameter values to their defaults, so it should only called when
this is desired.

sym load problem() Reads the problem data and sets up the root subproblem. This includes
specifying which cuts and variables are in the core (those that are initially present in every sub-
problem during the search process) and the additional cuts and variables to be initially active in
the root subproblem. By default, SYMPHONY reads an MPS or GMPL file specified by the user,
but the user can override this default by implementing a user callback that reads the data from a
file in a customized format (see Section 3.3).

sym find initial bounds() Invokes the user callback to find initial bounds using a custom
heuristic.

9
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int main(int argc, char **argv)
{

sym_environment *env = sym_open_environment();
sym_parse_command_line(env, argc, argv);
sym_load_problem(env);
sym_solve(env);
sym_close_environment(env);

}

Figure 3.1: Implementation of a generic MILP solver with the SYMPHONY C callable library.

sym solve() Solves the currently loaded problem from scratch. This method is described in more
detail in Section 4.2.1.

sym warm solve() Solves the currently loaded problem from a warm start. This method is de-
scribed in more detail in Section 4.2.1.

sym mc solve() Solves the currently loaded problem as a multicriteria problem. This method is
described in more detail in Section 4.2.1.

sym close environment() Frees all problem data and deletes the environment.

As an example of the use of the library functions, Figure 3.1 shows the code for implementing a
generic MILP solver with default parameter settings. To read in an MPS file called sample.mps
and solve it using this program, the following command would be issued:

symphony -F sample.mps

The user does not have to invoke a command to read the MPS file. During the call to sym parse command line(),
SYMPHONY determines that the user wants to read in an MPS file. During the subsequent call
to sym load problem(), the file is read and the problem data stored. To read an GMPL file, the
user would issue the command

symphony -F sample.mod -D sample.dat

Although the same command-line switch is used to specify the model file, the additional presence
of the -D option indicates to SYMPHONY that the model file is in GMPL format and GLPK’s
GMPL parser is invoked [27]. Note that the interface and the code of Figure 3.1 is the same for both
sequential and parallel computations. The choice between sequential and parallel execution modes
is made at compile-time through modification of the makefile or the project settings, depending on
the operating system.

To start the solution process from a warm start, the sym warm solve() command is used.
SYMPHONY automatically records the warm start information resulting from the last solve call
and restarts from that checkpoint if a call to sym warm solve() is made. Alternatively, external
warm start information can be loaded manually. Figure 3.2 illustrates the use of the re-solve
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int main(int argc, char **argv)
{

sym_environment *env = sym_open_environment();
sym_parse_command_line(env, argc, argv);
sym_load_problem(env);
sym_set_int_param(env, "find_first_feasible", TRUE);
sym_set_int_param(env, "node_selection_strategy", DEPTH_FIRST_SEARCH);
sym_solve(env);
sym_set_int_param(env, "find_first_feasible", FALSE);
sym_set_int_param(env, "node_selection_strategy", BEST_FIRST_SEARCH);
sym_warm_solve(env);

}

Figure 3.2: Implementation of a dynamic MILP solver with SYMPHONY.

capability by showing the code for implementing a solver that changes from depth first search to
best first search after the first feasible solution is found. The user can also modify problem data in
between calls to the solver. Code for doing so is shown in Figure 3.3. In this example, the solver
is allowed to process 100 nodes and then save the warm start information. Afterward, the original
problem is solved to optimality, then is modified and re-solved from the saved checkpoint.

Finally, SYMPHONY now also has a bicriteria solve call. The applications of such a solver
are numerous. Besides yielding the ability to closely examine the tradeoffs between competing
objectives, the method can be used to perform detailed sensitivity analysis in a manner analogous
to that which can be done with simplex based solvers for linear programs. As an example, suppose
we would like to know exactly how the optimal objective function value for a given pure integer
program depends on the value of a given objective function coefficient. Consider increasing the
objective function coefficient of variable i from its current value. Taking the first objective function
to be the original one and taking the second objective function to be the ith unit vector, we can
derive the desired sensitivity function by using the bicriteria solution algorithm to enumerate all
supported solutions and breakpoints. This information can easily be used to obtain the desired
function. Figure 3.4 shows the code for performing this analysis on variable 0.

In addition to the parts of the API we have just described, there are a number of standard
subroutines for accessing and modifying problem data and parameters. These can be used between
calls to the solver to change the behavior of the algorithm or to modify the instance being solved.
These modifications are discussed in more detail in Section 4.2.1.

3.2 The OSI Interface

The Open Solver Interface (OSI) is a C++ class that provides a standard API for accessing a variety
of solvers for mathematical programs. It is provided as part of the COIN-OR repository [26], along
with a collection of solver-specific derived classes that translate OSI call into calls to the underlying
libraries of the solvers. A code implemented using calls to the methods in the OSI base class can
easily be linked with any solver for which there is an OSI interface. This allows development
of solver-independent codes and eliminates many portability issues. The current incarnation of
OSI supports only solvers for linear and mixed-integer linear programs, although a new version
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int main(int argc, char **argv)
{

warm_start_desc *ws;
sym_environment *env = sym_open_environment();
sym_parse_command_line(env, argc, argv);
sym_load_problem(env);
sym_set_int_param(env, "node_limit", 100);
sym_set_int_param(env, "keep_warm_start", TRUE);
sym_solve(env);
ws = sym_get_warm_start(env);
sym_set_int_param(env, "node_limit", -1);
sym_warm_solve(env);
sym_set_obj_coeff(env, 0, 100);
sym_set_obj_coeff(env, 200, 150);
sym_set_warm_start(ws);
sym_warm_solve(env);

}

Figure 3.3: Use of SYMPHONY’s warm start capability.

int main(int argc, char **argv)
{

sym_environment *env = sym_open_environment();
sym_parse_command_line(env, argc, argv);
sym_load_problem(env);
syn_set_obj2_coeff(env, 0, 1);
sym_mc_solve(env);

}

Figure 3.4: Performing sensitivity analysis with SYMPHONY’s bicriteria solver.

supporting a wider variety of solvers is currently under development.
We have implemented an OSI interface for SYMPHONY 5.0 that allows any solver built with

SYMPHONY to be accessed through the OSI, including customized solvers and those configured
to run on parallel architectures. To ease code maintenance, for each method in the OSI base class,
there is a corresponding method in the callable library. The OSI methods are implemented simply
as wrapped calls to the SYMPHONY callable library. When an instance of the OSI interface class is
constructed, a call is made to sym open environment() and a pointer to the environment is stored
in the class. Most subsequent calls within the class can then be made without any arguments. When
the OSI object is destroyed, sym close environment is called and the environment is destroyed.

To fully support SYMPHONY’s capabilities, we have extended the OSI interface to include some
methods not in the base class. For example, we added calls equivalent to our sym parse command line()
and sym find initial bounds(). Figure 3.5 shows the program of Figure 3.1 implemented using
the OSI interface. Note that the code would be exactly the same for accessing any customized
SYMPHONY solver, sequential or parallel.
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int main(int argc, char **argv)
{

OsiSymSolverInterface si;
si.parseCommandLine(argc, argv);
si.loadProblem();
si.branchAndBound();

}

Figure 3.5: Implementation of a generic MILP solver with the SYMPHONY OSI interface.

Although we are using the OSI to access a MILP solver, the current version of the OSI is
geared primarily toward support of solvers for linear programming (LP) problems. This is because
LP solvers employing some version of the simplex algorithm support much richer functionality
and a wider range of interface functions, due to their support of warm starting from previously
saved checkpoints. This functionality is difficult to provide for MILP solvers. In SYMPHONY
5.0, we have implemented for MILPs some of the same functionality that has long been available
for LP solvers. As such, our OSI interface supports warm starting and sensitivity analysis. The
implementations of this functionality is straightforward at the moment, but will be improved in
future versions.

3.3 User Callback Functions

The user’s main avenues for customization of SYMPHONY are the tuning of parameters and the
implementation of one or more of over 50 user callback functions. The callback functions allow the
user to override SYMPHONY’s default behavior for many of the functions performed as part of its
algorithm. The user has complete control over branching, cutting plane generation, management
of the cut pool and the LP relaxation, search and diving strategies, and limited column generation.
The callback functions are grouped by module according to their functionality. The names of the
callback functions begin with the prefix user . For instance, the user find cuts() subroutine is
used to implement subroutines for finding problem-specific cutting planes and is part of the cut
generation module. A full list of callbacks is contained in Chapter 7.3.

Callbacks in SYMPHONY are implemented slightly differently than in other popular libraries.
Each user function is called from a SYMPHONY wrapper function that interprets the user’s return
value and determines what action should be taken. If the user performs the required function, the
wrapper function normally exits without further action. If the user requests that SYMPHONY
perform a certain default action, then this is done. Files containing default function stubs for all
callbacks are provided along with the SYMPHONY source code and must be compiled and linked
with SYMPHONY’s internal library functions to obtain an executable. Makefiles and Microsoft
Visual C++ project files are provided for automatic compilation.
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Chapter 4

Design Overview

4.1 Design Approach

SYMPHONY was designed with two major goals in mind—portability and ease of use. With
respect to ease of use, we aimed for a “black box” design, whereby the user would not be required
to know anything about the implementation of the library, but only about the user interface. With
respect to portability, we aimed not only for it to be possible to use the framework in a wide
variety of settings and on a wide variety of hardware, but also for it to perform effectively in all
these settings. Our primary measure of effectiveness was how well the framework would perform
in comparison to a problem-specific (or hardware-specific) implementation written “from scratch.”

It is important to point out that achieving such design goals involves a number of very difficult
tradeoffs. For instance, ease of use is quite often at odds with efficiency. In several instances, we
had to give up some efficiency to make the code easy to work with and to maintain a true black box
implementation. Maintaining portability across a wide variety of hardware, both sequential and
parallel, also required some difficult choices. For example, solving large-scale problems on sequential
platforms requires extremely memory-efficient data structures in order to maintain the very large
search trees that can be generated. These storage schemes, however, are highly centralized and do
not scale well to large numbers of processors.

4.1.1 An Object-oriented Approach

As we have already alluded to, applying BCP to large-scale problems presents several difficult
challenges. First and foremost is designing methods and data structures capable of handling the
potentially huge numbers of cuts and variables that need to be accounted for during the solution
process. The dynamic nature of the algorithm requires that we must also be able to efficiently
move cuts and variables in and out of the active set of each search node at any time. A second,
closely-related challenge is that of effectively dealing with the very large search trees that can be
generated for difficult problem instances. This involves not only the important question of how
to store the data, but also how to move it between modules during parallel execution. A final
challenge in developing a generic framework, such as SYMPHONY, is to deal with these issues
using a problem-independent approach.

Describing a node in the search tree consists of, among other things, specifying which cuts
and variables are initially active in the subproblem. In fact, the vast majority of the methods in
BCP that depend on the model are related to generating, manipulating, and storing the cuts and
variables. Hence, SYMPHONY can be considered an object-oriented framework with the central

15
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“objects” being the cuts and variables. From the user’s perspective, implementing a BCP algorithm
using SYMPHONY consists primarily of specifying various properties of objects, such as how they
are generated, how they are represented, and how they should be realized within the context of a
particular subproblem.

With this approach, we achieved the “black box” structure by separating these problem-specific
functions from the rest of the implementation. The internal library interfaces with the user’s
subroutines through a well-defined Application Program Interface (API) (see Section 7.3) and
independently performs all the normal functions of BCP—tree management, LP solution, and
cut pool management, as well as inter-process communication (when parallelism is employed).
Although there are default options for many of the operations, the user can also assert control over
the behavior of the algorithm by overriding the default methods or by parameter setting.

Although we have described our approach as being “object-oriented,” we would like to point
out that SYMPHONY is implemented in C, not C++. To avoid inefficiencies and enhance the
modularity of the code (allowing for easy parallelization), we used a more “function-oriented”
approach for the implementation of certain aspects of the framework. For instance, methods used
for communicating data between modules are not naturally “object-oriented” because the type of
data being communicated is usually not known by the message-passing interface. It is also common
that efficiency considerations require that a particular method be performed on a whole set of
objects at once rather than on just a single object. Simply invoking the same method sequentially
on each of the members of the set can be extremely inefficient. In these cases, it is far better to
define a method which operates on the whole set at once. In order to overcome these problems, we
have also defined a set of interface functions, which are associated with the computational modules.
These function is described in detail in Section 7.3.

4.1.2 Data Structures and Storage

Both the memory required to store the search tree and the time required to process a node are
largely dependent on the number of objects (cuts and variables) that are active in each subproblem.
Keeping this active set as small as possible is one of the keys to efficiently implementing BCP. For
this reason, we chose data structures that enhance our ability to efficiently move objects in and
out of the active set. Allowing sets of cuts and variables to move in and out of the linear programs
simultaneously is one of the most significant challenges of BCP. We do this by maintaining an
abstract representation of each global object that contains information about how to add it to a
particular LP relaxation.

In the literature on linear and integer programming, the terms cut and row are typically used
interchangeably. Similarly, variable and column are often used with similar meanings. In many
situations, this is appropriate and does not cause confusion. However, in object-oriented BCP
frameworks, such as SYMPHONY or ABACUS [23], a cut and a row are fundamentally different
objects. A cut (also referred to as a constraint) is a user-defined representation of an abstract
object which can only be realized as a row in an LP matrix with respect to a particular set of active
variables. Similarly, a variable is a representation which can only be realized as a column of an LP
matrix with respect to a particular set of cuts. This distinction between the representation and the
realization of objects is a crucial design element and is what allows us to effectively address some of
the challenges inherent in BCP. In the remainder of this section, we further discuss this distinction
and its implications.
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Variables

In SYMPHONY, problem variables are represented by a unique global index assigned to each
variable by the user. This index represents each variable’s position in a “virtual” global list known
only to the user. The main requirement of this indexing scheme is that, given an index and a list of
active cuts, the user must be able to generate the corresponding column to be added to the matrix.
As an example, in problems where the variables correspond to the edges of an underlying graph,
the index could be derived from a lexicographic ordering of the edges (when viewed as ordered pairs
of nodes).

This indexing scheme provides a very compact representation, as well as a simple and effective
means of moving variables in and out of the active set. However, it means that the user must have a
priori knowledge of all problem variables and a method for indexing them. For combinatorial models
such as the Traveling Salesman Problem, this does not present a problem. However, for some set
partitioning models, for instance, the number of columns may not be known in advance. Even if the
number of columns is known in advance, a viable indexing scheme may not be evident. Eliminating
the indexing requirement by allowing variables to have abstract, user-defined representations (such
as we do for cuts), would allow for more generality, but would also sacrifice some efficiency. A
hybrid scheme, allowing the user to have both indexed and algorithmic variables (variables with
user-defined representations) is planned for a future version of SYMPHONY.

For efficiency, the problem variables can be divided into two sets, the base variables and the extra
variables. The base variables are active in all subproblems, whereas the extra variables can be added
and removed. There is no theoretical difference between base variables and extra variables; however,
designating a well-chosen set of base variables can significantly increase efficiency. Because they
can move in and out of the problem, maintaining extra variables requires additional bookkeeping
and computation. If the user has reason to believe a priori that a variable is “good” or has a high
probability of having a non-zero value in some optimal solution to the problem, then that variable
should be designated as a base variable. It is up to the user to designate which variables should be
active in the root subproblem. Typically, when column generation is used, only base variables are
active. Otherwise, all variables must be active in the root node.

Constraints

Because the global list of potential constraints (also called cuts) is not usually known a priori or
is extremely large, constraints cannot generally be represented simply by a user-assigned index.
Instead, each constraint is assigned a global index only after it becomes active in some subproblem.
It is up to the user, if desired, to designate a compact representation for each class of constraints that
is to be generated and to implement subroutines for converting from this compact representation
to a matrix row, given the list of active variables. For instance, suppose that the set of nonzero
variables in a particular class of constraints corresponds to the set of edges across a cut in a graph.
Instead of storing the indices of each variable explicitly, one could simply store the set of nodes on
one side (“shore”) of the cut as a bit array. The constraint could then be constructed easily for
any particular set of active variables (edges).

Just as with variables, the constraints are divided into core constraints and extra constraints.
The core constraints are those that are active in every subproblem, whereas the extra constraints
can be generated dynamically and are free to enter and leave as appropriate. Obviously, the set of
core constraints must be known and constructed explicitly by the user. Extra constraints, on the
other hand, are generated dynamically by the cut generator as they are violated. As with variables,
a good set of core constraints can have a significant effect on efficiency.
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Note that the user is not required to designate a compact representation scheme. Constraints
can simply be represented explicitly as matrix rows with respect to the global set of variables.
However, designating a compact form can result in large reductions in memory use if the number
of variables in the problem is large.

Search Tree

Having described the basics of how objects are represented, we now describe the representation of
search tree nodes. Since the base constraints and variables are present in every subproblem, only
the indices of the extra constraints and variables are stored in each node’s description. A complete
description of the current basis is maintained to allow a warm start to the computation in each
search node. This basis is either inherited from the parent, computed during strong branching (see
Section 4.2.2), or comes from earlier partial processing of the node itself (see Section 4.2.3). Along
with the set of active objects, we must also store the identity of the object(s) which were branched
upon to generate the node. The branching operation is described in Section 4.2.2.

Because the set of active objects and the status of the basis do not tend to change much
from parent to child, all of these data are stored as differences with respect to the parent when
that description is smaller than the explicit one. This method of storing the entire tree is highly
memory-efficient. The list of nodes that are candidates for processing is stored in a heap ordered
by a comparison function defined by the search strategy (see 4.2.3). This allows efficient generation
of the next node to be processed.

4.1.3 Modular Implementation

SYMPHONY’s functions are grouped into five independent computational modules. This modular
implementation not only facilitates code maintenance, but also allows easy and highly configurable
parallelization. Depending on the computational setting, the modules can be compiled as either (1)
a single sequential code, (2) a multi-threaded shared-memory parallel code, or (3) separate processes
running in distributed fashion over a network. The modules pass data to each other either through
shared memory (in the case of sequential computation or shared-memory parallelism) or through
a message-passing protocol defined in a separate communications API (in the case of distributed
execution). an schematic overview of the modules is presented in Figure 4.1. In the remainder of
the section, we describe the modularization scheme and the implementation of each module in a
sequential environment.

The Master Module

The master module includes functions that perform problem initialization and I/O. This module is
the only persistent module and stores all static problem data. The other modules are created only
during a solve call and destroyed afterward. All calls to the API are processed through the master
module. These functions of the master module implement the following tasks:

• Initialize the environment.

• Set and maintain parameter values.

• Read and store static problem data for instance to be solved.

• Compute an initial upper bound using heuristics.
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Figure 4.1: Schematic overview of the branch, cut, and price algorithm



20 4.1 DESIGN APPROACH

• Perform problem preprocessing.

• Initialize the solution process, pass problem information to the solver modules and store the
results after completion of the solve call.

• Track the status of associated processes during parallel solution calls.

• Act as a clearing house for output during the solution process.

• Store warm start information between solver calls.

• Service requests from the user through the API for problem data, problem modification, and
parameter modification.

The Tree Manager Module

The tree manager controls the overall execution of the algorithm. It tracks the status of its worker
modules, as well as that of the search tree, and distributes the subproblems to be processed to the
LP module(s). Functions performed by the tree manager module are:

• Receive data for the root node and place it on the list of candidates for processing.

• Receive data for subproblems to be held for later processing.

• Handle requests from linear programming modules to release a subproblem for processing.

• Receive branching object information, set up data structures for the children, and add them
to the list of candidate subproblems.

• Keep track of the global upper bound and notify all LP modules when it changes.

• Write current state information out to disk periodically to allow a restart in the event of a
system crash.

• Keep track of run data and send it to the master program at termination.

The Linear Programming Module

The linear programming (LP) module is the most complex and computationally intensive of the
five processes. Its job is to perform the bounding and branching operations. These operations are,
of course, central to the performance of the algorithm. Functions performed by the LP module are:

• Inform the tree manager when a new subproblem is needed.

• Receive a subproblem and process it in conjunction with the cut generator and the cut pool.

• Decide which cuts should be sent to the global pool to be made available to other LP modules.

• If necessary, choose a branching object and send its description back to the tree manager.

• Perform the fathoming operation, including generating variables.
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The Cut Generator Module

The cut generator performs only one function—generating valid inequalities violated by the current
fractional solution and sending them back to the requesting LP process. Here are the functions
performed by the cut generator module:

• Receive an LP solution and attempt to separate it from the convex hull of all solutions.

• Send generated valid inequalities back to the LP solver.

• When finished processing a solution vector, inform the LP not to expect any more cuts in
case it is still waiting.

The Cut Pool Module

The concept of a cut pool was first suggested by Padberg and Rinaldi [31], and is based on the
observation that in BCP, the inequalities which are generated while processing a particular node
in the search tree are also generally valid and potentially useful at other nodes. Since generating
these cuts is usually a relatively expensive operation, the cut pool maintains a list of the “best” or
“strongest” cuts found in the tree so far for use in processing future subproblems. Hence, the cut
pool functions as an auxiliary cut generator. More explicitly, here are the functions of the cut pool
module:

• Receive cuts generated by other modules and store them.

• Receive an LP solution and return a set of cuts which this solution violates.

• Periodically purge “ineffective” and duplicate cuts to control its size.

4.1.4 Algorithm Summary

Currently, SYMPHONY is what is known as a single-pool BCP algorithm. The term single-pool
refers to the fact that there is a single central list of candidate subproblems to be processed, which
is maintained by the tree manager. Most sequential implementations use such a single-pool scheme.
However, other schemes may be used in parallel implementations. For a description of various types
of parallel branch and bound, see [17].

The user begins by initializing the SYMPHONY environment and can then invoke subroutines
for reading in parameters and problem data, finding an initial upper bound, and designating the
initial set of active cuts and variables in the root node. Once the user invokes a solve routine, a
tree manager is created to manage the solution process. The tree manager module in turn sets
up the cut pool module(s), the linear programming module(s), and the cut generator module(s).
Currently, there are three solve calls supported by the API. The first call is the initial solve (see
Section 4.2.1), which solves the problem from scratch without using warm start information. The
second type of solve call is a warm solve, which solves the problem using previously computed warm
start information (see Section 4.2.1). Finally, there is a multicriteria solve call which is used to
enumerate efficient solutions to a given multicriteria MILP (see Section 4.2.1).

During the solution process, the tree manager functions control the execution by maintaining
the list of candidate subproblems and sending them to the LP modules as they become idle. The
LP modules receive nodes from the tree manager, process them, branch (if required), and send
back the identity of the chosen branching object to the tree manager, which in turn generates the
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children and places them on the list of candidates to be processed (see Section 4.2.2 for a description
of the branching operation). A schematic summary of the algorithm is shown in Figure 4.1.

Currently, SYMPHONY is what is known as a single-pool BCP algorithm. The term single-
pool refers to the fact that there is a single central list of candidate subproblems to be processed,
which is maintained by the tree manager. Most sequential implementations use such a single-pool
scheme. However, other schemes may be used in parallel implementations. For a description of
various types of parallel branch and bound, see [17].

The preference ordering for processing nodes is a run-time parameter. Typically, the node with
the smallest lower bound is chosen to be processed next since this strategy minimizes the overall
size of the search tree. However, at times, it is advantageous to dive down in the tree. The concepts
of diving and search chains, introduced in Section 4.2.3, extend the basic “best-first” approach.

We mentioned earlier that cuts and variables can be treated in a somewhat symmetric fashion.
However, it should be clear by now that our current implementation favors the implementation of
branch and cut algorithms, where the computational effort spent generating cuts dominates that of
generating variables. Our methods of representation also clearly favor such problems. In a future
version of the software, we plan to erase this bias by adding additional functionality for handling
variable generation and storage. This is the approach already taken by of COIN/BCP [26]. For
more discussion of the reasons for this bias and the differences between the treatment of cuts and
variables, see Section 4.2.2.

4.2 Details of the Implementation

4.2.1 The Master Module

The primary functions performed by the master module were listed in Section 4.1.3. Here, we
describe the implementational details of the various solve calls.

Initial Solve

Calling the initial solve method solves a given MILP from scratch, as described above. The first
action taken is to create an instance of the tree manager module that will control execution of
the algorithm. If the algorithm is to be executed in parallel on a distributed architecture, the
master module spawns a separate tree manager process that will autonomously control the solution
process. The tree manager in turn creates the modules for processing the nodes of the search tree,
generating cuts, and maintaining cut pools. These modules work in concert to execute the solution
process. When it makes sense, sets of two or more modules, such as a node processing module and
a cut generation module may be combined to yield a single process in which the combined modules
work in concert and communicate with each other through shared memory instead of across the
network. When running as separate process, the modules communicate with each other using a
standard communications protocol. Currently, the only option supported is PVM, but it would be
relatively easy to add an MPI implementation.

The overall flow of the algorithm is similar to other branch and bound implementations and is
detailed below. A priority queue of candidate subproblems available for processing is maintained
at all times and the candidates are processed in an order determined by the search strategy. The
algorithm terminates when the queue is empty or when another specified condition is satisfied.
A new feature in SYMPHONY 5.0 is the ability to stop the computation based on exceeding a
given time limit, exceeding a given limit on the number of processed nodes, achieving a target
percentage gap between the upper and lower bounds, or finding the first feasible solution. After
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halting prematurely, the computation can be restarted after modifying parameters or problem data.
This enables the implementation of a wide range of dynamic and on-line solution algorithms, as we
describe next.

Solve from Warm Start

Among the utility classes in the COIN-OR repository is a base class for describing the data needed
to warm start the solution process for a particular solver or class of solvers. To support this
option for SYMPHONY, we have implemented such a warm start class for MILPs. The main
content of the class is a compact description of the search tree at the time the computation was
halted. This description contains complete information about the subproblem corresponding to
each node in the search tree, including the branching decisions that lead to the creation of the
node, the list of active variables and constraints, and warm start information for the subproblem
itself (which is a linear program). All information is stored compactly using SYMPHONY’s native
data structures, which store only the differences between a child and its parent, rather than an
explicit description of every node. This approach reduces the tree’s description to a fraction of the
size it would otherwise be. In addition to the tree itself, other relevant information regarding the
status of the computation is recorded, such as the current bounds and best feasible solution found
so far. Using the warm start class, the user can save a warm start to disk, read one from disk, or
restart the computation at any point after modifying parameters or the problem data itself. This
allows the user to easily implement periodic checkpointing, to design dynamic algorithms in which
the parameters are modified after the gap reaches a certain threshold, or to modify problem data
during the solution process if needed.

Modifying Parameters. The most straightforward use of the warm start class is to restart the
solver after modifying problem parameters. To start the computation from a given warm start
when the problem data has not been modified, the tree manager simply traverses the tree and
adds those nodes marked as candidates for processing to the node queue. Once the queue has been
reformed, the algorithm is then able to pick up exactly where it left off. Code for using the resolve
command was shown in Figure 3.2. The situation is more challenging if the user modifies problem
data in between calls to the solver. We address this situation next.

Modifying Problem Data. If the user modifies problem data in between calls to the solver,
SYMPHONY must make corresponding modifications to the leaf nodes of the current search tree to
allow execution of the algorithm to continue. In principle, any change to the original data that does
not invalidate the subproblem warm start data, i.e., the basis information for the LP relaxation,
can be accommodated. Currently, SYMPHONY can only handle modifications to the rim vectors
of the original MILP. Methods for handling other modifications, such as the addition of columns
or the modification of the constraint matrix itself, will be added in the future. To initialize the
algorithm, each leaf node, regardless of its status after termination of the previous solve call, must
be inserted into the queue of candidate nodes and reprocessed with the changed rim vectors. After
this reprocessing, the computation can continue as usual. Optionally, the user can “trim the tree”
before resolving. This consists of locating nodes whose descendants are all likely to be pruned in
the resolve and eliminating those descendants in favor of processing the parent node itself. This
ability could be extended to allow changes that invalidate the warm start data of some leaf nodes.

The ability to resolve after modifying problem data has a wide range of applications in practice.
One obvious use is to allow dynamic modification of problem data during the solve procedure, or
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even after the procedure has been completed. Implementing such a solver is simply a matter of
periodically stopping to check for user input describing a change to the problem. Another obvious
application is in situations where it is known a priori that the user will be solving a sequence
of very similar MILPs. This occurs, for instance, when implementing algorithms for multicriteria
optimization, as we describe in Section 4.2.1. One approach to this is to solve a given “base problem”
(possibly limiting the size of the warm start tree), save the warm start information from the base
problem and then start each subsequent call from this same checkpoint. Code for implementing
this was shown in Figure 3.3.

Bicriteria Solve

For those readers not familiar with bicriteria integer programming, we briefly review the basic
notions here. For clarity, we restrict the discussion here to pure integer programs (ILPs), but the
principles are easily generalized. A bicriteria ILP is a generalization of a standard ILP presented
earlier that includes a second objective function, yielding an optimization problem of the form

vmin [cx, dx],

s.t. Ax ≤ b,

x ∈ Zn.

(4.2)

The operator vmin is understood to mean that solving this program is the problem of generating
efficient solutions, which are these feasible solutions p to (4.2) for which there does not exist a
second distinct feasible solution q such that cq ≤ cp and dq ≤ dp and at least one inequality
is strict. Note that (4.2) does not have a unique optimal solution value, but a set of pairs of
solution values called outcomes. The pairs of solution values corresponding to efficient solutions
are called Pareto outcomes. Surveys of methodology for for enumerating the Pareto outcomes of
multicriteria integer programs are provided by Climaco et al. [8] and more recently by Ehrgott and
Gandibleux [12, 13] and Ehrgott and Wiecek [14].

The bicriteria ILP (4.2) can be converted to a standard ILP by taking a nonnegative linear
combination of the objective functions [18]. Without loss of generality, the weights can be scaled
so they sum to one, resulting in a family of ILPs parameterized by a scalar 0 ≤ α ≤ 1, with the
bicriteria objective function replaced by the weighted sum objective

(αc + (1− α)d)x. (4.3)

Each selection of weight α produces a different single-objective problem. Solving the resulting
ILP produces a Pareto outcome called a supported outcome, since it is an extreme point on the
convex lower envelope of the set of Pareto outcomes. Unfortunately, not all efficient outcomes are
supported, so it is not possible to enumerate the set of Pareto outcomes by solving a sequence of
ILPs from this parameterized family. To obtain all Pareto outcomes, one must replace the weighted
sum objective (4.3) with an objective based on the weighted Chebyshev norm studied by Eswaran
et al. [15] and Solanki [36]. If xc is a solution to a weighted sum problem with α = 1 and xd is the
solution with α = 0, then the weighted Chebyshev norm of a feasible solution p is

max{α(cp− cxc), (1− α)(dp− dxd)}. (4.4)

Although this objective function is not linear, it can easily be linearized by adding an artificial
variable, resulting in a second parameterized family of ILPs. Under the assumption of uniform
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dominance, Bowman showed that an outcome is Pareto if and only if it can be obtained by solving
some ILP in this family [6]. In [33], the authors presented a method for enumerating all Pareto
outcomes by solving a sequence of ILPs in this parameterized family. By slightly perturbing the
objective function, they also showed how to relax the uniform dominance assumption. Note that
the set of all supported outcomes, which can be thought of as an approximation of the set of Pareto
outcomes, can be similarly obtained by solving a sequence of ILPs with weighted sum objectives.

SYMPHONY 5.0 contains a generic implementation of the algorithm described in [33], along
with a number of methods for approximating the set of Pareto outcomes. To support these ca-
pabilities, we have extended the OSI interface so that it allows the user to define a second objec-
tive function. Of course, we have also added a method for invoking this bicriteria solver called
multiCriteriaBranchAndBound(). Relaxing the uniform dominance requirement requires the un-
derlying ILP solver to have the ability to generate, among all optimal solutions to a ILP with a
primary objective, a solution minimizing a given secondary objective. We added this capability to
SYMPHONY through the use of optimality cuts, as described in [33].

Because implementing the algorithm requires the solution of a sequence of ILPs that vary only
in their objective functions, it is possible to use warm starting to our advantage. Although the
linearization of (4.4) requires modifying the constraint matrix from iteration to iteration, it is
easy to show that these modifications cannot invalidate the basis. In the case of enumerating all
supported outcomes, only the objective function is modified from one iteration to the next. In both
cases, we save warm start information from the solution of the first ILP in the sequence and use it
for each subsequent computation.

4.2.2 The Linear Programming Module

The LP module is at the core of the algorithm, as it performs the processing and bounding oper-
ations for each subproblem. A schematic diagram of the LP solver loop is presented in Fig. 4.2.
The details of the implementation are discussed in the following sections.

The LP Engine

SYMPHONY requires the use of a third-party callable library (referred to as the LP engine or
LP library) to solve the LP relaxations once they are formulated. As with the user functions,
SYMPHONY communicates with the LP engine through an API that converts SYMPHONY’s
internal data structures into those of the LP engine. Currently, the framework will only work
with advanced, simplex-based LP engines, such as CPLEX [10], since the LP engine must be able
to accept an advanced basis, and provide a variety of data to the framework during the solution
process. The internal data structures used for maintaining the LP relaxations are similar to those
of CPLEX and matrices are stored in the standard column-ordered format.

Managing the LP Relaxation

The majority of the computational effort of BCP is spent solving LPs and hence a major emphasis
in the development was to make this process as efficient as possible. Besides using a good LP
engine, the primary way in which this is done is by controlling the size of each relaxation, both in
terms of number of active variables and number of active constraints.

The number of constraints is controlled through use of a local pool and through purging of
ineffective constraints. When a cut is generated by the cut generator, it is first sent to the local
cut pool. In each iteration, up to a specified number of the strongest cuts (measured by degree
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Figure 4.2: Overview of the LP solver loop
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of violation) from the local pool are added to the problem. Cuts that are not strong enough
to be added to the relaxation are eventually purged from the list. In addition, cuts are purged
from the LP itself when they have been deemed ineffective for more than a specified number of
iterations, where ineffective is defined as either (1) the corresponding slack variable is positive, (2)
the corresponding slack variable is basic, or (3) the dual value corresponding to the row is zero (or
very small). Cuts that have remained effective in the LP for a specified number of iterations are
sent to the global pool where they can be used in later search nodes. Cuts that have been purged
from the LP can be made active again if they later become violated.

The number of variables (columns) in the relaxation is controlled through reduced cost fixing
and dynamic column generation. Periodically, each active variable is priced to see if it can be fixed
by reduced cost. That is, the LP reduced cost is examined in an effort to determine whether fixing
that variable at one of its bounds would remove improving solutions; if not, the variable is fixed and
removed from consideration. If the matrix is full at the time of the fixing, meaning that all unfixed
variables are active, then the fixing is permanent for that subtree. Otherwise, it is temporary and
only remains in force until the next time that columns are dynamically generated.

Because SYMPHONY was originally designed for combinatorial problems with relatively small
numbers of variables, techniques for performing dynamic column generation are somewhat unre-
fined. Currently, variables are priced out sequentially by index, which can be costly. To improve the
process of pricing variables, we plan to increase the symmetry between our methods for handling
variables and those for handling cuts. This includes (1) allowing user-defined, abstract represen-
tations for variables, (2) allowing the use of “variable generators” analogous to cut generators,
(3) implementing both global and local pools for variables, (4) implementing heuristics that help
determine the order in which the indexed variables should be priced, and (5) allowing for methods
of simultaneously pricing out large groups of variables. Much of this is already implemented in
COIN/BCP.

Because pricing is computationally burdensome, it currently takes place only either (1) before
branching (optional), or (2) when a node is about to be pruned (depending on the phase—see the
description of the two-phase algorithm in Sect. 4.2.3). To use dynamic column generation, the user
must supply a subroutine which generates the column corresponding to a particular user index,
given the list of active constraints in the current relaxation. When column generation occurs, each
column not currently active that has not been previously fixed by reduced cost is either priced out
immediately, or becomes active in the current relaxation. Only a specified number of columns may
enter the problem at a time, so when that limit is reached, column generation ceases. For further
discussion of column generation, see Sect. 4.2.3, where the two-phase algorithm is described.

Since the matrix is stored in compressed form, considerable computation may be needed to
add and remove rows and columns. Hence, rows and columns are only physically removed from
the problem when there are sufficiently many to make it “worthwhile.” Otherwise, deleted rows
and columns remain in the matrix but are simply ignored by the computation. Note that because
ineffective rows left in the matrix increase the size of the basis unnecessarily, it is usually advisable
to adopt an aggressive strategy for row removal.

Branching

Branching takes place whenever either (1) both cut generation and column generation (if performed)
have failed; (2) “tailing off” in the objective function value has been detected; or (3) the user chooses
to force branching. Branching can take place on cuts or variables and can be fully automated or
fully controlled by the user, as desired. Branching can result in as many children as the user desires,
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though two is typical. Once it is decided that branching will occur, the user must either select the
list of candidates for strong branching (see below for the procedure) or allow SYMPHONY to do so
automatically by using one of several built-in strategies, such as branching on the variable whose
value is farthest from being integral. The number of candidates may depend on the level of the
current node in the tree—it is usually best to expend more effort on branching near the top of the
tree.

After the list of candidates is selected, each candidate is pre-solved, by performing a specified
number of iterations of the dual simplex algorithm in each of the resulting subproblems. Based
on the objective function values obtained in each of the potential children, the final branching
object is selected, again either by the user or by built-in rule. This procedure of using exploratory
LP information in this manner to select a branching candidate is commonly referred to as strong
branching. When the branching object has been selected, the LP module sends a description of that
object to the tree manager, which then creates the children and adds them to the list of candidate
nodes. It is then up to the tree manager to specify which node the now-idle LP module should
process next. This issue is further discussed below.

4.2.3 The Tree Manager Module

Managing the Search Tree

The tree manager’s primary job is to control the execution of the algorithm by deciding which
candidate node should be chosen as the next to be processed. This is done using either one of
several built-in rules or a user-defined rule. Usually, the goal of the search strategy is to minimize
overall running time, but it is sometimes also important to find good feasible solutions early in the
search process. In general, there are two ways to decrease running time—either by decreasing the
size of the search tree or by decreasing the time needed to process each search tree node.

To minimize the size of the search tree, the strategy is to select consistently that candidate node
with the smallest associated lower bound. In theory, this strategy, sometimes called best-first, will
lead the smallest possible search tree. However, we need to consider the time required to process
each search tree node as well. This is affected by both the quality of the current upper bound
and by such factors as communication overhead and node set-up costs. When considering these
additional factors, it is sometimes be more effective to deviate from the best-first search order. We
discuss the importance of such strategies below.

Search Chains and Diving

One reason for not strictly enforcing the search order is because it is somewhat expensive to
construct a search node, send it to the LP solver, and set it up for processing. If, after branching,
we choose to continue processing one of the children of the current subproblem, we avoid the set-up
cost, as well as the cost of communicating the node description of the retained child subproblem
back to the tree manager. This is called diving and the resulting chain of nodes is called a search
chain. There are a number of rules for deciding when an LP module should be allowed to dive.
One such rule is to look at the number of variables in the current LP solution that have fractional
values. When this number is low, there may be a good chance of finding a feasible integer solution
quickly by diving. This rule has the advantage of not requiring any global information. We also
dive if one of the children is “close” to being the best node, where “close” is defined by a chosen
parameter.
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In addition to the time saved by avoiding reconstruction of the LP in the child, diving has the
advantage of often leading quickly to the discovery of feasible solutions, as discussed above. Good
upper bounds not only allow earlier pruning of unpromising search chains, but also should decrease
the time needed to process each search tree node by allowing variables to be fixed by reduced cost.

The Two-Phase Algorithm

If no heuristic subroutine is available for generating feasible solutions quickly, then a unique two-
phase algorithm can also be invoked. In the two-phase method, the algorithm is first run to
completion on a specified set of core variables. Any node that would have been pruned in the first
phase is instead sent to a pool of candidates for the second phase. If the set of core variables is
small, but well-chosen, this first phase should be finished quickly and should result in a near-optimal
solution. In addition, the first phase will produce a list of useful cuts. Using the upper bound and
the list of cuts from the first phase, the root node is repriced—that is, it is reprocessed with the
full set of variables and cuts. The hope is that most or all of the variables not included in the first
phase will be priced out of the problem in the new root node. Any variable thus priced out can be
eliminated from the problem globally. If we are successful at pricing out all of the inactive variables,
we have shown that the solution from the first phase was, in fact, optimal. If not, we must go back
and price out the (reduced) set of extra variables in each leaf of the search tree produced during the
first phase. We then continue processing any node in which we fail to price out all the variables.

In order to avoid pricing variables in every leaf of the tree, we can trim the tree before the start
of the second phase. Trimming the tree consists of eliminating the children of any node for which
each child has lower bound above the current upper bound. We then reprocess the parent node
itself. This is typically more efficient, since there is a high probability that, given the new upper
bound and cuts, we will be able to prune the parent node and avoid the task of processing each
child individually.

4.2.4 The Cut Generator Module

To implement the cut generator process, the user must provide a function that accepts an LP
solution and returns cuts violated by that solution to the LP module. In parallel configurations,
each cut is returned immediately to the LP module, rather than being passed back as a group once
the function exits. This allows the LP to begin adding cuts and solving the current relaxation
before the cut generator is finished if desired. Parameters controlling if and when the LP should
begin solving the relaxation before the cut generator is finished can be set by the user.

4.2.5 The Cut Pool Module

Maintaining and Scanning the Pool

The cut pool’s primary job is to receive a solution from an LP module and return cuts from the
pool that are violated by it. The cuts are stored along with two pieces of information—the level
of the tree on which the cut was generated, known simply as the level of the cut, and the number
of times it has been checked for violation since the last time it was actually found to be violated,
known as the number of touches. The number of touches can be used as a simplistic measure of
its effectiveness. Since the pool can get quite large, the user can choose to scan only cuts whose
number of touches is below a specified threshold and/or cuts that were generated on a level at or
above the current one in the tree. The idea behind this second criterion is to try to avoid checking
cuts that were not generated “nearby” in the tree, as they are less likely to be effective. Any cut
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generated at a level in the tree below the level of the current node must have been generated in
a different part of the tree. Although this is admittedly a naive method, it does seem to work
reasonably well.

On the other hand, the user may define a specific measure of quality for each cut to be used
instead. For example, the degree of violation is an obvious candidate. This measure of quality must
be computed by the user, since the cut pool module has no knowledge of the cut data structures.
The quality is recomputed every time the user checks the cut for violation and a running average
is used as the global quality measure. The cuts in the pool are periodically sorted by this measure
and only the highest quality cuts are checked each time. All duplicate cuts, as well as all cuts
whose number of touches exceeds or whose quality falls below specified thresholds, are periodically
purged from the pool to keep it as small as possible.

Using Multiple Pools

For several reasons, it may be desirable to have multiple cut pools. When there are multiple cut
pools, each pool is initially assigned to a particular node in the search tree. After being assigned to
that node, the pool services requests for cuts from that node and all of its descendants until such
time as one of its descendants gets assigned to another cut pool. After that, it continues to serve
all the descendants of its assigned node that are not assigned to other cut pools.

Initially, the first cut pool is assigned to the root node. All other cut pools are unassigned.
During execution, when a new node is sent to be processed, the tree manager must determine which
cut pool the node should be serviced by. The default is to use the same cut pool as its parent.
However, if there is currently an idle cut pool process (either it has never been assigned to any node
or all the descendants of its assigned node have been processed or reassigned), then that cut pool
is assigned to this new node. All the cuts currently in the cut pool of its parent node are copied to
the new pool to initialize it, after which the two pools operate independently on their respective
subtrees. When generating cuts, the LP process sends the new cuts to the cut pool assigned to
service the node during whose processing the cuts were generated.

The primary motivation behind the idea of multiple cut pools is two-fold. First, we want simply
to limit the size of each pool as much as possible. By limiting the number of nodes that a cut pool
has to service, the number of cuts in the pool will be similarly limited. This not only allows cut
storage to spread over multiple processors, and hence increases the available memory, but at the
same time, the efficiency with which the cut pool can be scanned for violated cuts is also increased.
A secondary reason for maintaining multiple cut pools is that it allows us to limit the scanning of
cuts to only those that were generated in the same subtree as the current search node. As described
above, this helps focus the search and should increase the efficiency and effectiveness of the search.
This idea also allows us to generate locally valid cuts, such as the classical Gomory cuts (see [30]).

4.3 Parallelizing BCP

Because of the clear partitioning of work that occurs when the branching operation generates
new subproblems, branch and bound algorithms lend themselves well to parallelization. As a
result, there is already a significant body of research on performing branch and bound in parallel
environments. We again point the reader to the survey of parallel branch and bound algorithms
by Gendron and Crainic [17], as well as other references such as [11, 19, 34, 24].

In parallel BCP, as in general branch and bound, there are two major sources of parallelism.
First, it is clear that any number of subproblems on the current candidate list can be processed
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simultaneously. Once a subproblem has been added to the list, it can be properly processed
before, during, or after the processing of any other subproblem. This is not to say that processing
a particular node at a different point in the algorithm won’t produce different results—it most
certainly will—but the algorithm will terminate correctly in any case. The second major source of
parallelism is to parallelize the processing of individual subproblems. By allowing separation to be
performed in parallel with the solution of the linear programs, we can theoretically process a node
in little more than the amount of time it takes to solve the sequence of LP relaxations. Both of
these sources of parallelism can be easily exploited using the SYMPHONY framework.

The most straightforward parallel implementation, which is the one we currently employ, is
a master-slave model, in which there is a central manager responsible for partitioning the work
and parceling it out to the various slave processes that perform the actual computation. The
reason we chose this approach is because it allows memory-efficient data structures for sequential
computation and yet is conceptually easy to parallelize. Unfortunately, this approach does have
limited scalability. For further discussions on the scalability of BCP algorithms and approaches to
improving it, see [32] and [38].

4.3.1 Parallel Configurations

SYMPHONY supports numerous configurations, ranging from completely sequential to fully par-
allel, allowing efficient execution in many different computational settings. As described in the
previous section, there are five modules in the standard distributed configuration. Various subsets
of these modules can be combined to form separate executables capable of communicating with
each other across a network. When two or more modules are combined, they simply communicate
through shared-memory instead of through message-passing. However, they are also forced to run
in sequential fashion in this case, unless the user chooses to enable threading using an OpenMP
compliant compiler (see next section).

As an example, the default distributed configuration includes a separate executable for each
module type, allowing full parallelism. However, if cut generation is fast and not memory-intensive,
it may not be worthwhile to have the LP solver and its associated cut generator work independently,
as this increases communication overhead without much potential benefit. In this case, the cut
generator functions can be called directly from the LP solver, creating a single, more efficient
executable.

4.3.2 Inter-process Communication

SYMPHONY can utilize any third-party communication protocol supporting basic message-passing
functions. All communication subroutines interface with SYMPHONY through a separate commu-
nications API. Currently, PVM [16] is the only message-passing protocol supported, but interfacing
with another protocol is a straightforward exercise.

Additionally, it is possible to configure the code to run in parallel using threading to process mul-
tiple search tree nodes simultaneously. Currently, this is implemented using OpenMP compiler di-
rectives to specify the parallel regions of the code and perform memory locking functions. Compiling
the code with an OpenMP compliant compiler will result in a shared-memory parallel executable.
For a list of OpenMP compliant compilers and other resources, visit http://www.openmp.org.
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4.3.3 Fault Tolerance

Fault tolerance is an important consideration for solving large problems on computing networks
whose nodes may fail unpredictably. The tree manager tracks the status of all processes and can
restart them as necessary. Since the state of the entire tree is known at all times, the most that will
be lost if an LP process or cut generator process is killed is the work that had been completed on
that particular search node. To protect against the tree manager itself or a cut pool being killed,
full logging capabilities have been implemented. If desired, the tree manager can write out the
entire state of the tree to disk periodically, allowing a warm restart if a fault occurs. Similarly, the
cut pool process can be warm-started from a log file. This not only allows for fault tolerance but
also for full reconfiguration in the middle of solving a long-running problem. Such reconfiguration
could consist of anything from adding more processors to moving the entire solution process to
another network.
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Installation

SYMPHONY Version 5.0 is a powerful environment for implementing custom branch, cut, and price
algorithms. The subroutines in the SYMPHONY library comprise a state-of-the-art MILP solver
designed to be modular and easy to customize for various problem settings. All internal library
subroutines are generic—their implementation does not depend on the the problem-setting. As
from Version 4.0, SYMPHONY works out of the box as a generic MILP solver, with the capability
to read both MPS files and GMPL (a subset of AMPL) files and solve the described mixed integer
programs. To customize SYMPHONY, various user subroutines can be written and parameters
set that modify the default behavior of the algorithm. The API for these subroutines is described
in this manual and files containing function stubs are provided. As an example, by replacing the
default I/O subroutine, one can easily modify the solver so that it reads in problem instances in a
custom format (such as the TSPLIB format for specifying traveling salesman problem instances).

The vast majority of the computation takes place within a “black box,” of which the user
need have no knowledge. SYMPHONY performs all the normal functions of branch, cut, and
price—tree management, LP solution, cut pool management, as well as inter-process or inter-
thread communication. Solvers can be built in a wide variety of configurations, ranging from
fully parallel to completely sequential, depending on the user’s needs. The library runs serially
on almost any platform, and can also run in parallel in either a fully distributed environment
(network of workstations) or shared-memory environment simply by changing a few options in the
makefile. To run in a distributed environment, the user must have installed the Parallel Virtual
Machine (PVM), available for free from Oak Ridge National Laboratories. To run in a shared
memory environment, the user must have installed an OpenMP compliant compiler. A cross-
platform compiler called Omni, which uses cc or gcc as a back end, is available for free download
at http://phase.etl.go.jp/Omni/ . For other options, visit http://www.openmp.org.

SYMPHONY-5.0 is now a C callable library with an interface whose look and feel is sim-
ilar to other popular solvers, see Sections 7.1 and 7.2 for the library routines. This interface
works for SYMPHONY’s built-in generic MILP solver, as well as any customized algorithm de-
veloped by implementing one or more of SYMPHONY’s user callback functions. For a summary
of what else is new, see Section 1.1.Code written for previous versions of SYMPHONY will be
broken, but not too badly. Instructions for porting from previous version are contained in the file
SYMPHONY-5.0/README-5.0.

This section of the manual is concerned with the detailed specifications needed to compile
the SYMPHONYlibrary, to create the generic MILP solver and to develop an application using
SYMPHONY. It is assumed that the user has already read the first part of the manual, which
provides a high-level introduction to parallel branch, cut, and price and the overall design and use
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of SYMPHONY.

5.1 Compiling the Library and Executable in Unix

Here is a sketch outline of how to get started with SYMPHONY in Unix. This is basically the
same information contained in the README file that comes with the distribution and will lead
you through the steps required to compile SYMPHONY as a generic MILP solver that can then be
customized by filling out the functions provided in the user interface files. For more information,
see Section 6.7.

Because SYMPHONY is intended to run over nonhomogeneous networks of workstations, in-
stallation is not fully automated, but requires the user to make minor edits to the makefile. With
this setup, compilation for multiple architectures and configurations can be performed in a single
directory without reconfiguring or “cleaning.” This is convenient on nonhomogeneous networks,
but it means that you might need to edit the makefiles to get SYMPHONY to compile. For the
casual user, this editing is limited to providing some path names.

5.1.1 Preparing for Sample Compilation.

• Download the file SYMPHONY-5.0.tgz.

• Unpack the distribution with tar -xzf SYMPHONY-5.0.tgz. This will create a subdirectory
called SYMPHONY-5.0 containing the distribution.

• Edit the makefile (SYMPHONY-5.0/Makefile) to reflect your environment. This involves spec-
ifying the LP solver to be used, assigning some variables and setting the paths to various
libraries and include files.Only minor edits should be required. An explanation of what has
to be set is contained in the comments in the makefile.

• To use many of the new capabilities of SYMPHONY, you must have installed the COIN
optimization libraries COIN optimization libraries, available from http://www.coin-or.org
. By default, SYMPHONY is set up to use COIN LP solver, CLP, COIN Open Solver
Interface, OSI, and COIN Cut Generation Library, CGL. To keep this configuration, you
should install OSI, CGL, CLP and the Coin utilities (under COIN/Coin). The path to the
COIN libraries must be specified in SYMPHONY-5.0/Makefile. If you want to use the new
OSI interface to SYMPHONY, you should be sure to compile it when you are installing the
rest of the COIN packages.

• If you wish to read GMPL/AMPL files, you will have to install the Gnu Linear Programming Kit
(GLPK), which contains a parser for GMPL/AMPL files. The path to the GLPK libraries
must also be specified in SYMPHONY-5.0/Makefile.

5.1.2 Compiling the Sequential Version.

• Unlike previous version of SYMPHONY, to compile SYMPHONY 5.0 as a generic solver, the
user simply has to type make in the SYMPHONY-5.0 subdirectory. This will first make the SYM-
PHONY library (sequential version): SYMPHONY-5.0/lib.$(ARCH)/$(LP SOLVER)/libsym.so
(or ’libsym.a’ if library type is set to be static) where ARCH is the current architecture and
LP SOLVER is the current LP solver, as specified in the makefile. In addition, in order to have
the flexibility in using different LP solvers, a symbolic link to the latest created callable library
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with the same name (libsym.so or libsym.a) will be created in SYMPHONY-5.0/lib subdirec-
tory. This library together with the header files in the subdirectory SYMPHONY-5.0/include
can then be used to call SYMPHONY from any C code. The API for this is described in
section 7.3. After compiling the SYMPHONY library, the default main function will be
compiled and linked with the the callable library to form an executable called symphony to
be used for solving generic MILP problems in MPS or GMPL format. FlopC++ [22] can also
be used to obtain a capability similar to ILOG’s Concert technology for building math pro-
gramming models. The executable is installed in SYMPHONY-5.0/bin.$(ARCH)/$(LP SOLVER)
subdirectory. The makefile can also be modified to enable parallel execution of the code (see
below).

• After the SYMPHONY library is compiled, you are free to type make clean if you want
to save disk space. You should only have to remake the library if you change something in
SYMPHONY’s internal files.

• To test SYMPHONY, a sample MPS file called sample.mps is included with the distribution.
To specify the file name, use the -F command-line option, i.e., type

bin.$(ARCH)/$(LP_SOLVER)/symphony -F sample.mps

in the SYMPHONY-5.0 subdirectory. To obtain more MPS data files for further testing, down-
load the MIPLIB library.

• That’s it! Now you are ready to use SYMPHONY callable library or solve generic MILP
problems through the executable.

5.1.3 Compiling the Shared Memory Version.

Please note that the shared-memory parallel version has not been tested in Version 5.0 and may
be broken. Please let me know if you want to use it and I will get it working.

• To compile a shared memory version, obtain an OpenMP compliant compiler, such as Omni
(free from http://phase.etl.go.jp/Omni) . Other options are listed at the OpenMP Web
site (http://www.openmp.org) .

• Follow the instructions above for configuring the makefile. Set the variable CC to the compiler
name in the makefile and compile as above. Note that if you have previously compiled the
sequential version, then you should first type make clean all, as this version uses the same
directories. With one thread allowed, it should run exactly the same as the sequential version
so there is no need to compile both versions.

• Voila, you have a shared memory parallel solver. As above, to test SYMPHONY, a sample
MPS file called sample.mps is included with the distribution. To specify the file name, use the
-F command-line option, i.e., type bin.$(ARCH)/$(LP SOLVER)/symphony -F sample.mps
in the SYMPHONY-5.0 subdirectory. To obtain more MPS data files for further testing, down-
load the MIPLIB library.

• That’s it! Now, you are ready to develop your own application using SYMPHONY callable
library or solve MILP problems using the executable. See the user manual for help.



36 5.2 COMPILING THE LIBRARY AND EXECUTABLE IN WINDOWS

5.1.4 Compiling the Distributed Version.

Please note that the distributed-memory parallel version has not been tested in Version 5.0 and
may be broken. Please let me know if you want to use it and I will get it working.

• If you wish to compile a distributed version of the code, obtain and install the Parallel
Virtual Machine (PVM) software, available for free from Oak Ridge National Laboratories
at http://www.ccs.ornl.gov/pvm/ . See Section 6.7.1 for more notes on using PVM.

• In SYMPHONY-5.0/Makefile, be sure to set the COMM PROTOCOL to PVM. Also, in the same make-
file, you need to change one or more of SYM COMPILE IN TM, SYM COMPILE IN LP, SYM COMPILE IN CG,
and SYM COMPILE IN CP to FALSE or you will end up with the sequential version. Various com-
binations of these variables will give you different configurations and different executables.
See Section 6.7.1 for more info on setting them. Also, be sure to set the path variables in the
makefile appropriately so that make can find the PVM library.

• As above, type make in the SYMPHPONY-5.0 subdirectory to make the distributed libraries.
As in Step 1 of the sequential version, you may type make clean after making the library. It
should not have to remade again unless you modify SYMPHONY’s internal files.

• After the SYMPHONY libraries, main function will be compiled and required executables
linked.

• Make sure there are links from your $(PVM ROOT)/bin/$(PVM ARCH) subdirectory to each
of the executables in the SYMPHONY-5.0/bin.$(ARCH)/$(LP SOLVER) subdirectory. This is
required by PVM.

• Start the PVM daemon by typing pvm on the command line and then typing quit.

• As above, test SYMPHONY using the sample MPS file called sample.mps included with
the distribution. To specify the file name, use the -F command-line option, i.e., type
bin.$(ARCH)/$(LP SOLVER)/symphony -F sample.mps in the SYMPHONY-5.0 subdirectory.
To obtain more MPS data files for further testing, download the MIPLIB library.

• That’s it! Now, you are ready to develop your own application using SYMPHONY callable
library or solve MILP problems using the executable.

5.2 Compiling the Library and Executable in Windows

Here is a sketch outline of how to compile SYMPHONY in MS Windows. Direct support is
provided for compilation with MS Visual Studio 6.0. Compilation for other compilers should also
be possible. Note that the Windows version has some limitations. Detailed timing information is
not currently provided. Support is only provided for running in sequential mode at this time.

First, download SYMPHONY-5.0.zip and unzip the archive. This will create a subdirectory called
SYMPHONY-5.0 containing all the source files. You now have two options. You can either compile
on the command-line, using the MSVC++ makefile called sym.mak in the SYMPHONY-5.0\WIN32
subdirectory or you can use the provided projects and workspaces. Compiling on the command-line
is somewhat easier since it requires only editing the makefile and typing a single command.



5.2.1 Using the NMAKE Utility 37

5.2.1 Using the NMAKE Utility

• Edit the file SYMPHONY-5.0\WIN32\sym.mak makefile to reflect your environment. This in-
volves specifying the LP solver to be used and various paths. Only minor edits should be
required. An explanation of what has to be set is contained in the comments in the makefile.

• To use many of the new capabilities of SYMPHONY, you must have installed the COIN
optimization libraries COIN optimization libraries, available from http://www.coin-or.org
. By default SYMPHONY is set to use COIN LP solver, CLP, COIN Open Solver Interface,
OSI, and COIN Cut Generation Library, CGL. To keep this configuration, you should install
OSI, CGL, CLP and additionally, the Coin utilities (under COIN\Coin).The path to the COIN
libraries must be specified in SYMPHONY-5.0\WIN32\sym.mak.

• If you wish to read GMPL/AMPL files, you will have to install the Gnu Linear Programming Kit
(GLPK), which contains a parser for GMPL/AMPL files. The path to the GLPK libraries
must be specified in the makefile.

• Once configuration is done, type nmake /f sym.mak at the command prompt in the
SYMPHONY-5.0\WIN32 subdirectory. This will first make the SYMPHONY library (sequen-
tial version): SYMPHONY-5.0\WIN32\Debug\symphonyLib.lib. This library together with
the header files in the subdirectory (SYMPHONY-5.0\include) can then be be used to call
SYMPHONY from any C code. The API for this is described in section 7.3. After compil-
ing the SYMPHONY library, the default main function will be compiled and linked with
the the callable library to form an executable called symphony.exe to be used for solv-
ing generic MILP problems in MPS or GMPL format. The executable will be created in the
SYMPHONY-5.0\WIN32\Debug subdirectory.

• To test the executable, type symphony.exe -F ..\..\sample.mps at a command prompt in
the SYMPHONY-5.0\WIN32\Debug subdirectory.

5.2.2 Using the MSVC++ Workspace

• In MS Visual C++ 6.0, open the workspace SYMPHONY-5.0\WIN32\symphony.dsw. Note
that there are two projects, one called symphony and the other called symphonyLib. The
symphonyLib project compiles the source code to create the callable library: symphonyLib.lib.
The symphony project compiles the main function and links that with the c allable library to
create the executable: symphony.exe.

• To use many of the new capabilities of SYMPHONY, you must have installed the COIN
optimization libraries COIN optimization libraries, available from http://www.coin-or.org
. By default SYMPHONY is set up to use COIN LP solver, CLP, COIN Open Solver Interface,
OSI, and COIN Cut Generation Library, CGL. To keep this configuration, you should install
OSI, CGL, CLP and additionally, the Coin utilities (under COIN\Coin). The default location
for COIN is C:\COIN\.

• By default, SYMPHONY is set up to use the OSI CLP interface. To see this check the
following settings:

– OSI CLP is defined in the preprocessor definitions of both symphony and symphonyLib
projects (right-click on one of the projects, and then choose Settings --> C/C++ -->
Preprocessor in the category drop-down menu).
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– Paths to the include files of COIN utilities (Coin), OSI, OSI CLP, and CLP are specified
in the same settings window as for the preprocessor definitions. Note that the Coin,
OSI, and OSI CLP and CLP include directories are assumed to be in C:\COIN\Coin,
C:\COIN\Osi, C:\COIN\Osi\OsiClp and C:\COIN\Clp, directories, respectively. If they
are not, make sure that you have set the correct paths in both projects before compiling.

– The symphony project is dependent on the symphonyLib project (see the dependencies
in Project --> Dependencies) and it includes the necessary libraries: symphonyLib,
coinLib, osiLib, osiClpLib and clpLib (solver library).

If you want to use the native CPLEX or OSL interface (without downloading COIN) or a
solver other than CLP:

– If another OSI interface, change the preprocessor definition in both projects from OSI CLP
to OSI XXX , where XXX is replaced by the desired solver’s acronym (e.g., OSI CPLEX ,
OSI GLPK , OSI OSL , etc.). Otherwise, change it to either CPLEX or OSL in

both projects.

– Change the path definitions of the include files: for instance, if you want to use OSI CPLEX ,
define C:\COIN\Osi\OsiCpx and C:\ILOG\cplex81\include\ilcplex (assuming it is in-
stalled there) instead of the OSI CLP and CLP path definitions. Or, if you want to use
OSI OSL , define C:\COIN\Osi\OsiOsl and C:\ProgramFiles\IbmOslV3Lib\osllib

(assuming OSL is installed there) instead of the OSI CLP and CLP path definitions.
If you want to use the native CPLEX or OSL interface, delete all the path definitions
(you are not required to have COIN or OSI), and just add the path definitions for the
CPLEX or OSL include files.

– Add the appropriate libraries to the symphony project. For instance, if you want to
use OSI CPLEX , then add the osiCpxLib and cplex81 library files after deleting
osiClpLib and clpLib libraries from the symphony project. If you want to use the
native CPLEX interface, then delete all the libraries (except the symphonyLib) and just
add the cplex81 library file for it is the unique solver library file we need now.

• By default, SYMPHONY is also set up to use the COIN CGL library for generating cuts. To
use CGL, the symphonyLib project has the ADD CGL CUTS preprocessor definition, the path to
C:\COIN\Cgl\ (be sure that this path directs SYMPHONY to the include subdirectory of
CGL). If you don’t want to use the CGL library, simply delete the ADD CGL CUTS preprocessor
definition, the CGL path definitions and the cgllib library from the symphony project.

• DO NOT CHANGE COMPILER DEFINES NOT RELATED TO THE LP SOLVER. Im-
portant note for OSL users: when using OSL in Windows, you must also add OSLMSDLL to
the list of definitions.

• Note that there are a number of additional preprocessor definitions that control the func-
tionality of SYMPHONY. These definitions are described in SYMPHONY-5.0/Makefile, a
Unix-style makefile included with the distribution. To enable the functionality associated
with a particular definition, simply add it to the list of definitions, as above.

• You must also be sure to have any .dll files required for your LP solver to be in your search
path. Either move the required .dll to the subdirectory containing symphony.exe or add
the path to the PATH Windows environment variable.
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• Once you have the proper settings for your LP solver, choose Build symphony.exe from the
Build menu. This should successfully build the SYMPHONY library and the executable.

• To test the executable, right click on the symphony project, go to the Debug tab and set the
program arguments to -F ..\sample.mps Note that command-line switches are Unix-style.

• Now choose Execute from the build menu and the solver should solve the sample problem.

Note that there is some functionality missing from the Windows version. Most prominently,
the timing functions do not work. This functionality should be easy to add—let me know if you
are interested in doing it and I will give you all the help I can. In addition, the Windows version
will only run in sequential mode for a variety of reasons. However, it should be relatively easy to
get it running in parallel if you can get PVM working under Windows. Let me know if you are
interested.

5.3 Compiling a Custom Application Using Callbacks

5.3.1 Unix

First, configure and compile SYMPHONY 5.0 as described in SYMPHONY-5.0/README-5.0.
Modify the variables in the USER/Makefile appropriately. Typing ”make” in the USER sub-
directory should successfully make the USER executable. It will be installed in the directory
SYMPHONY-5.0/USER/bin.(ARCH)/(LP SOLVER). After you’ve successfully compiled the code,
you can develop our custom application by following the instructions for filling in the user callback
functions as described in Section 6.

5.3.2 Microsoft Windows

First, download SYMPHONY-5.0.zip and unzip the archive. This will create a subdirectory called
SYMPHONY-5.0 containing all the source files together with the USER subdirectory. There are two
options to get the executable. You can either compile on the command-line, using the MSVC++
makefile, USER\WIN32\user.mak, or you can use the provided projects and workspaces. However
for the second option, it is important the USER archive be kept in the SYMPHONY-5.0 subdirectory or
the project files will not work. Compiling on the command-line is somewhat easier since it requires
only editing the makefile and typing a single command.

5.3.3 Using the NMAKE Utility

• Edit the USER\WIN32\user.mak makefile to reflect your environment. Only minor edits should
be required. An explanation of what has to be set is contained in the comments in the makefile.
This basically requires the same routines that one needs to walk through in SYMPHONY’s
makefile. See the related parts of 5.2.1 section of SYMPHONY above.

• Once configuration is done, type nmake /f user.mak in the USER\WIN32 subdirectory. The
executable user.exe will be created under the USER\WIN32\Debug directory.

• To test the executable, type user.exe -F ..\..\sample.mps at a command prompt from
the USER\WIN32\Debug directory. After this point, you will be ready to develop your own
application by modifying the other files in the USER subdirectory.
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5.3.4 Using the MSVC++ Workspace

• In MS Visual C++ 6.0, open the workspace SYMPHONY-5.0\USER\WIN32\user.dsw. Note that
there are two projects, one called symphonyLib and the other called user.The symphonyLib
project compiles the source code, with the calls to the user-defined callbacks used to customize
the solver, to create the callable library: symphonyLib.lib. The user project compiles those
user callbacks together with the main function, links them with the callable library and creates
the executable: user.exe.

• The configuration steps are exactly the same with the MSVC++ section of SYMPHONY. The
only difference is that, you have the user project instead of the symphony project. Go through
the related steps of section 5.2 to see how to configure to use COIN, OSI, CGL, COIN utilities,
GMPL input, and to change the lp solver which is by default CLP.

• Once you have the proper settings for your LP solver, choose Build user.exe from the Build
menu. This should successfully build the executable.

• To test the executable, right click on the user project, go to the Debug tab and set the
program arguments to -F ..\sample.mps. Note that command-line switches are Unix-style.

• Now choose Execute from the build menu and you have a working branch and bound
solver! After successful compilation, you can fill in the user callback functions as describe in
SectionSYMPHONY-development.

5.4 Sample Applications

There are a number of sample applications available as examples of how to do development with
SYMPHONY. These include solvers for the matching problem, the set partitioning problem (sim-
ple and advanced versions), the vehicle routing and traveling salesman problems, the mixed postman
problem and, capacitated network routing problem. These applications are distributed as separate
packages and can be downloaded from http://www.branchandcut.org/SYMPHONY. There is also a
white paper that guides the user through the development of the matching solver.
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Development

6.1 Orienting Yourself

The easiest way to get oriented is to examine the organization of the source files (note that file
names will be given Unix-style). When you unpack the SYMPHONY distribution, you will notice
that the source files are organized along the lines of the modules. There is a separate directory
for each module—master (Master), tree manager (TreeManager), cut generator (CutGen), cut pool
(CutPool), and LP solver (LP). In addition, there is a directory called DrawGraph and a directory
called Common that also contain source files. The DrawGraph directory provides an interface from
SYMPHONY to the Interactive Graph Drawing software package developed by Marta Esö. This
is an excellent utility for graphical display and debugging. The Common directory contains source
code for functions used by multiple modules.

Within each module’s directory, there is a primary source file containing the function main()
(named *.c where * is the module name), a source file containing functions related to inter-
process communication (named * proccomm.c) and a file containing general subroutines used by
the module (named * func.c). The master is the exception and is organized slightly differently.
The LP process source code is further subdivided due to the sheer number of functions.

The include directory contains the header files. Corresponding to each module, there are three
header files, one containing internal data structures and function prototypes associated with the
module (named *.h where * is the module name), one containing the data structures for storing
the parameters (these are also used by the master process), and the third containing the function
prototypes for the user callbacks (name * u.h). By looking at the header files, you should get a
general idea of how things are laid out.

In addition to the subdirectories corresponding to each module, there is a subdirectory called
SYMPHONY-5.0/USER, which contains the files needed for implementing the callbacks. Before begin-
ning customization, it is recommended to make a copy of the directory SYMPHONY-5.0/USER that
will be used as a template for creating your customized solver. In this directory and its subdi-
rectories, which mirror the subdirectories of SYMPHONY itself, each file contains function stubs
that can be filled in to create a new custom application. There is one file for each module, initially
called SYMPHONY-5.0/USER/*/user *.c, where * is the name of the module. The primary thing
that you, as the user, need to understand to build a custom application is how to fill in these stubs.
That is what the second section of this manual is about.
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6.2 Writing the Callbacks

For each module, all callback functions are invoked from so-called wrapper functions that provide
the interface and also performs a default action if the user chooses not to override it. Although
SYMPHONY is written in C, the wrapper functions provide a C++-style interface in which the user
can either accept the default action or override it. Each wrapper function is named * u() , where
* is the name of the corresponding callback function, and is defined in a file called * wrapper.c.
The wrapper function first collects the necessary data and hands it to the user by calling the user
function. Based on the return value from the user, the wrapper then performs any necessary post-
processing. All callback functions have default options, so that SYMPHONY now acts as a generic
MILP solver out of the box.

In Section 7.3, the callback functions are described in detail. The name of every callback
function starts with user . There are three kinds of arguments:

IN: An argument containing information that the user might need to perform the function.

OUT: A pointer to an argument in which the user should return a result (requested data, decision,
etc.) of the function.

INOUT: An argument which contains information the user might need, but also for which the user
can change the value.

The return values for most function are as follows:

Return values:
USER ERROR Error in the user function. Printing an error message is the user’s

responsibility. Depending on the work the user function was sup-
posed to do, the error might be ignored (and some default option
used), or the process aborts.

USER SUCCESS The user function was implemented and executed correctly.
USER DEFAULT This option means that the user function was not implemented

and that SYMPHONY should either execute a default subroutine
(the default is one of the built-in options, SYMPHONY decides
which one to use based on initial parameter settings and the ex-
ecution of the algorithm) or else do nothing, if execution of the
subroutine is optional.

built in option1
built in option2 ... The specified built-in option will be used.

Notes: • Sometimes an output is optional. This is always noted in the function descriptions.

• If an array has to be returned (i.e., the argument is type **array) then (unless otherwise
noted) the user has to allocate space for the array itself and set *array to be the array
allocated. If an output array is optional and the user is not returning any values in that
array, then the user must not set *array because this is how SYMPHONY decides
which optional arrays are filled up.

• Some built-in options are implemented so that the user can invoke them directly from
the callback function. This might be useful if, for example, the user wants to use different
built-in options at different stages of the algorithm.
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6.3 Data Structures

6.3.1 Internal Data Structures

With few exceptions, the data structures used internally by SYMPHONY are undocumented and
most users will not need to access them directly. However, if such access is desired, a pointer
to the main data structure used by each of the modules can be obtained simply by calling the
function get * ptr() where * is the appropriate module (see the header files). This function will
return a pointer to the data structure for the appropriate module. Casual users are advised against
modifying SYMPHONY’s internal data structures directly.

6.3.2 User-defined Data Structures

The user can define her own data structure for each module to maintain problem data and any
other information the user needs access to in order to implement functions to customize the solver.
A pointer to this data structure is maintained by SYMPHONY and is passed to the user as an
argument to each user function. Since SYMPHONY knows nothing about this data structure,
it is up to the user to allocate it and maintain it. The user must also implement a function to
free it. The functions for freeing the user data structures in each module are called user free *,
where * is the module. These functions are called by SYMPHONY at the time when other data
structures for the modules are being freed and the module is being closed. By default, for sequential
computation, there is one common user data structure for all modules and the pointer to that data
structure is passed to all user functions, regardless of the module. This setup should work fine for
most sequential applications. In parallel, however, pointers cannot be shared between modules and
data must be explicitly passed. IN this case, it is sometimes more efficient to maintain in each
module only the data necessary to perform the functions of that module.

6.4 Inter-process Communication for Distributed Computing

While the implementation of SYMPHONY strives to shield the user from having to know anything
about communications protocols or the specifics of inter-process communication, it may be neces-
sary for the user to pass information from one module to another in order to implement a parallel
application. For instance, the user may want to pass data describing the problem instance to the LP
process after reading them in from a file in the master process. For the purpose of passing user data
from the master process to other processes, a customization function called user send * data() is
provided in the master module, along with a corresponding function called user receive * data()
in the module *. These two functions work in tandem to transport the user’s data from the maser,
where it can be read in from a file, to the proper module for processing. There are also a number
of other tandem pairs of send and receive functions that are used to transport user data from place
to place.

All data are sent in the form of arrays of either type char, int, or double, or as strings. To send
an array, the user has simply to invoke the function send XXX array(XXX *array, int length)
where XXX is one of the previously listed types. To receive that array, there is a corresponding
function called receive ? array(? *array, int length). When receiving an array, the user
must first allocate the appropriate amount of memory. In cases where variable length arrays need
to be passed, the user must first pass the length of the array (as a separate array of length one)
and then the array itself. In the receive function, this allows the length to be received first so
that the proper amount of space can be allocated before receiving the array itself. Note that data
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must be received in exactly the same order as it was passed, as data is read linearly into and out
of the message buffer. The easiest way to ensure this is done properly is to simply copy the send
statements into the receive function and change the function names. It may then be necessary to
add some allocation statements in between the receive function calls.

6.5 The LP Engine

SYMPHONY requires the use of a third-party callable library to solve the LP relaxations once
they are formulated. Native interfaces to ILOG’s CPLEX c© and IBM’s OSL are available. As of
Version 4.0, the Open Solver Interface, available from COIN (http://www.coin-or.org) . can be
used to interface with most commonly available LP solvers. The list of solvers with OSI interfaces
currently numbers eight and includes both commercial and open source alternatives. If the COIN
libraries are used, make sure to set the proper paths in the SYMPHONY makefile.

6.6 Cut Generation

SYMPHONY now generates generic cutting planes using the Cut Generator Library, also available
from COIN COIN (http://www.coin-or.org) . The CGL can be used to generate cuts in cases
where problem-specific cutting planes are not available or not implemented yet.

6.7 Advanced Compilation

6.7.1 Unix Operating Systems

Once the callback functions are filled in, all that remains is to compile the application. The
distribution comes with two makefiles that facilitate this process. The primary makefile resides in
the SYMPHONY-5.0/ directory. The user makefile resides in the user’s subdirectory, initially called
SYMPHONY-5.0/USER/. This subdirectory can be moved, as well as renamed. There are a number
of variables that must be set in the primary make file. To modify the makefiles appropriately, see
the instructions in Section 5.1.

Working with PVM. To compile a distributed application, it is necessary to install PVM. The
current version of PVM can be obtained at http://www.csm.ornl.gov/pvm/. It should compile
and install without any problem. You will have to make a few modifications to your .cshrc
file, such as defining the PVM ROOT environment variable, but this is all explained clearly in the
PVM documentation. Note that all executables (or at least a link to them) must reside in the
$PVM ROOT/bin/$PVM ARCH directory in order for parallel processes to be spawned correctly. The
environment variable PVM ARCH is set in your .cshrc file and contains a string representing the
current architecture type. To run a parallel application, you must first start up the daemon on
each of the machines you plan to use in the computation. How to do this is also explained in the
PVM documentation.

Communication with Shared Memory. In the shared memory configuration, it is not nec-
essary to use message passing to move information from one module to another since memory is
globally accessible. In the few cases where the user would ordinarily have to pass information using
message passing, it is easiest and most efficient to simply copy the information to the new location.
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This copying gets done in the send function and hence the receive function is never actually called.
This means that the user must perform all necessary initialization, etc. in the send function. This
makes it a little confusing to write source code which will work for all configurations. However, the
confusion should be minimized by looking at the sample applications, especially the VRP solver,
which works in all configurations, sequential, distributed parallel, and shared parallel.

Configuring the Modules. In the application makefile, e.g., SYMPHONY-5.0/USER/Makefile,there
are four variables that control which modules run as separate executables and which are called di-
rectly in serial fashion. The variables are as follows:

COMPILE IN CG: If set to TRUE, then the cut generator function will be called directly from
the LP in serial fashion, instead of running as a separate executable. This is desirable if cut
generation is quick and running it in parallel is not worth the price of the communication
overhead.

COMPILE IN CP: If set to TRUE, then the cut pool(s) will be maintained as a data structure
auxiliary to the tree manager.

COMPILE IN LP: If set to TRUE, then the LP functions will be called directly from the tree
manager. When running the distributed version, this necessarily implies that there will only
be one active subproblem at a time, and hence the code will essentially be running serially. IN
the shared-memory version, however, the tree manager will be threaded in order to execute
subproblems in parallel.

COMPILE IN TM: If set to TRUE, then the tree will be managed directly from the master
process. This is only recommended if a single executable is desired (i.e. the three other
variables are also set to true). A single executable is extremely useful for debugging purposes.

These variables can be set in virtually any combination, though some don’t really make much sense.
Note that in a few user functions that involve process communication, there will be different versions
for serial and parallel computation. This is accomplished through the use of #ifdef statements in
the source code. This is well documented in the function descriptions and the in the source files
containing the function stubs. See also Section 6.7.1.

Executable Names. In order to keep track of the various possible configurations, executable
and their corresponding libraries are named as follows. The name of the master module, along
with all other modules compiled in with the master, is set in the makefile. For the other modules,
default names are typically used, since these names have to be hard-coded in order for PVM to
correctly spawn the corresponding processes. In the fully distributed version, the default names
are tm, lp, cg, and cp. For other configurations, the executable name is a combination of all the
modules that were compiled together joined by underscores. In other words, if the LP and the cut
generator modules were compiled together (i.e. COMPILE IN CG set to TRUE), then the executable
name would be “lp cg” and the corresponding library file would be called “liblp cg.a.” You can
rename the executables as you like. However, if you are using PVM to spawn the modules, as in
the fully distributed version, you must set the parameters * exe in the parameter file to the new
executable names. See Section 7.4.4 for information on setting parameters in the parameter file.
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6.7.2 Microsoft Windows

First, follow the instructions for compiling SYMPHONY in Section 5.2 to ensure you have the
proper settings. Once the stub files in the SYMPHONY-5.0\USER hierarchy are filled in, you should
be able to compile the new application and run it successfully.

6.8 Debugging Your Application

Much of this section applies to Unix operating systems. However, it may also be useful for Windows
users.

6.8.1 The First Rule

SYMPHONY has many built-in options to make debugging easier. The most important one,
however, is the following rule. It is easier to debug the fully sequential version than the
fully distributed version. Debugging parallel code is not terrible, but it is more difficult to
understand what is going on when you have to look at the interaction of several different modules
running as separate processes. This means multiple debugging windows which have to be closed and
restarted each time the application is re-run. For this reason, it is highly recommended to develop
code that can be compiled serially even if you eventually intend to run in a fully distributed
environment. This does make the coding marginally more complex, but believe me, it’s worth the
effort. The vast majority of your code will be the same for either case. Make sure to set the compile
flag to “-g” in the makefile.

6.8.2 Debugging with PVM

If you wish to venture into debugging your distributed application, then you simply need to set
the parameter * debug, where * is the name of the module you wish to debug, to the value “4” in
the parameter file (the number “4” is chosen by PVM). This will tell PVM to spawn the particular
process or processes in question under a debugger. What PVM actually does in this case is to
launch the script $PVM ROOT/lib/debugger. You will undoubtedly want to modify this script to
launch your preferred debugger in the manner you deem fit. If you have trouble with this, please
send e-mail to the list serve (see Section 6.10).

It’s a little tricky to debug interacting parallel processes, but you will quickly get the idea. The
main difficulty is in that the order of operations is difficult to control. Random interactions can
occur when processes run in parallel due to varying system loads, process priorities, etc. Therefore,
it may not always be possible to duplicate errors. To force runs that you should be able to reproduce,
make sure the parameter no cut timeout appears in the parameter file or start SYMPHONY with
the “-a” option. This will keep the cut generator from timing out, a major source of randomness.
Furthermore, run with only one active node allowed at a time (set max active nodes to “1”).
This will keep the tree search from becoming random. These two steps should allow runs to be
reproduced. You still have to be careful, but this should make things easier.

6.8.3 Using Purify and Quantify

The makefile is already set up for compiling applications using purify and quantify. Simply set
the paths to the executables and type “make pall” or “p*” where * is the module you want to
purify. The executable name is the same as described in Section 6.7.1, but with a “p” in front of it.
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To tell PVM to launch the purified version of the executables, you must set the parameters * exe
in the parameter file to the purified executable names. See Section 7.4.4 for information on setting
parameters in the parameter file.

6.8.4 Checking the Validity of Cuts and Tracing the Optimal Path

Sometimes the only evidence of a bug is the fact that the optimal solution to a particular problem
is never found. This is usually caused by either (1) adding an invalid cut, or (2) performing
an invalid branching. There are two options available for discovering such errors. The first is
for checking the validity of added cuts. This checking must, of course, be done by the user,
but SYMPHONY can facilitate such checking. To do this, the user must fill in the function
user check validity of cut() (see Section 7.3.3). THIS function is called every time a cut is
passed from the cut generator to the LP and can function as an independent verifier. To do this,
the user must pass (through her own data structures) a known feasible solution. Then for each cut
passed into the function, the user can check whether the cut is satisfied by the feasible solution.
If not, then there is a problem! Of course, the problem could also be with the checking routine.
After filling in this function, the user must recompile everything (including the libraries) after
uncommenting the line in the makefile that contains “BB DEFINES += -DCHECK CUT VALIDITY.”
Type “make clean all” and then “make.”

Tracing the optimal path can alert the user when the subproblem which admits a particular
known feasible solution (at least according to the branching restrictions that have been imposed
so far) is pruned. This could be due to an invalid branching. Note that this option currently only
works for branching on binary variables. To use this facility, the user must fill in the function
user send feas sol() (see Section 7.3.1). All that is required is to pass out an array of user
indices that are in the feasible solution that you want to trace. Each time the subproblem which
admits this feasible solution is branched on, the branch that continues to admit the solution is
marked. When one of these marked subproblems is pruned, the user is notified.

6.8.5 Using the Interactive Graph Drawing Software

The Interactive Graph Drawing (IGD) software package is included with SYMPHONY and SYM-
PHONY facilitates its use through interfaces with the package. The package, which is a Tcl/Tk
application, is extremely useful for developing and debugging applications involving graph-based
problems. Given display coordinates for each node in the graph, IGD can display support graphs
corresponding to fractional solutions with or without edge weights and node labels and weights,
as well as other information. Furthermore, the user can interactively modify the graph by, for
instance, moving the nodes apart to “disentangle” the edges. The user can also interactively enter
violated cuts through the IGD interface.

To use IGD, you must have installed PVM since the drawing window runs as a separate appli-
cation and communicates with the user’s routines through message passing. To compile the graph
drawing application, type “make dg” in the SYMPHONY root directory. The user routines in the
file user dg.c can be filled in, but it is not necessary to fill anything in for basic applications.

After compiling dg, the user must write some subroutines that communicate with dg and cause
the graph to be drawn. Regrettably, this is currently a little more complicated than it needs to be
and is not well documented. However, by looking at the sample application, it should be possible
to see how it is done. To enable graph drawing, put the line do draw graph 1 into the parameter
file or use the -d command line option. It can be difficult to get IGD to work. If you are interested
in using it and cannot get it to work, feel free to contact me.
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6.8.6 Other Debugging Techniques

Another useful built-in function is write mps(), which will write the current LP relaxation to a file
in MPS format. This file can then be read into the LP solver interactively or examined by hand for
errors. Many times, CPLEX gives much more explicit error messages interactively than through
the callable library. The form of the function is

void write_mps(LPdata *lp_data, char *fname)

where fname is the name of the file to be written. If SYMPHONY is forced to abandon solution
of an LP because the LP solver returns an error code, the current LP relaxation is automatically
written to the file “matrix.[bc index].[iter num].mps” where bc index is the index of the current
subproblem and iter num is the current iteration number. The write mps() function can be called
using breakpoint code to examine the status of the matrix at any point during execution.

Logging is another useful feature. Logging the state of the search tree can help isolate some
problems more easily. See Section 7.4.4 for the appropriate parameter settings to use logging.

6.9 Controlling Execution and Output

Calling SYMPHONY with no arguments simply lists all command-line options. Most of the
common parameters can be set on the command line. Sometimes, however, it may be easier to use
a parameter file. To invoke SYMPHONY with a parameter file type “master -f filename ...”
where filename is the name of the parameter file. The format of the file is explained in Section 7.4.

The output level can be controlled through the use of the verbosity parameter. Setting this
parameter at different levels will cause different progress messages to be printed out. Level 0 only
prints out the introductory and solution summary messages, along with status messages every
10 minutes. Level 1 prints out a message every time a new node is created. Level 3 prints out
messages describing each iteration of the solution process. Levels beyond 3 print out even more
detailed information.

There are also two possible graphical interfaces. For graph-based problems, the Interactive
Graph Drawing Software allows visual display of fractional solutions, as well as feasible and optimal
solutions discovered during the solution process. For all types of problems, VBCTOOL creates a
visual picture of the branch and cut tree, either in real time as the solution process evolves or as
an emulation from a file created by SYMPHONY. See Section 7.4.4 for information on how to use
VBCTOOL with SYMPHONY. Binaries for VBCTOOL can be obtained at
http://www.informatik.uni-koeln.de/ls juenger/projects/vbctool.html.

6.10 Other Resources

There is a SYMPHONY user’s list serve for posting questions/comments. To subscribe, send
“subscribe symphony-users” to majordomo@branchandcut.org. There is also a Web site for
SYMPHONY at http://branchandcut.org/SYMPHONY . Bug reports can be sent to
symphony-bugs@branchandcut.org.



Chapter 7

Reference

7.1 Callable Library C API

This chapter specifies the interface for using SYMPHONY’s callable library. These function calls
can be used to build custom applications that call SYMPHONY as a subroutine, as described in
Section 3.1. All callable library function begin with the prefix sym . To call these function from an
application, include the header file symphony api.h and then link with the SYMPHONY library
as described in Section5. In general, if an array is requested, such as the array of lower bounds on
the variables, for instance, the user is responsible for allocating an array of appropriate size and
passing it to SYMPHONY. SYMPHONY will then fill up the array.

49
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7.1.1 Primary Interface Functions

. sym open environment

sym_environment *sym_open_environment()

Description:
This routine is used to get a new SYMPHONY environment to be passed as an ar-
gument to all other API subroutines. This routine also invokes the callback function
user initialize() (see Section 7.3.1).

Return values:
NULL Error. Environment could not be initialized. None of the other

API subroutines can be called after this point.
sym environment * Pointer to a successfully opened environment
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. sym create copy environment

sym\_environment *sym_create_copy_environment(sym_environment *env)

Description:
This routine is used to copy the given environment.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
tt NULL An empty environment is passed in.
SYM ENVIRONMENT * Pointer to the copy of the environment.
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. sym parse command line

int sym_parse_command_line(sym_environment *env, int argc, char **argv)

Description:
This routine parses the command line arguments. It must be called whenever the user
specifies any of SYMPHONY’s built-in command-line switches. For instance, this is
the case when the user specifies the location of an MPS or GMPL file using the -F
switch or when the user specifies the location of a parameter file with the -f switch.
This command also invokes the user callback function user readparams() (see Section
7.3.1).

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int argc IN The number of command line arguments.
char **argv IN Array of pointers to these arguments.

Return values:
ERROR USER Error. User error detected in user readparams()
function.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym find initial bounds

int sym_find_initial_bounds(sym_environment *env)

Description:
This routine invokes the user callback user start heurs() (see Section 7.3.1) to set the
priori bound for the problem.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in user start heurs()
function.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym load problem

int sym_load_problem(sym_environment *env)

Description:
This routine loads the description of the problem given in MPS or GMPL/AMPL for-
mat or in a file read by a custom file parser implemented in the user io() (see Section
7.3.1) callback. If the problem is to be loaded from an MPS or a GMPL/AMPL file
whose location is specified on the command line, then the sym parse command line()
function has to be invoked beforehand. This function also invokes the user callback
user initialize root node() (see Section 7.3.1). Note that if the user wishes to
load the problem manually without implementing a callback or using one of SYM-
PHONY’s built-in parsers (as is typically done in other callable libraries), then the
sym explicit load problem() routine should be used.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in one of

user io(),
user init draw() functions.

ERROR READING GMPL FILE Error. Error detected in the given GMPL/AMPL file.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym explicit load problem

int sym_explicit_load_problem_user(sym_environment * env, int numcols,
int numrows, int *start, int *index, double *value,
double *collb, double *colub, char *is_int,
double *obj, double *obj2, char *rowsen,
double *rowrhs, double *rowrng, char make_copy)

Description:
This routine is used to load a problem description into SYMPHONY manually. The
constraint matrix is passed in a standard column-ordered format. The arguments here
are the same as the fields in the MIPdesc data structure discussed in Section 7.3.2. Please
see the discussion there for a more detailed description of the arguments here.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int numcols IN Number of the columns.
int numrows IN Number of the rows.
int *start IN Array of the starting positions of each of column.
int *index IN Array of the row indices corresponding to each entry

of value.
int *value IN Array of the values of nonzero entries of the con-

straint matrix in column order.
double *collb IN Array of the lower bounds of the columns.
double *colub IN Array of the upper bounds of the columns.
double *obj IN Array of the objective function coefficients.
double *obj2 IN Array of the second objective function coefficients

when multi criteria solver is to be used.
char *rowsen IN Array of the senses of the constraints.

’L’: ≤ constraint
’E’: = constraint
’G’: ≥ constraint
’R’: ranged constraint
’N’: free constraint

double *rowrhs IN Array of the right hand side values.
double *rowrng IN Array of the row ranges.

(sym get row upper) - (sym get row lower) if the
row sense is ’R’, 0 otherwise.

char make copy IN SYMPHONY will create the copies of these arrays
for internal usage if this flag is set to true, otherwise,
will own them.

Return values:
ERROR USER Error. User error detected in

user initialize root node function.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.



56 7.1 CALLABLE LIBRARY C API

. sym solve

int sym_solve(sym_environment *env)

Description:
This routine solves the currently loaded MILP problem from scratch even in the presence
of a loaded warm start. Any warm start information loaded or kept before will be deleted
from the environment!

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in one of

user send lp data(),
user send cg data(),
user send cp data(),
user receive feasible solution(),
user display solution(),
user process own messages() functions.

TM OPTIMAL SOLUTION FOUND Tree Manager (TM) found the optimal solution and
stopped.

TM TIME LIMIT EXCEEDED TM stopped after reaching the predefined time limit.
TM NODE LIMIT EXCEEDED TM stopped after reaching the predefined node limit.
TM TARGET GAP ACHIEVED TM stopped after achieving the predefined target

gap.
TM FOUND FIRST FEASIBLE TM stopped after finding the first feasible solution.
TM ERROR NO BRANCHING CANDIDATE Error. TM stopped. User didn’t select branching

candidate in user select candidates() callback.
TM ERROR ILLEGAL RETURN CODE Error. TM stopped after getting a non-valid return

code.
TM ERROR NUMERICAL INSTABILITY Error. TM stopped due to some numerical difficul-

ties.
TM ERROR COMM ERROR Error. TM stopped due to communication error.
TM ERROR USER Error. TM stopped. User error detected in one of

user callbacks called during TM processes.
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. sym warm solve

int sym_warm_solve(sym_environment *env)

Description:
This routine re-solves the corresponding problem after some of the parameters have
been changed or problem data has been modified from a warm start. If the user plans
to invoke this routine, the keep warm start parameter must be set to TRUE before the
initial call to the sym solve() routine, so that SYMPHONY will collect the necessary
warm starting information during the solve procedure.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in one of

user send lp data,
user send cg data,
user send cp data,
user receive feasible solution,
user display solution,
user process own messages functions.

TM OPTIMAL SOLUTION FOUND Tree Manager (TM) found the optimal solution and
stopped.

TM TIME LIMIT EXCEEDED TM stopped after reaching the predefined time limit.
TM NODE LIMIT EXCEEDED TM stopped after reaching the predefined node limit.
TM TARGET GAP ACHIEVED TM stopped after achieving the predefined target

gap.
TM FOUND FIRST FEASIBLE TM stopped after finding the first feasible solution.
TM ERROR NO BRANCHING CANDIDATE Error. TM stopped. User didn’t select branching

candidate in user select candidates callback
TM ERROR ILLEGAL RETURN CODE Error. TM stopped after getting a non-valid return

code.
TM ERROR NUMERICAL INSTABILITY Error. TM stopped due to some numerical difficul-

ties.
TM ERROR COMM ERROR Error. TM stopped due to communication error.
TM ERROR USER Error. TM stopped. User error detected in one of

user callbacks called during TM processes.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym mc solve

int sym_mc_solve(sym_environment *env)

Description:
This routine is used to solve the loaded problem as a multicriteria problem. For this func-
tion, a second objective function must be set either by calling the sym set obj2 coeff()
function or by passing it directly using the sym explict load problem() function.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in one of

user send lp data(),
user send cg data(),
user send cp data(),
user receive feasible solution(),
user display solution(),
user process own messages() functions.

TM OPTIMAL SOLUTION FOUND The set of supported or nondominated solutions have
been found.

TM ERROR NO BRANCHING CANDIDATE Error. TM stopped. User didn’t select branching
candidate in user select candidates callback

TM ERROR ILLEGAL RETURN CODE Error. TM stopped after getting a non-valid return
code.

TM ERROR NUMERICAL INSTABILITY Error. TM stopped due to some numerical difficul-
ties.

TM ERROR COMM ERROR Error. TM stopped due to communication error.
TM ERROR USER Error. TM stopped. User error detected in one of

user callbacks activated by user and invoked during
TM processes.

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym create permanent cut pools

int sym_create_permanent_cut_pools(sym_environment *env, int *cp_num)

Description:
This routine is used to create a global cut pool that will be saved even after the solve call
exits and can be used to initialize the cut pool for later solve calls. This can be useful
when solving a series of related MILPs that share classes of globally valid inequalities.
For instance, if only the objective function is varied, as is the case with multicriteria
integer programming, then cuts can be saved for use in later solve calls.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int *cp num OUT Pointer to an integer indicating the number of cut

pools stored in the environment.
Return values:

INT The number of the cut pools created.
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. sym set user data

int sym_set_user_data(sym_environment *env, void *user)

Description:
This routine is used to give SYMPHONY a pointer to the user’s problem data structure.
This pointer will then be handed back to the user during subsequent calls to user call-
backs. This allows the user to store static problem data. Note that this pointer can also
be stored by filling out the callback function user initialize() (see Section 7.3.1).

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
void *user IN Pointer to the user defined problem structure.

Return values:
ERROR USER Error in the passed in user structure.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym close environment

int sym_close_environment(sym_environment *env)

Description:
This routine closes the environment and returns the allocated memory.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in user free master() func-

tion.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.



62 7.1 CALLABLE LIBRARY C API

7.1.2 Parameter Query and Modification

. sym set defaults

int sym_set_defaults(sym_environment *env)

Description:
This routine sets all the environment variables and parameters to their default values.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment to be mod-

ified.
Return values:

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym set int param

void sym_set_int_param(sym_environment *env, char *key, int value)

Description:
This routine is used to set an integer type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter to be set.
int value OUT New value of the corresponding parameter.
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. sym set dbl param

void sym_set_int_param(sym_environment *env, char *key, double value)

Description:
This routine is used to set a double type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter to be set.
double value OUT New value of the corresponding parameter.
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. sym set str param

void sym_set_str_param(sym_environment *env, char *key, char *value)

Description:
This routine is used to set a string type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter to be set.
char *value OUT New value of the corresponding parameter.
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. sym get int param

int sym_get_int_param(sym_environment *env, char *key)

Description:
This routine is used to get the value of an integer type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter.

Return values:
INT An integer indicating the value of the parameter.



7.1.2 Parameter Query and Modification 67

. sym get dbl param

double sym_get_int_param(sym_environment *env, char *key)

Description:
This routine is used to get the value of a double type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter.

Return values:
DOUBLE A double indicating the value of the parameter.
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. sym get str param

char *sym_get_int_param(sym_environment *env, char *key)

Description:
This routine is used to get the value of a string type parameter.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char *key IN The name of the parameter.

Return values:
CHAR* A character array indicating the value of the parameter.
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7.1.3 Solver Status Query Functions

. sym get status

int sym_get_status(sym_environment *env)

Description: This post-solution query routine is used to learn the termination status of
the solution procedure.

Arguments: sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
ERROR USER Error. User error detected in one of

user send lp data(),
user send cg data(),
user send cp data(),
user receive feasible solution(),
user display solution(),
user process own messages() functions.

TM OPTIMAL SOLUTION FOUND Tree Manager (TM) found the optimal solution and
stopped.

TM TIME LIMIT EXCEEDED TM stopped after reaching the predefined time limit.
TM NODE LIMIT EXCEEDED TM stopped after reaching the predefined node limit.
TM TARGET GAP ACHIEVED TM stopped after achieving the predefined target

gap.
TM FOUND FIRST FEASIBLE TM stopped after finding the first feasible solution.
TM ERROR NO BRANCHING CANDIDATE Error. TM stopped. User didn’t select branching

candidate in user select candidates() callback
TM ERROR ILLEGAL RETURN CODE Error. TM stopped after getting an invalid return

code.
TM ERROR NUMERICAL INSTABILITY Error. TM stopped due to some numerical difficul-

ties.
TM ERROR COMM ERROR Error. TM stopped due to communication error.
TM ERROR USER Error. TM stopped. User error detected in one of

user callbacks called during TM processes.



70 7.1 CALLABLE LIBRARY C API

. sym is proven optimal

int sym_is_proven_optimal(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the problem was solved to
optimality.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE The problem was solved to optimality.
FALSE The problem was not solved to optimality.
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. sym is proven primal infeasible

int sym_is_proven_primal_infeasible(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the problem was proven to be
infeasible.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE The problem was proven to be infeasible.
FALSE The problem was not proven to be infeasible.
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. sym is iteration limit reached

int sym_is_iteration_limit_reached(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the iteration (node limit) was
reached. It can also be used if “find first feasible” parameter was set to true before
solving the problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE The iteration limit is reached.
FALSE The iteration limit is not reached.



7.1.3 Solver Status Query Functions 73

. sym is time limit reached

int sym_is_time_limit_reached(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the time limit was reached.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE Time limit was reached.
FALSE Time limit was not reached.
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. sym is target gap achieved

int sym_is_target_gap_achieved(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the target gap was reached.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE Target gap was reached.
FALSE Target gap was not reached.

. sym is abandoned

int sym_is_abandoned(sym_environment *env)

Description:
This post-solution query routine is used to learn whether the problem was abandoned
for some reason.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
TRUE The problem was abandoned.
FALSE The problem was not abandoned.
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7.1.4 Data Query Functions

. sym create copy mip desc

MIPdesc *sym_create_copy_mip_desc(sym_environment *env)

Description:
This routine is used to copy the problem description loaded to the environment.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.

Return values:
NULL An empty environment is passed in or there is no problem descrip-

tion loaded to the environment.
MIPdesc * Pointer to the copy of the problem description.
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. sym get num cols

int sym_get_num_cols(sym_environment *env, int *numcols)

Description:
This routine is used to get the number of the columns of the current problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int *numcols OUT Pointer to an integer indicating the number of

columns.
Return values:

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get num rows

int sym_get_num_cols(sym_environment *env, int *numrows)

Description:
This routine is used to get the number of the rows of the current problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int *numrows OUT Pointer to an integer indicating the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get num elements

int sym_get_num_elements(sym_environment *env, int *numelems)

Description:
This routine is used to get the number of non-zero entries of the constraint matrix of
the current problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int *numelems OUT Pointer to an integer indicating the number of non-

zero elements.
Return values:

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get col lower

int sym_get_col_lower(sym_environment *env, double *collb)

Description:
This routine is used to get the lower bounds of the variables.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *collb OUT Pointer to a double type array to be filled by the

column lower bounds. Note that, the size of this
array has to be at least the number of columns.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get col upper

int sym_get_col_upper(sym_environment *env, double *colub)

Description:
This routine is used to get the upper bounds of the variables.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *colub OUT Pointer to a double type array to be filled by the

column upper bounds. Note that, the size of this
array has to be at least the number of columns.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get row sense

int sym_get_row_sense(sym_environment *env, char *rowsen)

Description:
This routine is used to get the row senses.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
char *rowsen OUT Pointer to a char type array to be filled by the row

senses. Note that, the size of this array has to be at
least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get rhs

int sym_get_rhs(sym_environment *env, double *rowrhs)

Description:
This routine is used to get the right hand side vector.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *rowrhs OUT Pointer to a double type array to be filled by the

right hand side vector. Note that, the size of this
array has to be at least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get row range

int sym_get_row_range(sym_environment *env, double *rowrng)

Description:
This routine is used to get the row ranges.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *rowrng OUT Pointer to a double type array to be filled by the row

range values. Note that, the size of this array has to
be at least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get row lower

int sym_get_row_lower(sym_environment *env, double *rowlb)

Description:
This routine is used to get the lower bounds of the rows.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *rowlb OUT Pointer to a double type array to be filled by the row

lower bounds. Note that, the size of this array has
to be at least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get row upper

int sym_get_row_upper(sym_environment *env, double *rowub)

Description:
This routine is used to get the upper bounds of the rows.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *rowub OUT Pointer to a double type array to be filled by the row

upper bounds. Note that, the size of this array has
to be at least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get obj coeff

int sym_get_obj_coeff(sym_environment *env, double *obj)

Description:
This routine is used to get the objective vector.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *obj OUT Pointer to a double type array to be filled by the

objective vector. Note that, the size of this array has
to be at least the number of columns.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get obj2 coeff

int sym_get_obj2_coeff(sym_environment *env, double *obj2)

Description:
This routine is used to get the second objective vector if it exists. By default, it is set
to the zero vector.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *obj2 OUT Pointer to a double type array to be filled by the

second objective vector. Note that, the size of this
array has to be at least the number of columns.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get obj sense

int sym_get_obj_sense(sym_environment *env, int *sense)

Description:
This routine is used to get the objective sense.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int *sense OUT Pointer to an integer indicating the objective sense.

In return, it will be 1 in case of minimization and -1
in case of maximization.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym is continuous

int sym_is_continuous(sym_environment *env, int index, int *value)

Description:
This routine is used to learn whether the queried variable is continuous.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int index IN The index of the queried variable. Note that, it has

to be at most the number of columns.
int *value OUT Pointer to a boolean indicating the variable status.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym is binary

int sym_is_binary(sym_environment *env, int index, int *value)

Description:
This routine is used to learn whether the queried variable is binary.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int index IN The index of the queried variable. Note that, it has

to be at most the number of columns.
int *value OUT Pointer to a boolean indicating the variable status.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym is integer

int sym_is_integer(sym_environment *env, int index, int *value)

Description:
This routine is used to ask whether the queried variable is integer.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int index IN Index of the queried variable. Note that, it has to be

at most the number of columns.
int *value OUT Pointer to a boolean indicating the variable status.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get infinity

double sym_get_infinity()

Description:
This routine returns the infinity value of SYMPHONY.

Arguments:

Return values:
DOUBLE Infinity value of SYMPHONY
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. sym get col solution

int sym_get_col_solution(sym_environment *env, double *colsol)

Description:
This routine is used to get the post-solution column values.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *colsol OUT Pointer to a double type array to be filled by the

solution vector. Note that, the size of this array has
to be at least the number of columns.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get row activity

double *sym_get_row_activity(sym_environment *env, double *rowact)

Description:
This routine is used to get the row activities which are defined as the left hand side
values, i.e., constraint matrix times the solution.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *rowact OUT Pointer to a double type array to be filled by the row

activity values. Note that, the size of this array has
to be at least the number of rows.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get obj val

double *sym_get_obj_val(sym_environment *env, double *objval)

Description:
This routine is used to get the objective value after solving the problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *objval OUT Pointer to a double indicating the post-solution ob-

jective value.
Return values:

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get primal bound

double *sym_get_primal_bound(sym_environment *env, double *ub)

Description:
This routine is used to get the a priori upper/lower bound for the problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
double *ub OUT Pointer to a double indicating the upper (for min-

imization) or lower (for maximization) bound ob-
tained through user defined primal heuristics.

Return values:
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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. sym get iteration count

double *sym_get_iteration\_count(sym_environment *env, int *numnodes)

Description:
This routine is used to get the number of the analyzed nodes of the branching tree after
solving the problem. It can also be used to query the status of a loaded warm start.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int *numnodes OUT Pointer to an integer indicating the number of nodes

analyzed so far.
Return values:

FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
FUNCTION TERMINATED NORMALLY Function invoked successfully.
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7.1.5 Data Modification Functions

. sym set obj coeff

double *sym_set_obj_coeff(sym_environment *env, int index, double value)

Description:
This routine is used to set an objective coefficient.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the objective coefficient to be modified.

Note that, it has to be at most the number of
columns.

double value IN New objective value of the corresponding column.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set obj2 coeff

double *sym_set_obj2_coeff(sym_environment *env, int index, double value)

Description:
This routine is used to set a coefficient of the second objective function of the corre-
sponding bicriteria problem.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the objective coefficient to be modified.

Note that, it has to be at most the number of
columns.

double value IN New value of the objective coefficient to be modified.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set col lower

double *sym_set_col_lower(sym_environment *env, int index, double value)

Description:
This routine is used to set the lower bound of a variable.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the variable. Note that, it has to be at most

the number of columns.
double value IN New lower bound of the variable.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set col upper

double *sym_set_col_upper(sym_environment *env, int index, double value)

Description:
This routine is used to set the upper bound of a variable.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the variable. Note that, it has to be at most

the number of columns.
double value IN New upper bound of the variable.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set row lower

double *sym_set_row_lower(sym_environment *env, int index, double value)

Description:
This routine is used to set the lower bound of a row.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the row. Note that, it has to be at most the

number of rows.
double value IN New lower bound of the row.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set row upper

double *sym_set_row_upper(sym_environment *env, int index, double value)

Description:
This routine is used to set the upper bound of a row.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the row. Note that, it has to be at most the

number of rows.
double value IN New upper bound of the row.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set row type

int sym_set_row_type(sym_environment *env, int index, char rowsense,
double rowrhs, double rowrng)

Description:
This routine is used to set the characteristics of a row.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN Index of the row. Note that, it has to be at most the

number of rows.
char rowsense IN New sense of the row.
double rowrhs IN New value of the right hand side of the row.
double rowrng IN New value of the row range.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set obj sense

int sym_set_obj_sense(sym_environment *env, int sense)

Description:
This routine is used to set the objective sense. By default, SYMPHONY will solve a
minimization problem.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int sense IN New sense of the objective function. It can be 1 and

-1 for minimization and maximization. Otherwise,
SYMPHONY will assume the objective sense to be
minimization.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully
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. sym set col solution

int sym_set_col_solution(sym_environment *env, double *colsol)

Description:
This routine is used to set the current solution if a known one exists. Note that setting
the column solution will not affect or help the treemanager’s processes other than setting
the best feasible solution and the corresponding upper bound.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
double *colsol IN Pointer to a double type array of the known column

values. Note that, if the given solution is not feasi-
ble or if a better solution was found/loaded before,
SYMPHONY will refuse to set the column solution
and will leave this function without success.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set primal bound

int sym_set_primal_bound(sym_environment *env, double bound)

Description:
This routine is used to set a priori upper/lower bound to the problem.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
double double IN The value of the priori upper (for minimization) or

lower (for maximization) bound.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set continuous

int sym_set_continuous(sym_environment *env, int index)

Description:
This routine is used to set the type of a variable to be continuous.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN The index of the variable to be modified. Note that,

it has to be at most the number of columns.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set integer

int sym_set_continuous(sym_environment *env, int index)

Description:
This routine is used to set the type of a variable to be integer.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int index IN The index of the variable to be modified. Note that,

it has to be at most the number of columns.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set col names

int sym_set_col_names(sym_environment * env, char **colname)

Description:
This routine is used to set the column names.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
char **colname IN Pointer to a string array including the column names.

Note that, the size of this array has to be at least the
number of columns.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym add col

int sym_add_col(sym_environment *env, int numelems, int *indices,
double *elements, double collb, double colub,
double obj, char *name)

Description:
This routine is used to add a new column to the original problem description.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int numelems IN An integer indicating the non zero elements of the

column.
int *indices IN Pointer to an integer type array indicating the row

indices of the non zero elements of the column and
having a size of at least numelems.

double *elements IN Pinter to a double type array indicating the values
of the non zero elements of the column and having a
size of at least numelems.

double collb IN A double indicating the lower bound of the column.
double colub IN A double indicating the upper bound of the column.
double obj IN A double indicating the objective coefficient value of

the column.
char *name IN Pointer to a string of the name of the column.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym add row

int sym_add_row(sym_environment *env, int numelems, int *indices,
double *elements, char rowsen, double rowrhs,
double rowrng)

Description:
This routine is used to add a new row to the original constraint matrix.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int numelems IN An integer indicating the non zero elements of the

row.
int *indices IN Pointer to an integer type array indicating the col-

umn indices of the non zero elements of the row and
having a size of at least numelems.

double *elements IN Pointer to a double type array indicating the values
of the non zero elements of the row and having a size
of at least numelems.

char rowsen IN A character indicating the sense of the row.
double rowrhs IN A double indicating the right hand side of the row.
double rowrng IN A double indicating the range value of the row.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym delete cols

int sym_delete_cols(sym_environment *env, int num, int * indices)

Description:
This routine is used to delete columns from the original problem description.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int num IN An integer indicating the number of columns to be

deleted.
int *indices IN Pointer to an integer type array indicating the indices

of the columns to be deleted and having a size of at
least num.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully or one of the indices

is out of the range of [0, number of variables-1]
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. sym delete rows

int sym_delete_rows(sym_environment *env, int num, int * indices)

Description:
This routine is used to delete rows from the original constraint matrix.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
int num IN An integer indicating the number of rows to be

deleted.
int *indices IN An array indicating the indices of the rows to be

deleted and having a size of at least num.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully or one of the

indices is out of the range of [0, number of variables-1]
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7.1.6 Warm Starting Functions

. sym write warm start desc

int sym_write_warm_start_desc(warm_start_desc *ws, char *file)

Description:
This routine is used to write the given warm start structure to a file.

Arguments:
warm start desc *ws IN Pointer to the warm start description to be written.
char *file IN The name of the file the warm start is desired to be

written to.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym read warm start

int sym_read_warm_start(char *file, warm_start_desc *ws)

Description:
This routine is used to read in a warm start structure from a file.

Arguments:
char *file IN The name of the file the warm start is desired to be

read from.
warm start desc *ws OUT Pointer to a warm start object to be read from the

file.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym delete warm start

void sym_delete_warm_start(warm_start_desc *ws)

Description:
This routine is used to free a warm start structure and return the allocated memory.

Arguments:
warm start desc *ws IN Pointer to the warm start description to be deleted.
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. sym get warm start

warm_start_desc *sym_get_warm_start(sym_environment *env, int copy_warm_start,
warm_start_desc **ws)

Description:
This routine is used to get the warm start description loaded to the environment.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int copy warm start IN A boolean indicating whether the warm start of the

environment is desired to be copied or overtaken.
warm start desc **ws OUT Pointer to a pointer to be directed to a copy or the

itself of the currently loaded warm start.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym set warm start

int sym_set_warm_start(sym_environment *env, warm_start_desc *ws)

Description:
This routine is used to load a warm start structure to the environment.

Arguments:
sym environment *env INOUT Pointer to the SYMPHONY environment.
warm start desc *ws IN Pointer to the warm start structure to be loaded to

the environment.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym create copy warm start

warm_start_desc *sym_create_copy_warm_start(warm_start_desc *ws)

Description:
This routine is used to copy the given warm start structure.

Arguments:
warm start desc *ws INOUT Pointer to the warm start structure to be copied.

Return values:
tt NULL An empty warm start description is passed in.
WARM START DESC * Pointer to the copy of the warm start structure.
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7.1.7 Sensitivity Analysis Functions

. sym get lb for new rhs

int sym_get_lb_for_new_rhs(sym_environment *env, int cnt, int *new_rhs_ind,
double *new_rhs_val, double *lb_for_new_rhs)

Description:
This routine is used for a basic sensitivity analysis of the right hand side case. It returns
a lower bound for the problem with a modified right hand side using the information
gathered from the branching tree of the original solved problem. Note that, in order to
use this feature, the sensitivity analysis parameter needs to be set before solving
the original problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int cnt IN The number of the non zero elements in the new right

hand side vector.
int *new rhs ind IN Array of the column indices of these non zero ele-

ments.
double *new rhs val IN Array of the values of these non zero elements.
double *lb for new rhs OUT Pointer to a double indicating the lower bound ob-

tained for the new problem.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym get ub for new rhs

int sym_get_ub_for_new_rhs(sym_environment *env, int cnt, int *new_rhs_ind,
double *new_rhs_val, double *ub_for_new_rhs)

Description:
This routine is used for a basic sensitivity analysis of the right hand side case. It returns a
quick upper bound for the problem with a modified right hand side using the information
gathered from the branching tree of the original solved problem. Note that, in order to
use this feature, the sensitivity analysis parameter needs to be set before solving
the original problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int cnt IN The number of the non zero elements in the new right

hand side vector.
int *new rhs ind IN Array of the column indices of these non zero ele-

ments.
double *new rhs val IN Array of the values of these non zero elements.
double *ub for new rhs OUT Pointer to a double indicating the lower bound ob-

tained for the new problem. This value will be set to
SYM INFINITY if an upper bound can not be found.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym get lb for new obj

int sym_get_lb_for_new_rhs(sym_environment *env, int cnt, int *new_obj_ind,
double *new_obj_val, double *lb_for_new_obj)

Description:
This routine is used for a basic sensitivity analysis of the objective function case. It
returns a quick lower bound for the problem with a modified objective vector using the
information gathered from the branching tree of the original solved problem. Note that,
in order to use this feature, the sensitivity analysis parameter needs to be set before
solving the original problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int cnt IN The number of the non zero elements in the new ob-

jective coefficients.
int *new obj ind IN Array of the column indices of these non zero ele-

ments.
double *new obj val IN Array of the values of these non zero elements.
double *lb for new obj OUT Pointer to a double indicating the lower bound ob-

tained for the new problem.
Return values:

FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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. sym get ub for new obj

int sym_get_ub_for_new_rhs(sym_environment *env, int cnt, int *new_obj_ind,
double *new_obj_val, double *ub_for_new_obj)

Description:
This routine is used for a basic sensitivity analysis of the objective function case. It
returns a quick lower bound for the problem with a modified objective vector using the
information gathered from the branching tree of the original solved problem. Note that,
in order to use this feature, the sensitivity analysis parameter needs to be set before
solving the original problem.

Arguments:
sym environment *env IN Pointer to the SYMPHONY environment.
int cnt IN The number of the non zero elements in the new ob-

jective coefficients.
int *new obj ind IN Array of the column indices of these non zero ele-

ments.
double *new obj val IN Array of the values of these non zero elements.
double *ub for new obj OUT Pointer to a double indicating the upper bound ob-

tained for the new problem. This value will be set to
SYM INFINITY if an upper bound can not be found.

Return values:
FUNCTION TERMINATED NORMALLY Function invoked successfully.
FUNCTION TERMINATED ABNORMALLY Function invoked unsuccessfully.
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7.2 Callable Library C++ API

SYMPHONY’s C++ interface is derived from COIN-OR’s Open Solver Interface (OSI). The OSI
methods are implemented simply as wrapped calls to the SYMPHONY C callable library just
described. For instance, when an instance of the OSI interface class is constructed, a call is made
to sym open environment() and a pointer to the environment is stored in the class and when
the OSI object is destroyed, sym close environment is called to destroy the environment object.
Most subsequent calls within the class can then be made without any arguments. To fully support
SYMPHONY’s capabilities, we have extended the OSI interface to include some other methods not
in the base class. For example, we added calls equivalent to our sym parse command line() and
sym find initial bounds(). Additionally, SYMPHONY has a warm start class derived from the
CoinWarmStart base class to support the new functionalities of the MILP warm starting such as
sym get warm start and sym set warm start. They are also implemented as wrapped calls to the
C interface library.

In order to have the whole list of the methods and information regarding their usage, see the OSI
SYMPHONY interface and SYMPHONY warm start header files (OsiSymSolverInterface.hpp
and SymWarmStart.hpp). Here, we will give the table of the C library equivalent calls of the C++
interface routines with brief descriptions:
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C++ Interface C Interface Description
OsiSymSolverInterface sym open environment create a new environment.
loadProblem sym load problem load the problem read trough an MPS or GMPL file
branchAndBound sym solve/sym warm solve solve the MILP problem from scratch or

from a warm start if loaded.
resolve sym warm solve re-solve the MILP problem after some modifications.
initialSolve sym solve solve the MILP problem from scratch.
multiCriteriaBranchAndBound sym mc solve solve the multi criteria problem.
setInitialData sym set defaults set the parameters to their defaults.
parseCommandLine sym parse command line read the command line arguments.
findInitialBounds sym find initial bounds find the initial bounds via the user defined heuristics.
createPermanentCutPools sym create permanent cut pools save the global cuts.
loadProblem sym explicit load problem load the problem through a set of arrays.
getWarmStart sym get warm start get the warm start description.
setWarmStart sym set warm start set the warm start description.
getLbForNewRhs sym get lb for new rhs find a lower bound to the new rhs problem

using the post solution info.
getUbForNewRhs sym get lb for new rhs find an upper bound to the new rhs problem.

using the post solution info.
getLbForNewObj sym get lb for new rhs find a lower bound to the new obj problem.

using the post solution info.
getUbForNewObj sym get lb for new rhs find an upper bound to the new obj problem.

using the post solution info.
reset sym close environment return the allocated memory.
setIntParam sym set int param set the integer type OSI parameter.
setSymParam(int) sym set int param set the integer type SYMPHONY parameter.
setDblParam sym set dbl param set the double type OSI parameter.
setSymParam(double) sym set dbl param set the double type SYMPHONY parameter.
setStrParam sym set str param set the string type OSI parameter.
setSymParam(string) sym set str param set the string type SYMPHONY parameter.
getIntParam sym get int param get the value of the integer type OSI parameter.
getSymParam(int &) sym get int param get the value of the integer type SYMPHONY parameter.
getDblParam sym get dbl param get the value of the double type OSI parameter.
getSymParam(double &) sym get dbl param get the value of the double type SYMPHONY parameter.
getStrParam sym get str param get the value of the string type OSI parameter.
getSymParam(string &) sym get str param get the value of the string type SYMPHONY parameter.
isProvenOptimal sym is proven optimal query the problem status.
isProvenPrimalInfeasible sym is proven primal infeasible query the problem status.
isPrimalObjectiveLimitReached sym is target gap achieved query the problem status.
isIterationLimitReached sym is iteration limit reached query the problem status.
isTimeLimitReached sym is time limit reached query the problem status.
isTargetGapReached sym is target gap achieved query the problem status.
getNumCols sym get num cols get the number of columns.
getNumRows sym get num rows get the number of rows.
getNumElements sym get num elements get the number of nonzero elements.
getColLower sym get col lower get the column lower bounds.
getColUpper sym get col upper get the column upper bounds.
getRowSense sym get row sense get the row senses.
getRightHandSide sym get rhs get the rhs values.
getRowRange sym get row range get the row range values.
getRowLower sym get row lower get the row lower bounds.
getRowUpper sym get row upper get the row upper bounds.
getObjCoefficients sym get obj coeff get the objective function vector.
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C++ Interface C Interface Description
getObjSense sym get obj sense get the objective sense.
isContinuous sym is continuous query the variable type.
isBinary sym is binary query the variable type.
isInteger sym is integer query the variable type.
isIntegerNonBinary - query the variable type.
isFreeBinary sym is binary query the variable type.
getMatrixByRow - get the constraint matrix by row oriented.
getMatrixByCol - get the constraint matrix by column oriented.
getInfinity - get the infinity definition of SYMPHONY.
getColSolution sym get col solution get the current best column solution.
getRowActivity sym get row activity get the current row activity.
getObjValue sym get obj val get the current best objective value.
getPrimalBound sym get primal bound get the primal upper bound.
getIterationCount sym get iteration count get the number of the analyzed tree nodes.
setObjCoeff sym set obj coeff set the objective function vector.
setObj2Coeff sym set obj2 coeff set the second objective function vector.
setColLower sym set col lower set the column lower bounds.
setColUpper sym set col upper set the column upper bounds.
setRowLower sym set row lower set the row lower bounds.
setRowUpper sym set row upper set the row upper bounds.
setRowType sym set row type set the row characteristics.
setObjSense sym set obj sense set the objective sense.
setColSolution sym set col solution set the current solution.
setContinuous sym set continuous set the variable type.
setInteger sym set integer set the variable type.
setColName sym set col names set the column names.
addCol sym add col add columns to the constraint matrix.
addRow sym add row add rows to the constraint matrix.
deleteCols sym delete cols delete some columns from the constraint matrix.
deleteRows sym delete rows delete some rows from the constraint matrix.
writeMps - write the current problem in MPS format.
applyRowCut - add some row cuts.
applyColCut - add some column cuts.
SymWarmStart(warm start desc *) sym create copy warm start create a SYMPHONY warm start by copying the given one.
SymWarmStart(char *) sym read warm start create a SYMPHONY warm start reading from file.
getCopyOfWarmStartDesc sym create copy warm start get the copy of the warm start structure.
writeToFile sym write warm start desc write the loaded warm start to a file.
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7.3 User Callback API

7.3.1 Master module callbacks

. user usage

void user_usage()

Description:
SYMPHONY’s command-line switches are all lower case letters. The user can use any
upper case letter (except ’H’ and as specified below) for command line switches to con-
trol user-defined parameter settings without the use of a parameter file. The function
user usage() can optionally print out usage information for the user-defined command
line switches. The command line switch -H automatically calls the user’s usage sub-
routine. The switch -h prints SYMPHONY’s own usage information. In its default
configuration, the command-line switch -F is used to specify the file in which the in-
stance data is contained (either an MPS file or an GMPL/AMPL file). The -D switch is
used to specify the data file if an GMPL/AMPL file is being read in (see the README
file).



7.3.1 Master module callbacks 129

. user initialize

int user_initialize(void **user)

Description:
The user allocates space for and initializes the user-defined data structures for the master
module.

Arguments:
void **user OUT Pointer to the user-defined data structure.

Return values:
USER ERROR Error. SYMPHONY exits.
USER SUCCESS Initialization is done.
USER DEFAULT There is no user-defined data structure (this can be the case if

the default parser is being used to read in either an MPS or
GMPL/AMPL file.
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. user readparams

int user_readparams(void *user, char *filename, int argc, char **argv)

Description:
The user can optionally read in parameter settings from the file named filename,
specified on the command line using the -f switch. The parameter file filename
can contain both SYMPHONY’s built-in parameters and user-defined parameters. If
desired, the user can open this file for reading, scan the file for lines that contain
user parameter settings and then read the parameter settings. A shell for doing this
is set up in the in the file SYMPHONY-5.0/USER/user master.c. Also, see the file
Master/master io.c to see how SYMPHONY does this.

The user can also parse the command line arguments for user settings. A shell
for doing this is also set up in the file SYMPHONY-5.0/USER/user master.c. Upper
case letters are reserved for user-defined command line switches. The switch -H is
reserved for help and calls the user’s usage subroutine (see user usage()7.3.1). If
the user returns ‘USER DEFAULT’, then SYMPHONY will look for the command-line
switch -F to specify the file name for reading in the model from either an MPS or a
GMPL/AMPL file. The -D command-line switch is used to specify an additional data
file for GMPL/AMPL models. If the -D option is not present, SYMPHONY assumes
the file is an MPS file.

Arguments:
void *user IN Pointer to the user-defined data structure.
char *filename IN The name of the parameter file.

Return values:
USER ERROR Error. SYMPHONY stops.
USER SUCCESS User parameters were read successfully.
USER DEFAULT SYMPHONY will read in the problem instance from either an

MPS or an GMPL/AMPL file. The command-line switches -F
and -D will be used to specify the model file and (in the case of
GMPL/AMPL) the data file.
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. user io

int user_io(void *user)

Description:
Here, the user can read in an instance in a custom format and set up appropriate data
structures. If the user wants to use the default parsers to read either an MPS file
or a GMPL/AMPL file, then the return value USER DEFAULT should be specified (see
user readparams()7.3.1 for the command-line switches to use to specify this behavior).

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
USER ERROR Error. SYMPHONY stops.
USER SUCCESS User I/O was completed successfully.
USER DEFAULT Input will be read in from an MPS or GMPL/AMPL file.
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. user init draw graph

int user_init_draw_graph(void *user, int dg_id)

Description:
This function is invoked only if the do draw graph parameter is set. The user can
initialize the graph drawing module by sending some initial information (e.g., the location
of the nodes of a graph, like in the TSP.)

Arguments:
void *user IN Pointer to the user-defined data structure.
int dg id IN The process id of the graph drawing module.

Return values:
USER ERROR Error. SYMPHONY stops.
USER SUCCESS The user completed initialization successfully.
USER DEFAULT No action.
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. user start heurs

int user_start_heurs(void *user, double *ub, double *ub_estimate)

Description:
The user invokes heuristics and generates the initial global upper bound and also perhaps
an upper bound estimate. This is the last place where the user can do things before
the branch and cut algorithm starts. She might do some preprocessing, in addition to
generating the upper bound.

Arguments:
void *user IN Pointer to the user-defined data structure.
double *ub OUT Pointer to the global upper bound. Initially, the upper bound

is set to either -MAXDOUBLE or the bound read in from the pa-
rameter file, and should be changed by the user only if a better
valid upper bound is found.

double *ub estimate OUT Pointer to an estimate of the global upper bound. This is useful
if the BEST ESTIMATE diving strategy is used (see the treeman-
ager parameter diving strategy (Section 7.4.4))

Return values:
USER ERROR Error. This error is probably not fatal.
USER SUCCESS User executed function successfully.
USER DEFAULT No action (someday, there may be a default MIP heuristic here).
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. user initialize root node

int user_initialize_root_node(void *user, int *basevarnum, int **basevars,
int *basecutnum, int *extravarnum, int **extravars,
char *obj_sense, double *obj_offset,
char ***colnames, int *colgen_strat)

Description:

In this function, the user must specify the list of indices for the base and extra variables.
The option to specify a variable as base is provided simply for efficiency reasons. If there
is no reasonable way to come up with a set of base variables, then all variables should
be specified as extra (see Section 4.1.2 for a discussion of base and extra variables). If
the function returns USER DEFAULT and sets extravarnum, then SYMPHONY will put
all variables indexed from 0 to extravarnum in the set of extra variables by default. If
an MPS or GMPL/AMPL file was read in using SYMPHONY’s built-in parser, i.e., the
default behavior of user io()7.3.1 was not modified, then extravarnum need not be set.

In this function, the user may also specify column names for display purposes. If
the colnames array is allocated, then SYMPHONY will use for displaying solutions. If
the data was read in from either an MPS or GMPL/AMPL file, then the column names
will be set automatically.

Arguments:
void *user IN Pointer to the user-defined data structure.
int *basevarnum OUT Pointer to the number of base variables.
int **basevars OUT Pointer to an array containing a list of user indices of

the base variables to be active in the root.
int *basecutnum OUT The number of base constraints.
int *extravarnum OUT Pointer to the number of extra active variables in the

root.
int **extravars OUT Pointer to an array containing a list of user indices of

the extra variables to be active in the root.
char *obj sense INOUT Whether to negate the objective function value when

printing the solution, set to either MAXIMIZE or
MINIMIZE. Note that SYMPHONY always minimizes—
this only effects the printing of the solution. The
default is MINIMIZE.

double *obj offset INOUT A specified constant to be added to the objective func-
tion value when printing out the solution.

int ***colnames OUT Pointer to an array containing a list of column names to
be used for display purposes.

int *colgen strat INOUT The default strategy or one that has been read in from
the parameter file is passed in, but the user is free to
change it. See colgen strat in the description of pa-
rameters for details on how to set it.

Return values:
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USER ERROR Error. SYMPHONY stops.
USER SUCCESS The required data are filled in.
USER DEFAULT All variables indexed 0 to extravarnum are put in the ex-

tra set (The user must set extravarnum unless an MPS or
GMPL/AMPL file was read in by SYMPHONY.

Post-processing:
The array of base and extra indices are sorted.
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. user receive feasible solution

int user_receive_feasible_solution(void *user, int msgtag, double cost,
int numvars, int *indices, double *values)

Description:
This function is only used for parallel execution. Feasible solutions can be sent
and/or stored in a user-defined packed form if desired. For instance, the TSP, a
tour can be specified simply as a permutation, rather than as a list of variable
indices. In the LP module, a feasible solution is packed either by the user or by a
default packing routine. If the default packing routine was used, the msgtag will
be FEASIBLE SOLUTION NONZEROS. In this case, cost, numvars, indices and values
will contain the solution value, the number of nonzeros in the feasible solution, and
their user indices and values. The user has only to interpret and store the solution.
Otherwise, when msgtag is FEASIBLE SOLUTION USER, SYMPHONY will send and
receive the solution value only and the user has to unpack exactly what she has packed
in the LP module. In this case the contents of the last three arguments are undefined.

In most cases, SYMPHONY’s default routines for sending and receiving feasible
solutions, as well as displaying them, will suffice. These routines simply display all
nonzeros by either index or name, depending on whether the user set the column names.
See user receive lp data() in Section 7.3.2 for more discussion.

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN FEASIBLE SOLUTION NONZEROS or FEASIBLE SOLUTION USER
double cost IN The cost of the feasible solution.
int numvars IN The number of variables whose user indices and values were

sent (length of indices and values).
int *indices IN The user indices of the nonzero variables.
double *values IN The corresponding values.

Return values:
USER ERROR Ignored. This is probably not a fatal error.
USER SUCCESS The solution has been unpacked and stored.
USER DEFAULT Store the nonzeros in the solutions for later display.
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. user send lp data

int user_send_lp_data(void *user, void **user_lp)

Description:
If the user wishes to employ parallelism, she has to send all problem-specific data that
will be needed to implement user functions in the LP module in order to set up the
initial LP relaxation and perform later computations. This could include instance data,
as well as user parameter settings (see Section 6.4 for a discussion of this). This is
one of the few places where the user may need to worry about the configuration of the
modules. If either the tree manager or the LP are running as a separate process (either
COMPILE IN LP or COMPILE IN TM are FALSE in the make file), then the data will be sent
and received through message-passing. See user receive lp data() in Section 7.3.2
for more discussion. Otherwise, it can be copied through shared memory. The easiest
solution, which is set up by default is to simply copy over a pointer to a single user data
structure where instance data is stored. The code for the two cases is put in the same
source file by use of #ifdef statements. See the comments in the code stub for this
function for more details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user lp OUT Pointer to the user-defined data structure for the LP mod-

ule.
Return values:

USER ERROR Error. SYMPHONY stops.
USER SUCCESS Packing is done.
USER DEFAULT User has no data to send. This would be used when SYM-

PHONY has read in an MPS or GMPL/AMPL model file.
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. user send cg data

int user_pack_cg_data(void *user, void **user_cg)

Description:
If the user wishes to employ parallelism and wants a separate cut generator module, this
function can be used to send all problem-specific data that will be needed by the cut
generator module to perform separation. This could include instance data, as well as
user parameter settings (see Section 6.4 for a discussion of this). This is one of the few
places where the user may need to worry about the configuration of the modules. If ei-
ther the tree manager or the LP are running as a separate process (either COMPILE IN LP
or COMPILE IN TM are FALSE in the make file), then the data will be sent and received
through message-passing. See user receive cg data() in Section 7.3.3 for more discus-
sion. Otherwise, it can be copied through shared memory. The easiest solution, which is
set up by default is to simply copy over a pointer to a single user data structure where
instance data is stored. The code for the two cases is put in the same source file by
use of #ifdef statements. See the comments in the code stub for this function for more
details.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cg OUT Pointer to the user-defined data structure for the cut gen-

erator module.
Return values:

USER ERROR Error. SYMPHONY stops.
USER SUCCESS Packing is done.
USER DEFAULT No data to send to the cut generator (no separation performed).
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. user send cp data

int user_pack_cp_data(void *user, void **user_cp)

Description:
If the user wishes to employ parallelism and wants to use the cut pool to store
user-defined cuts, this function can be used to send all problem-specific data that will
be needed by the cut pool module. This could include instance data, as well as user
parameter settings (see Section 6.4 for a discussion of this). This is one of the few places
where the user may need to worry about the configuration of the modules. If either
the tree manager or the LP are running as a separate process (either COMPILE IN LP
or COMPILE IN TM are FALSE in the make file), then the data will be sent and received
through message-passing. See user receive cp data() in Section 7.3.4 for more discus-
sion. Otherwise, it can be copied through shared memory. The easiest solution, which is
set up by default is to simply copy over a pointer to a single user data structure where
instance data is stored. The code for the two cases is put in the same source file by use of
#ifdef statements. See the comments in the code stub for this function for more details.

Note that there is support for cuts generated and stored as explicit matrix rows.
The cut pool module is already configured to deal with such cuts, so no user implemen-
tation is required. Only the use of user-defined cuts requires customization of the Cut
Pool module.

Arguments:
void *user IN Pointer to the user-defined data structure.
void **user cp OUT Pointer to the user-defined data structure for the cut pool

module.
Return values:

USER ERROR Error. SYMPHONY stops.
USER SUCCESS Packing is done.
USER DEFAULT No data to send to the cut pool (no user-defined cut classes or

cut pool not used).
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. user display solution

int user_display_solution(void *user, double lpetol, int varnum, int *indices,
double *values, double objval)

Description:
This function is invoked when a best solution found so far is to be displayed (after
heuristics, after the end of the first phase, or the end of the whole algorithm). This can
be done using either a text-based format or using the drawgraph module. By default,
SYMPHONY displays the indices (or column names, if specified) and values for each
nonzero variable in the solution. The user may wish to display a custom version of the
solution by interpreting the variables.

Arguments:
void *user IN Pointer to the user-defined data structure. For sequential

computation, a pointer to the user’s LP data structure is
passed in. For parallel computation, a pointer to the user’s
Master data structure is passed in.

double lpetol IN The LP zero tolerance used.
int varnum IN The number of nonzeros in the solution.
int *indices IN The indices of the nonzeros.
double *values IN The values of the nonzeros.
double objval IN The objective function value of the solution.

Return values:
USER ERROR Ignored.
USER SUCCESS User displayed the solution. SYMPHONY should do nothing.
USER DEFAULT SYMPHONY should display the solution in default format.

Post-processing:
If requested, SYMPHONY will display a best solution found so far in the default format.
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. user send feas sol

int user_send_feas_sol(void *user, int *feas_sol_size, int **feas_sol)

Description:
This function is useful for debugging purposes. It passes a known feasible solution to
the tree manager. The tree manager then tracks which current subproblem admits this
feasible solution and notifies the user when it gets pruned. It is useful for finding out
why a known optimal solution never gets discovered. Usually, this is due to either an
invalid cut of an invalid branching. Note that this feature only works when branching
on binary variables. See Section 6.8.4 for more on how to use this feature.

Arguments:
void *user IN Pointer to the user-defined data structure.
int *feas sol size INOUT Pointer to size of the feasible solution passed by the

user.
int **feas sol INOUT Pointer to the array of user indices containing the

feasible solution. This array is simply copied by the
tree manager and must be freed by the user.

Return values:

Arguments:
USER ERROR Solution tracing is not enabled.
USER SUCCESS Tracing of the given solution is enabled.
USER DEFAULT No feasible solution given.
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. user process own messages

int user_process_own_messages(void *user, int msgtag)

Description:
The user must receive any message he sends to the master module (independently of
SYMPHONY’s own messages). An example for such a message is sending feasible
solutions from separate heuristics processes fired up in user start heurs().

Arguments:
void *user IN Pointer to the user-defined data structure.
int msgtag IN The message tag of the message.

Return values:
USER ERROR Ignored.
USER SUCCESS Message is processed.
USER DEFAULT No user message types defined.
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. user free master

int user_free_master(void **user)

Description:
The user frees all the data structures within *user, and also free *user itself. This
can be done using the built-in macro FREE that checks the existence of a pointer before
freeing it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on return).
Return values:

USER ERROR Ignored. This is probably not a fatal error.
USER SUCCESS Everything was freed successfully.
USER DEFAULT There is no user memory to free.



144 7.3 USER CALLBACK API

7.3.2 LP module callbacks

Data Structures

We first describe a few structures that are used to pass data into and out of the user functions of
the LP module.

. MIPdesc

One of the few internally defined data structures that the user has to deal with frequently
is the MIPdesc data structure, which holds the data needed to describe a MILP. This data
structure is used by SYMPHONY for two purposes. First, it is used to store the description of
a generic MILP that is either read in from an MPS or AMPL file. More importantly, it is the
data structure the user must use to pass the subproblem descriptions back to SYMPHONY
at the time a new search tree node is created in the function user create subproblem()
(see Section 7.3.2). The structure has 14 fields (listed below) that must be filled out to
describe a subproblem (some fields are optional).

A subproblem is a mixed-integer program defined by a matrix of constraints, an ob-
jective function, bounds on both the right hand side values of the constraints and the
variables, an array indicating which variables are integer, and (optionally) an array of column
names that allows SYMPHONY to report the solution back in terms of column names
instead of user indices. If the subproblem has n variables and m constraints, the constraints
are given by a constraint coefficient matrix of size m × n (described in the next paragraph).
The sense of each constraint, the right hand side values and bounds on the right hand side
(called range) are vectors are of size m. The objective function coefficients and the lower and
upper bounds on the variables are vectors of length n. The sense of each constraint can be
either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’ (ranged). For non-ranged rows the range value is 0, for
a ranged row the range value must be non-negative and the constraint means that the row
activity level has to be between the right hand side value and the right hand side increased
by the range value.

Since the coefficient matrix is very often sparse, only the nonzero entries are stored.
Each entry of the matrix has a column index, a row index and a coefficient value associated
with it. A matrix is specified in the form of the three arrays matval, matind, and matbeg.
The array matval contains the values of the nonzero entries of the matrix in column order ;
that is, all the entries for the 0th column come first, then the entries for the 1st column, etc.
The row index corresponding to each entry of matval is listed in matind (both of them are
of length nz, the number of nonzero entries in the matrix). Finally, matbeg contains the
starting positions of each of the columns in matval and matind. Thus, matbeg[i] is the
position of the first entry of column i in both matval and matind). By convention matbeg
is allocated to be of length n+1, with matbeg[n] containing the position after the very last
entry in matval and matind (so it is very conveniently equal to nz). This representation of
a matrix is known as a column ordered or column major representation. Below are listed the
fields that must be filled out to describe a subproblem.

int n – The number of columns.
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int m – The number of rows.

int nz – The number of nonzeros.

double obj offset – Constant to be added to the objective function value when printed.

char obj sense – Objective sense (set to MAXIMIZE or MINIMIZE).

char *is int – Indicates which variables are required to be integer.

int *matbeg – The array containing the starting positions for each column.

int *matind – The array containing the indices for each column.

double *matval – The array containing the matrix values for each column.

double *obj – The objective function coefficients for the second objective (for multicriteria
solve).

double *obj2 – The objective function coefficients.

double *rhs – The right hand side values for the constraints.

double *rngval – The range values for the constraints (optional).

char *sense – The senses of the constraints.

double *lb – The lower bounds of the variables.

double *ub – The upper bounds of the variables.

char **colname – The column names.
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. cut data

Another of the internally defined data structures that the user has to deal with frequently
is the cut data data structure, used to store the packed form of cuts. This structure has 8
fields listed below.

int size – The size of the coef array.

char *coef – An array containing the packed form of the cut, which is defined and con-
structed by the user. Given this packed form and a list of the variables active in the
current relaxation, the user must be able to construct the corresponding constraint.

double rhs – The right hand side of the constraint.

double range – The range of the constraint. It is zero for a standard form constraint.
Otherwise, the row activity level is limited to between rhs and rhs + range.

char type – A user-defined type identifier that represents the general class that the cut
belongs to.

char sense – The sense of the constraint. Can be either ’L’ (≤), ’E’ (=), ’G’ (≥) or ’R’
(ranged). This may be evident from the type.

char deletable – Determines whether or not a cut can be deleted once added to the for-
mulation. TRUE by default.

char branch – Determines whether the cut can be branched on or not. Possible initial values
are DO NOT BRANCH ON THIS ROW and ALLOWED TO BRANCH ON.

int name – Identifier used by SYMPHONY. The user should not set this.
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. waiting row

A closely related data structure is the waiting row, essentially the “unpacked” form of a cut.
There are six fields.

source pid – Used internally by SYMPHONY.

cut data *cut – Pointer to the cut from which the row was generated.

int nzcnt, *matind, *matval – Fields describing the row. nzcnt is the number of nonze-
ros in the row, i.e., the length of the matind and matval arrays, which are the variable
indices (wrt. the current LP relaxation) and nonzero coefficients in the row.

double violation – If the constraint corresponding to the cut is violated, this value contains
the degree of violation (the absolute value of the difference between the row activity level
(i.e., lhs) and the right hand side). This value does not have to be set by the user.
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. var desc

The var desc structure is used list the variables in the current relaxation. There are four
fields.

int userind – The user index of the variables,

int colind – The column index of the variables (in the current relaxation),

double lb – The lower bound of the variable,

double ub – The upper bound of the variable.
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Function Descriptions

Now we describe the functions themselves.

. user receive lp data

int user_receive_lp_data (void **user)

Description:
This function only has to be filled out for parallel execution and only if either the TM
or LP modules are configured as separate processes. Otherwise, data will have been
copied into appropriate locations in the master function user send lp data() (see
Section 7.3.1). The two cases can be handled by means of #ifdef statements. See
comments in the source code stubs for more details.

Here, the user must receive all problem-specific information sent from the mas-
ter, set up necessary data structures, etc. Note that the data must be received in
exactly the same order as it was sent in user send lp data() (see Section 7.3.1). See
Section 6.4 for more notes on receiving data.

Arguments:
void **user OUT Pointer to the user-defined LP data structure.

Return values:
USER ERROR Error. SYMPHONY aborts this LP module.
USER SUCCESS User received the data successfully.
USER DEFAULT User did not send any data.

Wrapper invoked from: lp initialize() at process start.
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. user create subproblem

int user_create_subproblem(void *user, int *indices, MIPdesc *mip,
int *maxn, int *maxm, int *maxnz)

Description:
Based on the instance data contained in the user data structure and the list of base
and extra variables that are active in the current subproblem, the user has to create
the subproblem for the search node. The matrix describing the subproblem must
contain those variables whose user indices are listed in the array indices (in the same
order) and the base constraints. The extra (dynamically generated) constraints are
added automatically by SYMPHONY after the initial subproblem description is created.

In this function, the user is required to construct a description of the subprob-
lem in column-ordered format and pass it back to SYMPHONY by filling out the
MIPdesc data structure, described in Section 7.3.2. The user is not responsible for
allocating extra memory to allow for the addition of dynamically generated cuts
and variables. The arrays allocated in user create subproblem() are owned by
SYMPHONY after allocation and are freed as soon as the relaxation is loaded into the
solver. However, if the user has an idea as to the maximum number of variables and
constraints that are likely to be generated during processing of the subproblem, this
information can be passed to SYMPHONY in the variables *maxn, *maxm, and *maxnz.
These numbers are only estimates that SYMPHONY can use to perform memory
allocation. They do not have to be exact numbers. In fact, these estimates need not be
provided at all. The obj sense and obj offset fields are set globally in the function
user initialize root node() (see Section7.3.1). Setting them here will have no effect.

Note that, the user should return “USER DEFAULT” if an MPS or GMPL/AMPL file
was read in to describe the original MILP. SYMPHONY will allocate the corresponding
arrays and specify the constraint matrix automatically in this case.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int *indices IN The list of the active variables (base and extra).
MIPdesc *mip OUT Pointer to the MIPdesc data structure.
int *maxn OUT Estimated maximum number of variables.
int *maxm OUT Estimated maximum number of constraints.
int *maxnz OUT Estimated maximum number of nonzeros.

Return values:
USER ERROR Error. The LP module is aborted.
USER SUCCESS User created the constraint matrix with the base constraints.
USER DEFAULT This return code is used when the default routines for reading in an

MPS or AMPL file were used and the user wants to let SYMPHONY
set up the subproblem automatically. This return will cause an error
if the default I/O routines were not used.

Post-processing:
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The extra constraints are added to the matrix by calling the user unpack cuts() sub-
routine and then adding the corresponding rows to the matrix. This is easier for the
user to implement, but less efficient than adding the cuts at the time the original matrix
was being constructed.

Wrapper invoked from: process chain() which is invoked when setting up a the initial
search node in a chain.
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. user is feasible

int user_is_feasible(void *user, double lpetol, int varnum, int
*indices, double *values, int *feasible,
double *objval)

Description:
User tests the feasibility of the solution to the current LP relaxation. There is no post-
processing. Possible defaults are testing integrality (TEST INTEGRALITY) and testing
whether the solution is binary (TEST ZERO ONE).

Arguments:
void *user INOUT Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current

solution.
double *values IN Values of the variables listed in indices.

int *feasible OUT Feasibility status of the solution (NOT FEASIBLE, or
FEASIBLE).

double *objval OUT The user can return the “true” objective function value
of the solution in the case it is feasible, i.e., eliminating
the round-off error.

Return values:
USER ERROR Error. Solution is considered to be not feasible.
USER SUCCESS User checked IP feasibility.
USER DEFAULT Regulated by the parameter is feasible default, but set to

TEST INTEGRALITY unless overridden by the user.
TEST INTEGRALITY Test integrality of the given solution.
TEST ZERO ONE Tests whether the solution is binary.

Wrapper invoked from: select branching object() after pre-solving the LP relaxation
of a child corresponding to a candidate and from fathom branch() after solving an LP
relaxation.
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. user send feasible solution

int user_send_feasible_solution(void *user, double lpetol,
int varnum, int *indices, double *values)

Description:
This function is only used for parallel computation. The user can send a feasible solution
in custom format to the master module if desired. However, the default routine suffices
in most situations. The solution is sent using the communication functions described
in Section 6.4 in whatever logical format the user wants to use. The default is to
pack the user indices and values of variables at non-zero level. If the user packs the
solution herself then the same data must be packed here that will be received in the
user receive feasible solution() function in the master module. See the description
of that function for details. This function will only be called when either the LP or tree
manager are running as a separate executable. Otherwise, the solution gets stored within
the LP user data structure.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

double lpetol IN The ε tolerance of the LP solver.
int varnum IN The length of the indices and values arrays.
int *indices IN User indices of variables at nonzero level in the current solu-

tion.
double *values IN Values of the variables listed in indices.

Return values:
USER ERROR Error. Do the default.
USER SUCCESS User packed the solution.
USER DEFAULT Regulated by the parameter pack feasible solution default,

but set to SEND NONZEROS unless overridden by the user.
SEND NONZEROS Pack the nonzero values and their indices.

Wrapper invoked: as soon as feasibility is detected anywhere.
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. user display lp solution

int user_display_lp_solution(void *user, int which_sol,
int varnum, int *indices, double *values)

Description:
Given a solution to an LP relaxation (the indices and values of the nonzero variables) the
user can (graphically) display it. The which sol argument shows what kind of solution is
passed to the function: DISP FEAS SOLUTION indicates a solution feasible to the original
IP problem, DISP RELAXED SOLUTION indicates the solution to any LP relaxation and
DISP FINAL RELAXED SOLUTION indicates the solution to an LP relaxation when no cut
has been found. There is no post-processing. Default options print out user indices and
values of nonzero or fractional variables on the standard output.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int which sol IN The type of solution passed on to the
displaying function. Possible values are
DISP FEAS SOLUTION, DISP RELAXED SOLUTION and
DISP FINAL RELAXED SOLUTION.

int varnum IN The number of variables in the current solution at nonzero
level (the length of the indices and values arrays).

int *indices IN User indices of variables at nonzero level in the current solu-
tion.

double *values IN Values of the nonzero variables.
Return values:

USER ERROR Error. SYMPHONY ignores error message.
USER SUCCESS User displayed whatever she wanted to.
USER DEFAULT Regulated by the parameter display solution default, but set

to DISP NZ INT unless overridden by the user.
DISP NOTHING Display nothing.
DISP NZ INT Display user indices (as integers) and values of nonzero variables.
DISP NZ HEXA Display user indices (as hexadecimals) and values of nonzero vari-

ables.
DISP FRAC INT Display user indices (as integers) and values of variables not at

their lower or upper bounds.
DISP FRAC HEXA Display user indices (as hexadecimals) and values of variables not

at their lower and upper bounds.
Wrapper invoked from: fathom branch() with DISP FEAS SOLUTION or

DISP RELAXED SOLUTION after solving an LP relaxation and checking its feasibil-
ity status. If it was not feasible and no cut could be added either then the wrapper is
invoked once more, now with DISP FINAL RELAXED SOLUTION.
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. user shall we branch

int user_shall_we_branch(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action)

Description:
There are two user-written functions invoked from select candidates u. The first
one (user shall we branch()) decides whether to branch at all, the second one
(user select candidates()) chooses the branching objects. The argument lists of the
two functions are the same, and if branching occurs (see discussion below) then the
contents of *cand num and *candidates will not change between the calls to the two
functions.

The first of these two functions is invoked in each iteration after solving the LP
relaxation and (possibly) generating cuts. Therefore, by the time it is called, some
violated cuts might be known. Still, the user might decide to branch anyway. The
second function is invoked only when branching is decided on.

Given (1) the number of known violated cuts that can be added to the problem
when this function is invoked, (2) the constraints that are slack in the LP relaxation,
(3) the slack cuts not in the matrix that could be branched on (more on this later), and
(4) the solution to the current LP relaxation, the user must decide whether to branch or
not. Branching can be done either on variables or slack cuts. A pool of slack cuts which
has been removed from the problem and kept for possible branching is passed to the
user. If any of these happen to actually be violated (it is up to the user to determine
this), they can be passed back as branching candidate type VIOLATED SLACK and will be
added into the current relaxation. In this case, branching does not have to occur (the
structure of the *candidates array is described below in user select candidates()).

This function has two outputs. The first output is *action which can take four
values: USER DO BRANCH if the user wants to branch, USER DO NOT BRANCH if he doesn’t
want to branch, USER BRANCH IF MUST if he wants to branch only if there are no known
violated cuts, or finally USER BRANCH IF TAILOFF if he wants to branch in case tailing
off is detected. The second output is the number of candidates and their description.
In this function the only sensible “candidates” are VIOLATED SLACKs.

There is no post processing, but in case branching is selected, the
col gen before branch() function is invoked before the branching would take
place. If that function finds dual infeasible variables then (instead of branching) they
are added to the LP relaxation and the problem is resolved. (Note that the behavior of
the col gen before branch() is governed by the colgen strat[] TM parameters.)

Arguments:
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void *user IN Pointer to the user-defined LP data struc-
ture.

double lpetol IN The ε tolerance of the LP solver.

int cutnum IN The number of violated cuts (known before
invoking this function) that could be added
to the problem (instead of branching).

int slacks in matrix num IN Number of slack constraints in the matrix.
cut data **slacks in matrix IN The description of the cuts corresponding

to these constraints (see Section 7.3.2).

int slack cut num IN The number of slack cuts not in the matrix.
cut data **slack cuts IN Array of pointers to these cuts (see Section

7.3.2).
int varnum IN The number of variables in the current lp

relaxation (the length of the following three
arrays).

var desc **vars IN Description of the variables in the relax-
ation.

double *x IN The corresponding solution values (in the
optimal solution to the relaxation).

char *status IN The stati of the variables. There are five
possible status values: NOT FIXED, TEMP -
FIXED TO UB, PERM FIXED TO UB, TEMP -
FIXED TO LB and PERM FIXED TO LB.

int *cand num OUT Pointer to the number of candidates re-
turned (the length of *candidates).

candidate ***candidates OUT Pointer to the array of candidates gener-
ated (see description below).

int *action OUT What to do. Must be one of the four above
described values unless the return code is
USER DEFAULT.

Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS The user filled out *action (and possibly *cand num and *candidates).
USER DEFAULT Action taken is controlled by the parameter shall we branch default,

which is initially USER BRANCH IF MUST unless overridden by the user.
Notes:

• The user has to allocate the pointer array for the candidates and place the pointer
for the array into ***candidates (if candidates are returned).

• Candidates of type VIOLATED SLACK are always added to the LP relaxation regardless
of what action is chosen and whether branching will be carried out or not.

• Also note that the user can change his mind in user select candidates() and
not branch after all, even if she chose to branch in this function. A possible
scenario: cut num is zero when this function is invoked and the user asks for
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USER BRANCH IF MUST without checking the slack constraints and slack cuts. After-
ward no columns are generated (no dual infeasible variables found) and thus SYM-
PHONY decides branching is called for and invokes user select candidates().
However, in that function the user checks the slack cuts, finds that some are vio-
lated, cancels the branching request and adds the violated cuts to the relaxation
instead.

Warning: The cuts the user unpacks and wants to be added to the problem (either because
they are of type VIOLATED SLACK or type CANDIDATE CUT NOT IN MATRIX) will be deleted
from the list of slack cuts after this routine returns. Therefore the same warning applies
here as in the function user unpack cuts().

Wrapper invoked from: select branching object().
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. user select candidates

int user_select_candidates(void *user, double lpetol, int cutnum,
int slacks_in_matrix_num,
cut_data **slacks_in_matrix,
int slack_cut_num, cut_data **slack_cuts,
int varnum, var_desc **vars, double *x,
char *status, int *cand_num,
branch_obj ***candidates, int *action,
int bc_level)

Description:
The purpose of this function is to generate branching candidates. Note that *action
from user shall we branch() is passed on to this function (but its value can be
changed here, see notes at the previous function), as well as the candidates in
**candidates and their number in *cand num if there were any.

Violated cuts found among the slack cuts (not in the matrix) can be added to
the candidate list. These violated cuts will be added to the LP relaxation regardless of
the value of *action.

The branch obj structure contains fields similar to the cut data data structure.
Branching is accomplished by imposing inequalities which divide the current subprob-
lem while cutting off the corresponding fractional solution. Branching on cuts and
variables is treated symmetrically and branching on a variable can be thought of as
imposing a constraint with a single unit entry in the appropriate column. Following is
a list of the fields of the branch obj data structure which must be set by the user.

char type Can take five values:
CANDIDATE VARIABLE The object is a variable.
CANDIDATE CUT IN MATRIX The object is a cut (it must be slack) which is in the

current formulation.
CANDIDATE CUT NOT IN MATRIX The object is a cut (it must be slack) which has

been deleted from the formulation and is listed among the slack cuts.
VIOLATED SLACK The object is not offered as a candidate for branching, but rather

it is selected because it was among the slack cuts but became violated again.
SLACK TO BE DISCARDED The object is not selected as a candidate for branching

rather it is selected because it is a slack cut which should be discarded even
from the list of slack cuts.

int position The position of the object in the appropriate array (which is one of vars,
slacks in matrix, or slack cuts.

waiting row *row Used only if the type is CANDIDATE CUT NOT IN MATRIX or
VIOLATED SLACK. In these cases this field holds the row extension corresponding to
the cut. This structure can be filled out easily using a call to user unpack cuts().

int child num
The number of children of this branching object.
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char *sense, double *rhs, double *range, int *branch
The description of the children. These arrays determine the sense, rhs, etc. for the
cut to be imposed in each of the children. These are defined and used exactly as in
the cut data data structure. Note: If a limit is defined on the number of children
by defining the MAX CHILDREN NUM macro to be a number (it is pre-defined to be 4
as a default), then these arrays will be statically defined to be the correct length
and don’t have to be allocated. This option is highly recommended. Otherwise, the
user must allocate them to be of length child num.

double lhs The activity level for the row (for branching cuts). This field is purely for
the user’s convenience. SYMPHONY doesn’t use it so it need not be filled out.

double *objval, int *termcode, int *iterd, int *feasible
The objective values, termination codes, number of iterations and feasibility stati of
the children after pre-solving them. These are all filed out by SYMPHONY during
strong branching. The user may access them in user compare candidates() (see
below).

There are three default options (see below), each chooses a few variables (the number is
determined by the strong branching parameters (see Section 7.4.5).

Arguments:
Same as for user shall we branch(), except that *action must be either
USER DO BRANCH or USER DO NOT BRANCH, and if branching is asked
for, there must be a real candidate in the candidate list (not only
VIOLATED SLACKs and SLACK TO BE DISCARDEDs). Also, the argument bc level
is the level in the tree. This could be used in deciding how many
strong branching candidates to use.

Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS User generated branching candidates.
USER DEFAULT Regulated by the

select candidates default parameter,
but set to USER CLOSE TO HALF unless
overridden by the user.

USER CLOSE TO HALF Choose variables with values closest
to half.

USER CLOSE TO HALF AND EXPENSIVE Choose variables with values close
to half and with high objective
function coefficients.

USER CLOSE TO ONE AND CHEAP Choose variables with values close
to one and with low objective
function coefficients.

Wrapper invoked from: select branching object().

Notes: See the notes at user shall we branch().
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. user compare candidates

int user_compare_candidates(void *user, branch_obj *can1, branch_obj *can2,
double ub, double granularity,
int *which_is_better)

Description:
By the time this function is invoked, the children of the current search tree node
corresponding to each branching candidate have been pre-solved, i.e., the objval,
termcode, iterd, and feasible fields of the can1 and can2 structures are filled out.
Note that if the termination code for a child is LP D UNBOUNDED or LP D OBJLIM, i.e.,
the dual problem is unbounded or the objective limit is reached, then the objective
value of that child is set to MAXDOUBLE / 2. Similarly, if the termination code is
one of LP D ITLIM (iteration limit reached), LP D INFEASIBLE (dual infeasible) or
LP ABANDONED (because of numerical difficulties) then the objective value of that child
is set to that of the parent’s.

Based on this information the user must choose which candidate he considers better
and whether to branch on this better one immediately without checking the remaining
candidates. As such, there are four possible answers: FIRST CANDIDATE BETTER,
SECOND CANDIDATE BETTER, FIRST CANDIDATE BETTER AND BRANCH ON IT
and SECOND CANDIDATE BETTER AND BRANCH ON IT. An answer ending with
AND BRANCH ON IT indicates that the user wants to terminate the strong branch-
ing process and select that particular candidate for branching.

There are several default options. In each of them, objective values of the pre-
solved LP relaxations are compared.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

branch obj *can1 IN One of the candidates to be compared.
branch obj *can2 IN The other candidate to be compared.
double ub IN The current best upper bound.
double granularity IN Defined tolerance
int *which is better OUT The user’s choice. See the description above.
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Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS User filled out *which is better.
USER DEFAULT Regulated by the compare candidates default parameter,

initially set to LOWEST LOW OBJ unless overridden by the user.
BIGGEST DIFFERENCE OBJ Prefer the candidate with the biggest difference between high-

est and lowest objective function values.
LOWEST LOW OBJ Prefer the candidate with the lowest minimum objective func-

tion value. The minimum is taken over the objective function
values of all the children.

HIGHEST LOW OBJ Prefer the candidate with the highest minimum objective
function value.

LOWEST HIGH OBJ Prefer the candidate with the lowest maximum objective
function value.

HIGHEST HIGH OBJ Prefer the candidate with the highest maximum objective
function value .

LOWEST LOW FRAC Prefer the candidate with the lowest minimum number of
fractional variables. The minimum is taken over the number
of fractional variables in all the children. Fractional branching
options are only available if the fractional branching compile-
time option is set in the makefile.

HIGHEST LOW FRAC Prefer the candidate with the highest minimum number of
fractional variables.

LOWEST HIGH FRAC Prefer the candidate with the lowest maximum number of
fractional variables.

HIGHEST HIGH FRAC Prefer the candidate with the highest maximum number of
fractional variables.

Wrapper invoked from: select branching object() after the LP relaxations of the chil-
dren have been pre-solved.
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. user select child

int user_select_child(void *user, double ub, branch_obj *can, char *action)

Description:
By the time this function is invoked, the candidate for branching has been chosen.
Based on this information and the current best upper bound, the user has to decide
what to do with each child. Possible actions for a child are KEEP THIS CHILD (the child
will be kept at this LP for further processing, i.e., the process dives into that child),
PRUNE THIS CHILD (the child will be pruned based on some problem specific property—
no questions asked...), PRUNE THIS CHILD FATHOMABLE (the child will be pruned based
on its pre-solved LP relaxation) and RETURN THIS CHILD (the child will be sent back to
tree manager). Note that at most one child can be kept at the current LP module.
There are two default options—in both of them, objective values of the pre-solved LP
relaxations are compared (for those children whose pre-solve did not terminate with
primal infeasibility or high cost). One rule prefers the child with the lowest objective
function value and the other prefers the child with the higher objective function value.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int ub IN The current best upper bound.
branch obj *can IN The branching candidate.

char *action OUT Array of actions for the children. The array is already
allocated to length can->number.

Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS User filled out *action.
USER DEFAULT Regulated by the select child default parameter,

which is initially set to PREFER LOWER OBJ VALUE, un-
less overridden by the user.

PREFER HIGHER OBJ VALUE Choose child with the highest objective value.
PREFER LOWER OBJ VALUE Choose child with the lowest objective value.
PREFER MORE FRACTIONAL Choose child with the most fractional variables. Frac-

tional branching options are only available if the frac-
tional branching compile-time option is set in the make-
file.

PREFER LESS FRACTIONAL Choose child with the lowest number of fractional vari-
ables.

Post-processing:
Checks which children can be fathomed based on the objective value of their pre-solved
LP relaxation.

Wrapper invoked from: branch().



7.3.2 LP module callbacks 163

. user print branch stat

int user_print_branch_stat(void *user, branch_obj *can, cut_data *cut,
int n, var_desc **vars, char *action)

Description:
Print out information about branching candidate can, such as a more explicit problem-
specific description than SYMPHONY can provide (for instance, end points of an edge).
If verbosity is set high enough, the identity of the branching object and the children
(with objective values and termination codes for the pre-solved LPs) is printed out to
the standard output by SYMPHONY.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

branch obj *can IN The branching candidate.
cut data *cut IN The description of the cut if the branching object is a cut.
int n IN Number of variables.
var desc **vars IN Array of variables in the current relaxation.
char *action IN Array of actions for the children.

Return values:
USER ERROR Error. Ignored by SYMPHONY.
USER SUCCESS The user printed out whatever she wanted to.
USER DEFAULT SYMPHONY prints out its own branching information.

Wrapper invoked from: branch() after the best candidate has been selected, pre-solved,
and the action is decided on for the children.
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. user add to desc

int user_add_to_desc(void *user, int *desc_size, char **desc)

Description:
Before a node description is sent to the TM, the user can provide a pointer to a
data structure that will be appended to the description for later use by the user in
reconstruction of the node. This information must be placed into *desc. Its size should
be returned in *desc size.

There is only one default option: the description to be added is considered to be
of zero length, i.e., there is no additional description.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int *desc size OUT The size of the additional information, the length of *desc
in bytes.

char **desc OUT Pointer to the additional information (space must be allo-
cated by the user).

Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS User filled out *desc size and *desc.
USER DEFAULT No description is appended.

Wrapper invoked from: create explicit node desc() before a node is sent to the tree
manager.
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. user same cuts

int user_same_cuts (void *user, cut_data *cut1, cut_data *cut2,
int *same_cuts)

Description:
Determine whether the two cuts are comparable (the normals of the half-spaces corre-
sponding to the cuts point in the same direction) and if yes, which one is stronger. The
default is to declare the cuts comparable only if the type, sense and coef fields of the
two cuts are the same byte by byte; and if this is the case to compare the right hand
sides to decide which cut is stronger.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

cut data *cut1 IN The first cut.
cut data *cut2 IN The second cut.
int *same cuts OUT Possible values: SAME, FIRST CUT BETTER,

SECOND CUT BETTER and DIFFERENT (i.e., not com-
parable).

Return values:
USER ERROR Error. DEFAULT is used.
USER SUCCESS User did the comparison, filled out *same cuts.
USER DEFAULT Compare byte by byte (see above).

Wrapper invoked from: process message() when a PACKED CUT arrives.

Note:
This function is used to check whether a newly arrived cut is already in the local pool.
If so, or if it is weaker than a cut in the local pool, then the new cut is discarded; if it
is stronger then a cut in the local pool, then the new cut replaces the old one and if the
new is different from all the old ones, then it is added to the local pool.
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. user unpack cuts

int user_unpack_cuts(void *user, int from, int type, int varnum,
var_desc **vars, int cutnum, cut_data **cuts,
int *new_row_num, waiting_row ***new_rows)

Description:
If the user has defined application-specific cut classes, these cuts must be interpreted
as constraints for the current LP relaxation, i.e., the user must decode the compact
representation of the cuts (see the cut data structure) into rows for the matrix. A
pointer to the array of generated rows must be returned in ***new rows (the user has
to allocate this array) and their number in *new row num.

Note that SYMPHONY has built-in support for cuts generated explicitly as ma-
trix rows with no user-defined packed form, i.e., cuts whose indices and coefficients
are given explicitly (see the function user find cuts() in Section 7.3.3. These cuts
can be constructed and added using the helper function cg add explicit cut() (see
the description of user find cuts() in Section 7.3.3) and are packed and unpacked
automatically, so the user does not need to implement this function. In post processing,
SYMPHONY unpacks explicitly defined cuts and internally generated generic cuts.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int from IN See below in “Notes”.
int type IN UNPACK CUTS SINGLE or

UNPACK CUTS MULTIPLE (see notes below).
int varnum IN The number of variables.
var desc **vars IN The variables currently in the problem.
int cutnum IN The number of cuts to be decoded.
cut data **cuts IN Cuts that need to be converted to rows for the

current LP. See “Warning” below.

int *new row num OUT Pointer to the number of rows in **new rows.
waiting row ***new rows OUT Pointer to the array of pointers to the new rows.

Return values:
USER ERROR Error. The cuts are discarded.
USER SUCCESS User unpacked the cuts.
USER DEFAULT There are no user cut types defined. In this case, SYMPHONY

deals with only explicit cuts and internally generated cuts.

Wrapper invoked from: Wherever a cut needs to be unpacked (multiple places).

Post-processing:
Explicit row cuts are processed, as well as SYMPHONY’s internally generated cuts.
Also, the pointers to each cut are transferred to the waiting rows data structure (in
previous version, this was done by the user).
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Notes:

• When decoding the cuts, the expanded constraints have to be adjusted to the current
LP, i.e., coefficients corresponding to variables currently not in the LP have to be
left out.

• If the one row only flag is set to UNPACK CUTS MULTIPLE, then the user can generate
as many constraints (even zero!) from a cut as she wants (this way she can lift
the cuts, thus adjusting them for the current LP). However, if the flag is set to
UNPACK CUTS SINGLE, then for each cut the user must generate a unique row, the
same one that had been generated from the cut before. (The flag is set to this value
only when regenerating a search tree node.)

• The from argument can take on six different values: CUT FROM CG, CUT FROM CP,
CUT FROM TM, CUT LEFTOVER (these are cuts from a previous LP relaxation that are
still in the local pool), CUT NOT IN MATRIX SLACK and CUT VIOLATED SLACK indicat-
ing where the cut came from. This might be useful in deciding whether to lift the
cut or not.

• The matind fields of the rows must be filled with indices with respect to the position
of the variables in **vars.

• Warning: For each row, the user must make sure that the cut the row was generated
from (and can be uniquely regenerated from if needed later) is safely stored in
the waiting row structure. SYMPHONY will free the entries in cuts after this
function returns. If a row is generated from a cut in cuts (and not from a lifted cut),
the user has the option of physically copying the cut into the corresponding part of
the waiting row structure, or copying the pointer to the cut into the waiting row
structure and erasing the pointer in cuts. If a row is generated from a lifted cut, the
user should store a copy of the lifted cut in the corresponding part of waiting row.



168 7.3 USER CALLBACK API

. user send lp solution

int user_send_lp_solution(void *user, int varnum, var_desc **vars,
double *x, int where)

Description:
This function is only used in the case of parallel execution. The user has the option to
send the LP solution to either the cut pool or the cut generator in some user-defined
form if desired. There are two default options—sending the indices and values for all
nonzero variables (SEND NONZEROS) and sending the indices and values for all fractional
variables (SEND FRACTIONS).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int where IN Where the solution is to be sent—LP SOL TO CG or

LP SOL TO CP.
Return values:

USER ERROR Error. No message will be sent.
USER SUCCESS User packed and sent the message.
USER DEFAULT Regulated by the pack lp solution default parameter, initially

set to SEND NOZEROS.
SEND NONZEROS Send user indices and values of variables at nonzero level.
SEND FRACTIONS Send user indices and values of variables at fractional level.

Wrapper invoked from: fathom branch() after an LP relaxation has been solved. The
message is always sent to the cut generator (if there is one). The message is sent to the
cut pool if a search tree node at the top of a chain is being processed (except at the root
in the first phase), or if a given number (cut pool check freq) of LP relaxations have
been solved since the last check.

Note:
The wrapper automatically packs the level, index, and iteration number corresponding
to the current LP solution within the current search tree node, as well as the objective
value and upper bound in case the solution is sent to a cut generator. This data will
be unpacked by SYMPHONY on the receiving end, the user will have to unpack there
exactly what he has packed here.
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. user logical fixing

int user_logical_fixing(void *user, int varnum, var_desc **vars,
double *x, char *status, int *num_fixed)

Description:
Logical fixing is modifying the stati of variables based on logical implications derived
from problem-specific information. In this function the user can modify the status
of any variable. Valid stati are: NOT FIXED, TEMP FIXED TO LB, PERM FIXED TO LB,
TEMP FIXED TO UB and PERM FIXED TO UB. Be forewarned that fallaciously fixing a vari-
able in this function can cause the algorithm to terminate improperly. Generally, a
variable can only be fixed permanently if the matrix is full at the time of the fixing (i.e.
all variables that are not fixed are in the matrix). There are no default options.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int varnum IN The number of variables currently in the LP relaxation.
(The length of the *vars and x arrays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
char *status INOUT Stati of variables currently in the LP relaxation.
int *num fixed OUT Number of fixed variables.

Return values:
USER ERROR Error. Ignored by SYMPHONY.
USER SUCCESS User changed the stati of the variables she wanted.
USER DEFAULT No logical fixing rules are implemented.

Wrapper invoked from: fix variables() after doing reduced cost fixing, but only when
a specified number of variables have been fixed by reduced cost (see LP parameter
settings).
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. user generate column

int user_generate_column(void *user, int generate_what, int cutnum,
cut_data **cuts, int prevind, int nextind,
int *real_nextind, double *colval,
int *colind, int *collen, double *obj,
double *lb, double *ub)

Description:
This function is called when pricing out the columns that are not already fixed and are
not explicitly represented in the matrix. Only the user knows the explicit description
of these columns. When a missing variable need to be priced, the user is asked to
provide the corresponding column. SYMPHONY scans through the known variables
in the order of their user indices. After testing a variable in the matrix (prevind),
SYMPHONY asks the user if there are any missing variables to be priced before the
next variable in the matrix (nextind). If there are missing variables before nextind, the
user has to supply the user index of the real next variable (real nextind) along with
the corresponding column. Occasionally SYMPHONY asks the user to simply supply
the column corresponding to nextind. The generate what flag is used for making a
distinction between the two cases: in the former case it is set to GENERATE REAL NEXTIND
and in the latter it is set to GENERATE NEXTIND.
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Arguments:
void *user IN Pointer to the user-defined LP data structure.

int generate what IN GENERATE NEXTIND or GENERATE REAL NEXTIND (see
description above).

int cutnum IN The number of added rows in the LP formulation (i.e.,
the total number of rows less the number of base con-
straints). This is the length of the **cuts array.

cut data **cuts IN Description of the cuts corresponding to the added rows
of the current LP formulation. The user is supposed
to know about the cuts corresponding to the base con-
straints.

int prevind IN The last variable processed (−1 if there was none) by
SYMPHONY.

int nextind IN The next variable (−1 if there are none) known to
SYMPHONY.

int *real nextind OUT Pointer to the user index of the next variable (−1 if
there is none).

double *colval OUT Values of the nonzero entries in the column of the next
variable. (Sufficient space is already allocated for this
array.)

int *colind OUT Row indices of the nonzero entries in the column. (Suf-
ficient space is already allocated for this array.)

int *collen OUT The length of the colval and colind arrays.
double *obj OUT Objective coefficient corresponding to the next vari-

able.
double *lb OUT Lower bound of the next variable.
double *ub OUT Upper bound of the next variable.

Return values:
USER ERROR Error. The LP process is aborted.
USER SUCCESS User filled out *real nextind and generated its column if

needed.
USER DEFAULT No column generation is done.

Wrapper invoked from: price all vars() and restore lp feasibility().

Note:
colval, colind, collen and obj do not need to be filled out if real nextind is the
same as nextind and generate what is GENERATE REAL NEXTIND.
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. user generate cuts in lp

int user_generate_cuts_in_lp(void *user, LPdata *lp_data, int varnum,
var_desc **vars, double *x, int *new_row_num,
cut_data ***cuts)

Description:
The user might decide to generate cuts directly within the LP module instead of using
the cut generator. This can be accomplished either through a call to this function or
simply by configuring SYMPHONY such that the cut generator is called directly from
the LP solver. One example of when this might be done is when generating Gomory
cuts or something else that requires knowledge of the current LP tableau. The user
must return the list of generated cuts by allocating an array of cut data structures and
setting *cuts to point to this array. Post-processing consists of checking if any of the
new cuts are already in the local pool (or dominated by a cut in the local pool).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

LPdata *lp data A pointer to SYMPHONY’s internal data structure for storing the LP relaxation and related data.
int varnum IN The number of variables currently in the LP

relaxation. (The length of the *vars and x ar-
rays.)

var desc **vars IN The variables currently in the LP relaxation.
double *x IN Values of the above variables.
int *new row num OUT The number of cuts generated.
cut data ***cuts OUT The cuts and the corresponding rows.

Return values:
USER ERROR Error. Interpreted as if no cuts were generated.
USER SUCCESS Cuts were generated.
USER DEFAULT No cuts were generated. By default, SYMPHONY uses the CGL to

generate generic cuts, according to parameter settings.
GENERATE CGL CUTS Generate generic CGL cuts, according to parameter settings.
DO NOT GENERATE CGL CUTS No additional cuts are generated.

Post-processing:
SYMPHONY checks if any of the newly generated cuts are already in the local pool.

Wrapper invoked from: receive cuts() before the cuts from the CG module are re-
ceived. Since the user will probably use this function to generate tableau-dependent cuts,
it is highly unlikely that any of the new cuts would already be in the pool. Therefore the
user will probably return USER AND PP to force SYMPHONY to skip post-processing.

Notes:

• Just like in user unpack cuts(), the user has to allocate space for the rows.
• Unless the name field of a cut is explicitly set to CUT SEND TO CP, SYM-

PHONY will assume that the cut is locally valid only and set that field to
CUT DO NOT SEND TO CP.
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. user print stat on cuts added

int user_print_stat_on_cuts_added(void *user, int rownum, waiting_row **rows)

Description:
The user can print out some information (if he wishes to) on the cuts that will be added
to the LP formulation. The default is to print out the number of cuts added.

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of cuts added.
waiting row **rows IN Array of waiting rows containing the cuts added.

Return values:
USER ERROR Revert to default.
USER SUCCESS User printed whatever he wanted.
USER DEFAULT Print out the number of cuts added.

Wrapper invoked from: add best waiting rows() after it has been decided how many
cuts to add and after the cuts have been selected from the local pool.
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. user purge waiting rows

int user_purge_waiting_rows(void *user, int rownum,
waiting_row **rows, char *delete_rows)

Description:
The local pool is purged from time to time to control its size. In this function the user
has the power to decide which cuts to purge from this pool if desired. To mark the ith

waiting row (an element of the pre-pool) for removal she has to set delete rows[i] to
be TRUE (delete rows is allocated before the function is called and its elements are set
to FALSE by default).

Post-processing consists of actually deleting those entries from the waiting row
list and compressing the list. The default is to discard the least violated waiting rows
and keep no more than what can be added in the next iteration (this is determined by
the max cut num per iter parameter).

Arguments:
void *user IN Pointer to the user-defined LP data structure.

int rownum IN The number of waiting rows.
waiting row **rows IN The array of waiting rows.
char *delete rows OUT An array of indicators showing which waiting rows are

to be deleted.
Return values:

USER ERROR Purge every single waiting row.
USER SUCCESS The user marked in delete the rows to be deleted.
USER DEFAULT Described above.

Post-processing:
The marked rows are deleted.

Wrapper invoked from: receive cuts() after cuts have been added.
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. user free lp

int user_free_lp(void **user)

Description:
The user has to free all the data structures within *user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined LP data structure.

Return values:
USER ERROR Error. SYMPHONY ignores error message.
USER SUCCESS User freed everything in the user space.
USER DEFAULT There is no user memory to free.

Wrapper invoked from: lp close() at module shutdown.
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7.3.3 Cut generator module callbacks

Due to the relative simplicity of the cut generator, there are no wrapper functions implemented for
CG. Consequently, there are no default options and no post-processing.

. user receive cg data

int user_receive_cg_data (void **user)

Description:
This function only has to be filled out for parallel execution and only if the TM, LP,
and CG modules are all compiled as separate modules. This would not be typical.
If needed, the user can use this function to receive problem-specific data needed for
computation in the CG module. The same data must be received here that was sent in
the user send cg data() (see Section 7.3.1) function in the master module. The user
has to allocate space for all the data structures, including user itself. Note that some or
all of this may be done in the function user send cg data() if the Tree Manager, LP,
and CG are all compiled together. See that function for more information.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
USER ERROR Error. CG exits.
USER SUCCESS The user received the data properly.
USER DEFAULT User did not send any data.

Invoked from: cg initialize() at process start.
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. user receive lp solution cg

int user_receive_lp_solution_cg(void *user)

Description:
This function is invoked only in the case of parallel computation and only if in the
user send lp solution() function of the LP module the user opted for packing the
current LP solution herself. Here she must receive the data sent from there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Invoked from: Whenever an LP solution is received.

Return values:
USER ERROR Error. The LP solution was not received and will not be pro-

cessed.
USER SUCCESS The user received the LP solution.
USER DEFAULT The solution was sent by SYMPHONY and will be received

automatically.
Note:

SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node as well as the objective
value and upper bound.
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. user find cuts

int user_find_cuts(void *user, int varnum, int iter_num, int level,
int index, double objval, int *indices, double *values,
double ub, double lpetol, int *cutnum)

Description:
In this function, the user can generate cuts based on the current LP solution stored
in soln. Cuts found are added to the LP by calling the cg add user cut(cut data
*new cut) function, which then transfers the cut to the LP module, either through
message passing or shared memory. The argument of this function is a pointer to the cut
to be sent. See Section 7.3.2 for a description of this data structure. Each user-defined
cut assigned a type and a designated packed form. Each user-defined type must be
recognized by the user’s user unpack cuts()7.3.2 function in the master module. If
the user wants a user-defined cut to be added to the cut pool in case it proves to be
effective in the LP, then new cut->name should be set to CUT SEND TO CP. In this case,
the cut must be globally valid. Otherwise, it should be set to CUT DO NOT SEND TO CP.

Alternatively, SYMPHONY provides automated support for the generation of
cuts represented explicitly as matrix rows. These cuts are passed as sparse vectors and
can be added by calling the routine cg add explicit cut(), which has the following
interface.

int cg_add_explicit_cut(int nzcnt, int *indices, double *values,
double rhs, double range, char sense,
char send_to_cp)

Here, nzcnt is the number of nonzero coefficients in the cut, indices is an array
containing the indices of the columns with nonzero entries, and values is an array of
the corresponding values. The right hand side value is passed in through the variable
rhs, the range is passed in through the variable range, and the sense of the inequality
is passed through the variable sense. Finally, the variable send to cp indicates to
SYMPHONY whether the cut is globally valid and should be sent to the cut pool, or
whether it is only to be used locally.

The only output of the user find cuts() function is the number of cuts gen-
erated and this value is returned in the last argument. For options to generate
generic cuts automatically using the COIN Cut Generation Library, see the function
user generate cuts in lp()7.3.2
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Arguments:
void *user IN Pointer to the user-defined data structure.
int iter num IN The iteration number of the current LP solution.
int level IN The level in the tree on which the current LP solution was

generated.
index IN The index of the node in which LP solution was generated.
objval IN The objective function value of the current LP solution.
int varnum IN The number of nonzeros in the current LP solution.
indices IN The column indices of the nonzero variables in the current

LP solution.
values IN The values of the nonzero variables listed in indices.
double ub IN The current global upper bound.
double lpetol IN The current error tolerance in the LP.
int *cutnum OUT Pointer to the number of cuts generated and sent to the

LP.
Return values:

USER ERROR Ignored.
USER SUCCESS The user function exited properly.
USER DEFAULT No cuts were generated.

Invoked from: Whenever an LP solution is received.
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. user check validity of cut

int user_check_validity_of_cut(void *user, cut_data *new_cut)

Description:
This function is provided as a debugging tool. Every cut that is to be sent to the LP
solver is first passed to this function where the user can independently verify that the
cut is valid by testing it against a known feasible solution (usually an optimal one). This
is useful for determining why a particular known feasible (optimal) solution was never
found. Usually, this is due to an invalid cut being added. See Section 6.8.4 for more on
this feature.

Arguments:
void *user IN Pointer to the user-defined data structure.
cut data *new cut IN Pointer to the cut that must be checked.

Return values:
USER ERROR Ignored.
USER SUCCESS The user is done checking the cut.
USER DEFAULT The cut is ignored.

Invoked from: Whenever a cut is being sent to the LP.
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. user free cg

int user_free_cg(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit from this function).
Return values:

USER ERROR Ignored.
USER SUCCESS The user freed all data structures.
USER DEFAULT The user has no memory to free.

Invoked from: cg close() at module shutdown.
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7.3.4 Cut pool module callbacks

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for CP.
Consequently, there are no default options and no post-processing.

. user receive cp data

int user_receive_cp_data(void **user)

Description:
The user has to receive here all problem-specific information sent from
user send cp data() (see Section 7.3.1) function in the master module. The
user has to allocate space for all the data structures, including user itself. Note that
this function is only called if the either the Tree Manager, LP, or CP are running as a
separate process (i.e. either COMPILE IN TM, COMPILE IN LP, or COMPILE IN CP are set
to FALSE in the make file). Otherwise, this is done in user send cp data(). See the
description of that function for more details.

Arguments:
void **user INOUT Pointer to the user-defined data structure.

Return values:
USER ERROR Error. Cut pool module exits.
USER SUCCESS The user received data successfully.
USER DEFAULT The user did not send any data to be received.

Invoked from: cp initialize at module start-up.
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. user receive lp solution cp

void user_receive_lp_solution_cp(void *user)

Description:
This function is invoked only in the case parallel computation and only if in the
user send lp solution() function of the LP module, the user opted for packing the
current LP solution in a custom format. Here she must receive the data she sent there.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
USER ERROR Cuts are not checked for this LP solution.
USER SUCCESS The user function executed properly.
USER DEFAULT SYMPHONY’s default format should be used.

Invoked from: Whenever an LP solution is received.

Note:
SYMPHONY automatically unpacks the level, index and iteration number correspond-
ing to the current LP solution within the current search tree node.
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. user prepare to check cuts

int user_prepare_to_check_cuts(void *user, int varnum, int *indices,
double *values)

Description:
This function is invoked after an LP solution is received but before any cuts are tested.
Here the user can build up data structures (e.g., a graph representation of the solution)
that can make the testing of cuts easier in the user check cuts function.

Arguments:
void *user IN Pointer to the user-defined data structure.
int varnum IN The number of nonzero/fractional variables described in

indices and values.
int *indices IN The user indices of the nonzero/fractional variables.
double *values IN The nonzero/fractional values.

Return values:
USER ERROR Cuts are not checked for this LP solution.
USER SUCCESS The user is prepared to check cuts.
USER DEFAULT There are no user-defined cuts in the pool.

Invoked from: Whenever an LP solution is received.
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. user check cut

int user_check_cut(void *user, double lpetol, int varnum,
int *indices, double *values, cut_data *cut,
int *is_violated, double *quality)

Description:
The user has to determine whether a given cut is violated by the given LP solution (see
Section 7.3.2 for a description of the cut data data data structure). Also, the user can
assign a number to the cut called the quality. This number is used in deciding which
cuts to check and purge. See the section on Cut Pool Parameters for more information.

Arguments:
void *user INOUT The user defined part of p.
double lpetol IN The ε tolerance in the LP module.
int varnum IN Same as the previous function.
int *indices IN Same as the previous function.
double *values IN Same as the previous function.
cut data *cut IN Pointer to the cut to be tested.
int *is violated OUT TRUE/FALSE based on whether the cut is violated

or not.
double *quality OUT a number representing the relative strength of the cut.

Return values:
USER ERROR Cut is not sent to the LP, regardless of the value of

*is violated.
USER SUCCESS The user function exited properly.
USER DEFAULT Same as error.

Invoked from: Whenever a cut needs to be checked.

Note:
The same note applies to number, indices and values as in the previous function.
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. user finished checking cuts

int user_finished_checking_cuts(void *user)

Description:
When this function is invoked there are no more cuts to be checked, so the user can dis-
mantle data structures he created in user prepare to check cuts. Also, if he received
and stored the LP solution himself he can delete it now.

Arguments:
void *user IN Pointer to the user-defined data structure.

Return values:
USER ERROR Ignored.
USER SUCCESS The user function exited properly.
USER DEFAULT There are no user-defined cuts in the pool.

Invoked from: After all cuts have been checked.
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. user free cp

int user_free_cp(void **user)

Description:
The user has to free all the data structures within user, and also free user itself. The
user can use the built-in macro FREE that checks the existence of a pointer before freeing
it.

Arguments:
void **user INOUT Pointer to the user-defined data structure (should be NULL

on exit).
Return values:

USER ERROR Ignored.
USER SUCCESS The user freed all data structures.
USER DEFAULT There is nothing to be freed.

Invoked from: cp close() at module shutdown.
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7.3.5 Draw graph module callbacks

Due to the relative simplicity of the cut pool, there are no wrapper functions implemented for DG.
Consequently, there are no default options and no post-processing.

. user dg process message

void user_dg_process_message(void *user, window *win, FILE *write_to)

Description:
The user has to process whatever user-defined messages are sent to the process. A write-
to pipe to the wish process is provided so that the user can directly issue commands
there.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
window *win INOUT The window that received the message.
FILE *write to IN Pipe to the wish process.

Return values:
USER ERROR Error. Message ignored.
USER SUCCESS The user processed the message.
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. user dg init window

void user_dg_init_window(void **user, window *win)

Description:
The user must perform whatever initialization is necessary for processing later com-
mands. This usually includes setting up the user’s data structure for receiving and
storing display data.

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
USER ERROR Error. Ignored.
USER SUCCESS The user successfully performed initialization.
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. user dg free window

void user_dg_free_window(void **user, window *win)

Description:
The user must free any data structures allocated.

Arguments:
void **user INOUT Pointer to the user-defined data structure.
window *win INOUT

Return values:
USER ERROR Error. Ignored.
USER SUCCESS The user successfully freed the data structures.
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. user interpret text

void user_interpret_text(void *user, int text_length,
char *text, int owner_tid)

Description:
The user can interpret text input from the window.

Arguments:
void *user INOUT Pointer to the user-defined data structure.
int text length IN The length of text.
char *text IN
int owner tid IN The tid of the process that initiated this window.

Return values:
USER ERROR Error. Ignored.
USER SUCCESS The user successfully interpreted the text.
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7.4 Run-time Parameters

Parameters can be set in one of two ways. Some commonly-used parameters can be set on the
command line. To see a list of these, run SYMPHONY with no command-line arguments. Other
parameters must be set in a parameter file. The name of this file is specified on the command line
with “-f”. Each line of the parameter file contains either a comment or two words – a keyword
and a value, separated by white space. If the first word (sequence of non-white-space characters)
on a line is not a keyword, then the line is considered a comment line. Otherwise the parameter
corresponding to the keyword is set to the listed value. Usually the keyword is the same as the
parameter name in the source code. Here we list the keywords, the type of value that should be
given with the keywords and the default value. A parameter corresponding to keyword “K” in
module “P” can also be set by using the keyword “P K”.

To make this list shorter, occasionally a comma separated list of parameters is given if the
meanings of those parameters are strongly connected. For clarity, the constant name is sometimes
given instead of the numerical value for default settings and options. The corresponding value is
given in curly braces for convenience.

7.4.1 Global parameters

verbosity – integer (0). Sets the verbosity of all modules to the given value. In general, the
greater this number the more verbose each module is. Experiment to find out what this
means.

random seed – integer (17). A random seed.

granularity – double (1e-6). should be set to “the minimum difference between two distinct
objective function values” less the epsilon tolerance. E.g., if every variable is integral and the
objective coefficients are integral then for any feasible solution the objective value is integer,
so granularity could be correctly set to .99999.

upper bound – double (none) . The value of the best known upper bound.

probname – string (empty string) . The name of the problem name.

infile name – string (empty string) . The name of the input file which was read by “-F” flag.

7.4.2 Master module parameters

M verbosity – integer (0).

M random seed – integer (17). A random seed just for the Master module.

upper bound – double (no upper bound). This parameter is used if the user wants to artifi-
cially impose an upper bound (for instance if a solution of that value is already known).

lower bound – double (no lower bound). This parameter is used if the user wants to artificially
impose a lower bound.

upper bound estimate – double (no estimate). This parameter is used if the user wants to
provide an estimate of the optimal value which will help guide the search. This is used in
conjunction with the diving strategy BEST ESTIMATE.
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tm exe, dg exe – strings (“tm”, “dg”). The name of the executable files of the TM
and DG modules. Note that the TM executable name may have extensions that
depend on the configuration of the modules, but the default is always set
to the file name produced by the makefile. If you change the name of the
treemanager executable from the default, you must set this parameter to the
new name.

tm debug, dg debug – boolean (both FALSE). Whether these modules should be started
under a debugger or not (see 6.8.2 for more details on this).

tm machine – string (empty string). On which processor of the virtual machine the
TM should be run. Leaving this parameter as an empty string means arbitrary
selection.

do draw graph – boolean (FALSE). Whether to start up the DG module or not (see
Section 6.8.5 for an introduction to this).

do branch and cut – boolean (TRUE). Whether to run the branch and cut algorithm or
not. (Set this to FALSE to run the user’s heuristics only.)

mc search order – integer (MC FIFO). Use the fifo (MC FIFO) or lifo (MC LIFO) searh
order during the multi criteria solution procedure.

mc warm start – boolean(FALSE). Whether to solve the corresponding problem of each
iteration from a warm start loaded from a base iteration (which is the first
iteration where gamma = 1.0 and tau = 0.0) or from scratch. Currently, this
option is supported if only the supported solutions are desired to be found.

trim warm tree – boolean(FALSE). Whether to trim the warm start tree before
re-solving. This consists of locating nodes whose descendants are all
likely to be pruned in the resolve and eliminating those descendants in
favor of processing the parent node itself.

mc compare solution tolerance – double(0.001). If the difference between the
objective values of two solutions to be compared, during the bicriteria
solution procedure, are less than this tolerance, then assume them to be
equal.

mc binary search tolerance – double(0). The tolerance to be used to differentiate
the gamma values if binary search is used during the bicriteria solution
procedure. A value greater than zero will cause the binary search to be
activated.

7.4.3 Draw Graph parameters

source path – string (“.”). The directory where the DG tcl/tk scripts reside.

echo commands – boolean (FALSE). Whether to echo the tcl/tk commands on the screen or not.

canvas width, canvas height – integers (1000, 700). The default width and height of the
drawing canvas in pixels.
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viewable width, viewable height – integers (600, 400). The default viewable width and
height of the drawing canvas in pixels.

interactive mode – integer (TRUE). Whether it is allowable to change things interactively on
the canvas or not.

node radius – integer (8). The default radius of a displayed graph node.

disp nodelabels, disp nodeweights, disp edgeweights – integers (all TRUE). Whether to
display node labels, node weights, and edge weights or not.

nodelabel font, nodeweight font, edgeweight font – strings (all “-adobe-helvetica-...”).
The default character font for displaying node labels, node weights and edge weights.

node dash, edge dash – strings (both empty string). The dash pattern of the circles drawn
around dashed nodes and that of dashed edges.

7.4.4 Tree Manager parameters

TM verbosity – integer (0). The verbosity of the TM module.

lp exe, cg exe, cp exe – strings (“lp”, “cg”, “cp”). The name of the LP, CG, and CP mod-
ule binaries. Note: when running in parallel using PVM, these executables (or links to them)
must reside in the PVM ROOT/bin/PVM ARCH/ directory. Also, be sure to note that the exe-
cutable names may have extensions that depend on the configuration of the modules, but the
defaults will always be set to the name that the makefile produces.

lp debug, cg debug, cp debug – boolean (all FALSE). Whether the modules should be started
under a debugger or not.

max active nodes – integer (1). The maximum number of active search tree nodes—equal to
the number of LP and CG tandems to be started up.

max cp num – integer (0). The maximum number of cut pools to be used.

lp mach num, cg mach num, cp mach num – integers (all 0). The number of processors in the
virtual machine to run LP (CG, CP) processes. If this value is 0 then the processes will be
assigned to processors in round-robin order. Otherwise the next xx mach num lines describe
the processors where the LP (CG, CP) modules must run. The keyword – value pairs
on these lines must be TM xx machine and the name or IP address of a processor (the
processor names need not be distinct). In this case the actual processes are assigned in a
round robin fashion to the processors on this list.

This feature is useful if a specific software package is needed for some module, but
that software is not licensed for every node of the virtual machine or if a certain process
must run on a certain type of machine due to resource requirements.

use cg – boolean (FALSE). Whether to use a cut generator or not.

TM random seed – integer (17). The random seed used in the TM.

unconditional dive frac – double (0.1). The fraction of the nodes on which SYMPHONY
randomly dives unconditionally into one of the children.
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diving strategy – integer (BEST ESTIMATE{0}). The strategy employed when deciding
whether to dive or not.

The BEST ESTIMATE{0} strategy continues to dive until the lower bound in the child
to be dived into exceeds the parameter upper bound estimate, which is given by the user.

The COMP BEST K{1} strategy computes the average lower bound on the best diving k
search tree nodes and decides to dive if the lower bound of the child to be dived into does
not exceed this average by more than the fraction diving threshold.

The COMP BEST K GAP{2} strategy takes the size of the gap into account when decid-
ing whether to dive. After the average lower bound of the best diving k nodes is computed,
the gap between this average lower bound and the current upper bound is computed.
Diving only occurs if the difference between the computed average lower bound and the
lower bound of the child to be dived into is at most the fraction diving threshold of the gap.

Note that fractional diving settings can override these strategies. See below.

diving k, diving threshold – integer, double (1, 0.0). See above.

fractional diving ratio, fractional diving num – integer (0.02, 0). Diving occurs auto-
matically if the number of fractional variables in the child to be dived into is less than
fractional diving num or the fraction of total variables that are fractional is less than
fractional diving ratio. This overrides the other diving rules. Note that in order for this
option to work, the code must be compiled with FRACTIONAL BRANCHING defined. This is the
default. See the makefile for more details.

node selection rule – integer (LOWEST LP FIRST{0}). The rule for selecting the next search
tree node to be processed. This rule selects the one with lowest lower bound. Other possible
values are: HIGHEST LP FIRST{1}, BREADTH FIRST SEARCH{2} and DEPTH FIRST SEARCH{3}.

load balance level – integer (-1).] A naive attempt at load balancing on problems where sig-
nificant time is spent in the root node, contributing to a lack of parallel speed-up. Only a
prescribed number of iterations (load balance iter) are performed in the root node (and in
each subsequent node on a level less than or equal to load balance level) before branching
is forced in order to provide additional subproblems for the idle processors to work on. This
doesn’t work well in general.

load balance iter – integer (-1).] Works in tandem with the load balance level to attempt
some simple load balancing. See the above description.

keep description of pruned – integer (DISCARD{0}). Whether to keep the description of
pruned search tree nodes or not. The reasons to do this are (1) if the user wants to write out a
proof of optimality using the logging function, (2) for debugging, or (3) to get a visual picture
of the tree using the software VBCTOOL. Otherwise, keeping the pruned nodes around just
takes up memory.

There are three options if it is desired to keep some description of the pruned nodes
around. First, their full description can be written out to disk and freed from memory
(KEEP ON DISK FULL{1}). There is not really too much you can do with this kind of file, but
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theoretically, it contains a full record of the solution process and could be used to provide
a certificate of optimality (if we were using exact arithmetic) using an independent verifier.
In this case, the line following keep description of pruned should be a line containing the
keyword pruned node file name with its corresponding value being the name of a file to
which a description of the pruned nodes can be written. The file does not need to exist and
will be over-written if it does exist.

If you have the software VBCTOOL (see Section 6.9), then you can alternatively just write
out the information VBCTOOL needs to display the tree (KEEP ON DISK VBC TOOL{2}).
Finally, the user can set the value to of this parameter to KEEP IN MEMORY{2}, in which case
all pruned nodes will be kept in memory and written out to the regular log file if that option is
chosen. This is really only useful for debugging. Otherwise, pruned nodes should be flushed.

keep warm start – boolean (FALSE). Turning this parameter on will have exactly the same im-
pact with setting the keep description of pruned to KEEP IN MEMORY{2}. This will allow
SYMPHONY to keep all the necessary information obtained from the branching tree of the
original problem to be able to warm start after a parameter or problem data modification.
Thus, if it is intended to warm start later, the user should set this parameter before solving
the original problem.

logging – integer (NO LOGGING{0}). Whether or not to write out the state of the search tree
and all other necessary data to disk periodically in order to allow a warm start in the case of
a system crash or to allow periodic viewing with VBCTOOL.

If the value of this parameter is set to FULL LOGGING{1}, then all information needed to warm
start the calculation will written out periodically. The next two lines of the parameter file
following should contain the keywords tree log file name and cut log file name along
with corresponding file names as values. These will be the files used to record the search tree
and related data and the list of cuts needed to reconstruct the tree.

If the value of the parameter is set to VBC TOOL{2}, then only the information VBCTOOL
needs to display the tree will be logged. This is not really a very useful option since a “live”
picture of the tree can be obtained using the vbc emulation parameter described below (see
Section 6.9 for more on this).

logging interval – integer (1800). Interval (in seconds) between writing out the above log
files.

warm start – boolean (0). Used to allow the tree manager to make a warm start by reading in
previously written log files. If this option is set, then the two line following must start with
the keywords warm start tree file name and warm start cut file name and include the
appropriate file names as the corresponding values.

vbc emulation – integer (NO VBC EMULATION{0}).] Determines whether or not to employ the VBC-
TOOL emulation mode. If one of these modes is chosen, then the tree will be displayed in
“real time” using the VBCTOOL Software. When using the option VBC EMULATION LIVE{2}
and piping the output directly to VBCTOOL, the tree will be displayed as it is constructed,
with color coding indicating the status of each node. With VBC EMULATION FILE{1} selected,
a log file will be produced which can later be read into VBCTOOL to produce an emulation of
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the solution process at any desired speed. If VBC EMULATION FILE is selected, the the follow-
ing line should contain the keyword vbc emulation file name along with the corresponding
file name for a value.

price in root – boolean (FALSE). Whether to price out variables in the root node before the
second phase starts (called repricing the root).

trim search tree – boolean (FALSE). Whether to trim the search tree before the second phase
starts or not. Useful only if there are two phases. (It is very useful then.)

colgen in first phase, colgen in second phase – integers (both 4). These parameters de-
termine if and when to do column generation in the first and second phase of the algorithm.
The value of each parameter is obtained by setting the last four bits. The last two bits refer
to what to do when attempting to prune a node. If neither of the last two bits are set, then we
don’t do anything—we just prune it. If only the last bit is set, then we simply save the node
for the second phase without doing any column generation (yet). If only the second to last bit
is set, then we do column generation immediately and resolve if any new columns are found.
The next two higher bits determine whether or not to do column generation before branch-
ing. If only the third lowest bit is set, then no column generation occurs before branching. If
only the fourth lowest bit is set, then column generation is attempted before branching. The
default is not to generate columns before branching or fathoming, which corresponds to only
the third lowest bit being set, resulting in a default value of 4.

time limit – double (-1.0). Number of seconds of wall-clock time allowed for solution. When
this time limit is reached, the solution process will stop and the best solution found to that
point, along with other relevant data, will be output. A time limit less than 0.0 means there
is no limit.

node limit – integer (-1). Number of nodes allowed to be analyzed during the solution. When
this node limit is reached, the solution process will stop and the best solution found to that
point, along with other relevant data, will be output. A node limit less than 0 means there
is no limit.

gap limit – double (-1.0). Target gap limit allowed for solution. When the gap between the
lower and the upper bound reaches this point, the solution process will stop and the best
solution found to that point, along with other relevant data, will be output. A gap limit less
than 0 means there is no limit.

find first feasible – boolean (FALSE). Whether to stop after finding the first feasible solu-
tion or not.

sensitivity analysis – boolean (FALSE). If the user wants to do the rudimentary sensitivity
analysis, which will give a lower bound for the problem modified by the right hand side, then,
this parameter has to be set before solving the original problem. If it is set, SYMPHONY
will keep the necessary information from the solution processes of the original problem to be
able to do the sensitivity analysis later.

7.4.5 LP parameters

LP verbosity – integer (0). Verbosity level of the LP module.
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set obj upper lim – boolean (FALSE). Whether to stop solving the LP relaxation when it’s op-
timal value is provably higher than the global upper bound. There are some advantages to
continuing the solution process anyway. For instance, this results in the highest possible lower
bound. On the other hand, if the matrix is full, this node will be pruned anyway and the rest
of the computation is pointless. This option should be set at FALSE for column generation
since the LP dual values may not be reliable otherwise.

try to recover from error – boolean (TRUE). Indicates what should be done in case the LP
solver is unable to solve a particular LP relaxation because of numerical problems. It is
possible to recover from this situation but further results may be suspect. On the other hand,
the entire solution process can be abandoned.

problem type – integer (ZERO ONE PROBLEM{0}). The type of problem being solved. Other val-
ues are INTEGER PROBLEM{1} or MIXED INTEGER PROBLEM{2}. (Caution: The mixed-integer
option is not well tested.)

cut pool check frequency – integer (10). The number of iterations between sending LP solu-
tions to the cut pool to find violated cuts. It is not advisable to check the cut pool too
frequently as the cut pool module can get bogged down and the LP solution generally do not
change that drastically from one iteration to the next anyway.

not fixed storage size – integer (2048). The not fixed list is a partial list of indices of vari-
ables not in the matrix that have not been fixed by reduced cost. Keeping this list allows
SYMPHONY to avoid repricing variables (an expensive operation) that are not in the matrix
because they have already been permanently fixed. When this array reaches its maximum
size, no more variable indices can be stored. It is therefore advisable to keep the maximum
size of this array as large as possible, given memory limitations.

max non dual feas to add min, max non dual feas to add max, max non dual feas to add frac –
integer, integer, double (20, 200, .05). These three parameters determine the maximum
number of non-dual-feasible columns that can be added in any one iteration after pricing.
This maximum is set to the indicated fraction of the current number of active columns unless
this numbers exceeds the given maximum or is less than the given minimum, in which case,
it is set to the max or min, respectively.

max not fixable to add min, max not fixable to add max, max not fixable to add frac –
integer, integer, double (100, 500, .1). As above, these three parameters determine the
maximum number of new columns to be added to the problem because they cannot be priced
out. These variables are only added when trying to restore infeasibility and usually, this
does not require many variables anyway.

mat col compress num, mat col compress ratio – integer, double (50, .05). Determines
when the matrix should be physically compressed. This only happens when the number of
columns is high enough to make it “worthwhile.” The matrix is physically compressed when
the number of deleted columns exceeds either an absolute number and a specified fraction of
the current number of active columns.

mat row compress num, mat row compress ratio – integer, double (20, .05). Same as above
except for rows.
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tailoff gap backsteps, tailoff gap frac – integer, double (2, .99). Determines when tai-
loff is detected in the LP module. Tailoff is reported if the average ratio of the current gap to
the previous iteration’s gap over the last tailoff gap backsteps iterations wasn’t at least
tailoff gap frac.

tailoff obj backsteps, tailoff obj frac – integer, double (2, .99). Same as above, only
the ratio is taken with respect to the change in objective function values instead of the
change in the gap.

ineff cnt to delete – integer (0). Determines after how many iterations of being deemed in-
effective a constraint is removed from the current relaxation.

eff cnt before cutpool – integer (3). Determines after how many iterations of being deemed
effective each cut will be sent to the global pool.

ineffective constraints – integer (BASIC SLACKS ARE INEFFECTIVE{2}). Determines under
what condition a constraint is deemed ineffective in the current relaxation. Other possible
values are NO CONSTRAINT IS INEFFECTIVE{0}, NONZERO SLACKS ARE INEFFECTIVE{1}, and
ZERO DUAL VALUES ARE INEFFECTIVE{3}.

base constraints always effective – boolean (TRUE). Determines whether the base con-
straints can ever be removed from the relaxation. In some case, removing the base constraints
from the problem can be disastrous depending on the assumptions made by the cut generator.

branch on cuts – boolean (FALSE). This informs the framework whether the user plans on
branching on cuts or not. If so, there is additional bookkeeping to be done, such as main-
taining a pool of slack cuts to be used for branching. Therefore, the user should not set this
flag unless he actually plans on using this feature.

discard slack cuts – integer (DISCARD SLACKS BEFORE NEW ITERATION{0}).
Determines when the pool of slack cuts is discarded. The other option is
DISCARD SLACKS WHEN STARTING NEW NODE{1}.

first lp first cut time out, first lp all cuts time out, later lp first cut time out,
later lp all cuts time out – double (0, 0, 5, 1). The next group of parameters determines
when the LP should give up waiting for cuts from the cut generator and start to solve the
relaxation in its current form or possibly branch if necessary. There are two factors that
contribute to determining this timeout. First is whether this is the first LP in the search
node of whether it is a later LP. Second is whether any cuts have been added already in
this iteration. The four timeout parameters correspond to the four possible combinations of
these two variables.

no cut timeout – This keyword does not have an associated value. If this keyword appears on a
line by itself or with a value, this tells the framework not to time out while waiting for cuts.
This is useful for debugging since it enables runs with a single LP module to be duplicated.

all cut timeout – double (no default). This keyword tells the framework to set all of the above
timeout parameters to the value indicated.

max cut num per iter – integer (20). The maximum number of cuts that can be added to the
LP in an iteration. The remaining cuts stay in the local pool to be added in subsequent
iterations, if they are strong enough.
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do reduced cost fixing – boolean (FALSE). Whether or not to attempt to fix variables by re-
duced cost. This option is highly recommended

gap as ub frac, gap as last gap frac – double (.1, .7). Determines when reduced cost fixing
should be attempted. It is only done when the gap is within the fraction gap as ub frac of
the upper bound or when the gap has decreased by the fraction gap as last gap frac since
the last time variables were fixed.

do logical fixing – boolean (FALSE). Determines whether the user’s logical fixing routine
should be used.

fixed to ub before logical fixing, fixed to ub frac before logical fixing – integer,
double (1, .01). Determines when logical fixing should be attempted. It will be called only
when a certain absolute number and a certain number of variables have been fixed to their
upper bounds by reduced cost. This is because it is typically only after fixing variables to
their upper bound that other variables can be logically fixed.

max presolve iter – integer (10). Number of simplex iterations to be performed in the pre-
solve for strong branching.

strong branching cand num max, strong branching cand num min, strong branching red ratio
– integer (25, 5, 1). These three parameters together determine the num-
ber of strong branching candidates to be used by default. In the root node,
strong branching cand num max candidates are used. On each succeeding level, this number
is reduced by the number strong branching red ratio multiplied by the square of the level.
This continues until the number of candidates is reduced to strong branching cand num min
and then that number of candidates is used in all lower levels of the tree.

is feasible default – integer (TEST INTEGRALITY{1}). Determines the default test to be used
to determine feasibility. This parameter is provided so that the user can change the default
behavior without recompiling. The only other option is TEST ZERO ONE{0}.

send feasible solution default – integer (SEND NONZEROS{0}). Determines the form in
which to send the feasible solution. This parameter is provided so that the user can change
the default behavior without recompiling. This is currently the only option.

send lp solution default – integer (SEND NONZEROS{0}). Determines the default form in
which to send the LP solution to the cut generator and cut pool. This parameter is provided
so that the user can change the default behavior without recompiling. The other option is
SEND FRACTIONS{1}.

display solution default – integer (DISP NOTHING{0}). Determines how to display the cur-
rent LP solution if desired. See the description of user display solution() for other pos-
sible values. This parameter is provided so that the user can change the default behavior
without recompiling.

shall we branch default – integer (USER BRANCH IF MUST{2}). Determines the de-
fault branching behavior. Other values are USER DO NOT BRANCH{0} (not recom-
mended as a default), USER DO BRANCH{1} (also not recommended as a default), and
USER BRANCH IF TAILOFF{3}. This parameter is provided so that the user can change the
default behavior without recompiling.
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select candidates default – integer (USER CLOSE TO HALF AND EXPENSIVE{11}).
Determines the default rule for selecting strong branching candidates. Other values
are USER CLOSE TO HALF{10} and USER CLOSE TO ONE AND CHEAP{12}. This parameter is
provided so that the user can change the default behavior without recompiling.

compare candidates default – integer (LOWEST LOW OBJ{1}). Determines the default rule for
comparing candidates. See the description of user compare candidates() for other val-
ues. This parameter is provided so that the user can change the default behavior without
recompiling.

select child default – integer (PREFER LOWER OBJ VALUE{0}). Determines the default rule
for selecting the child to be processed next. For other possible values, see the description
user select child(). This parameter is provided so that the user can change the default
behavior without recompiling.

mc find supported solutions – boolean (FALSE). By default, sym mc solve routine will find
all the non-dominated solutions if the problem to be solved is a bicriteria problem. However,
if the user plans to find only the supported solutions, then, this parameter has to be set before
calling sym mc solve routine.

mc rho – double (0.00001). The value used in augmented Chebyshev norm during the bicriteria
solution procedure.

generate cgl cuts – boolean (TRUE). Whether or not to generate cuts using COIN’s cut gen-
eration library. Note that, to use CGL cuts, OSI interface has to be used and moreover the
corresponding flags have to be set during installation. See the makefile for more details.

generate cgl gomory cuts – boolean (TRUE). Whether or not to generate Gomory cuts using
COIN’s cut generation library.

generate cgl knapsack cuts – boolean (TRUE). Whether or not to generate knapsack cover
cuts using COIN’s cut generation library.

generate cgl oddhole cuts – boolean (TRUE). Whether or not to generate generalized odd hole
cuts using COIN’s cut generation library.

generate cgl probing cuts – boolean (TRUE). Whether or not to generate probing cuts using
COIN’s cut generation library.

generate cgl clique cuts – boolean (TRUE). Whether or not to generate clique cuts using
COIN’s cut generation library.

generate cgl flow and cover cuts – boolean (FALSE). Whether or not to generate flow and
cover cuts using COIN’s cut generation library.

generate cgl rounding cuts – boolean (FALSE). Whether or not to generate simple rounding
cuts using COIN’s cut generation library.

generate cgl lift and project cuts – boolean (FALSE). Whether or not to generate lift-and-
project cuts using COIN’s cut generation library.
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7.4.6 Cut Generator Parameters

CG verbosity – integer (0). Verbosity level for the cut generator module.

7.4.7 Cut Pool Parameters

CP verbosity – integer (0). Verbosity of the cut pool module.

cp logging – boolean (0). Determines whether the logging option is enabled. In this case, the
entire contents of the cut pool are written out periodically to disk (at the same interval as
the tree manager log files are written). If this option is set, then the line following must start
with the keyword cp log file name and include the appropriate file name as the value.

cp warm start – boolean (0). Used to allow the cut pool to make a warm start by reading in a
previously written log file. If this option is set, then the line following must start with the
keyword cp warm start file name and include the appropriate file name as the value.

block size – integer (5000). Indicates the size of the blocks to allocate when more space is
needed in the cut list.

max size – integer (2000000). Indicates the maximum size of the cut pool in bytes. This is the
total memory taken up by the cut list, including all data structures and the array of pointers
itself.

max number of cuts – integer (10000). Indicates the maximum number of cuts allowed to be
stored. When this max is reached, cuts are forcibly purged, starting with duplicates and
then those indicated by the parameter delete which (see below), until the list is below the
allowable size.

min to delete – integer (1000). Indicates the number of cuts required to be deleted when the
pool reaches it’s maximum size.

touches until deletion – integer (10). When using the number of touches a cut has as a mea-
sure of its quality, this parameter indicates the number of touches a cut can have before being
deleted from the pool. The number of touches is the number of times in a row that a cut
has been checked without being found to be violated. It is a measure of a cut’s relevance or
effectiveness.

delete which – integer (DELETE BY TOUCHES{2}). Indicates which cuts to delete when purging
the pool. DELETE BY TOUCHES indicates that cuts whose number of touches is above the
threshold (see touches until deletion above) should be purged if the pool gets too large.
DELETE BY QUALITY{1} indicates that a user-defined measure of quality should be used (see
the function user check cuts in Section7.3.4).

check which – integer (CHECK ALL CUTS{0}). Indicates which cuts should be checked for vi-
olation. The choices are to check all cuts (CHECK ALL CUTS{0}); only those that have
number of touches below the threshold (CHECK TOUCHES{2}); only those that were gen-
erated at a level higher in the tree than the current one (CHECK LEVEL{1}); or both
(CHECK LEVEL AND TOUCHES{3}). Note that with CHECK ALL CUTS set, SYMPHONY will
still only check the first cuts to check cuts in the list ordered by quality (see the function
user check cut).
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cuts to check – integer (1000). Indicates how many cuts in the pool to actually check. The
list is ordered by quality and the first cuts to check cuts are checked for violation.

7.4.8 C++ Interface/OSI Parameters

As the implementation of the whole interface, there exists a matching C interface parameter to
each of the C++ Interface/OSI parameter and the parameter setting functions are designed to set
the corresponding C interface parameter. Thus, we will just give a table of the parameter names,
their C interface complements and the values they can be set to, rather than their detailed de-
scriptions. For each parameter, the user can see the C interface complement for further explanation.

C++ Interface C Interface Value
OsiSymVerbosity verbosity -user defined-
OsiSymWarmStart warm start -boolean-
OsiSymNodeLimit
OsiMaxNumIteration node limit -user defined-
OsiMaxNumIterationHotStart
OsiSymFindFirstFeasible find first feasible -boolean-
OsiSymSearchStrategy node selection rule LOWEST LP FIRST

HIGHEST LP FIRST
BREADTH FIRST SEARCH
DEPTH FIRST SEARCH

OsiSymUsePermanentCutPools use permanent cut pools -boolean-
OsiSymGenerateCglGomoryCuts generate cgl gomory cuts -boolean-
OsiSymGenerateCglKnapsackCuts generate cgl knapsack cuts -boolean-
OsiSymGenerateCglOddHoleCuts generate cgl oddhole cuts -boolean-
OsiSymGenerateCglProbingCuts generate cgl probing cuts -boolean-
OsiSymGenerateCglCliqueCuts generate cgl clique cuts -boolean-
OsiSymGenerateCglFlowAndCoverCuts generate cgl flow and cover cuts -boolean-
OsiSymGenerateCglRoundingCuts generate cgl rounding cuts -boolean-
OsiSymGenerateCglLiftAndProjectCuts generate cgl lift and project cuts -boolean-
OsiSymKeepWarmStart keep warm start -boolean-
OsiSymTrimWarmTree trim warm tree * -boolean-
OsiSymDoReducedCostFixing do reduced cost fixing -boolean-
OsiSymMCFindSupportedSolutions mc find supported solutions -boolean-
OsiSymSensitivityAnalysis sensitivity analysis -boolean-
OsiSymRandomSeed random seed -user defined-
OsiSymDivingStrategy diving strategy BEST ESTIMATE

COMP BEST K
COMP BEST K GAP

OsiSymDivingK diving k -user defined-
OsiSymDivingThreshold diving threshold -user defined-
OsiSymGranularity granularity -user defined-
OsiSymTimeLimit time limit -user defined-
OsiSymGapLimit gap limit -user defined-
OsiObjOffset - -user defined-
OsiProbName problem name -user defined-

However, as it is seen, only some of the C interface parameters have their matches. If the other
parameters are required to be modified, the user can always set them directly by their C inter-
face names, using the overlapping functions: setSymParam(string, int), setSymParam(string,
double) and setSymParam(string,string). For instance, the verbosity parameter can be set,
let’s say, to 2 either by setSymParam(OsiSymVerbosity, 2) or by setSymParam(“verbosity”, 2).
Note that, this flexibility is also supported for parameter querying functions.
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[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE TSP solver.
http://www.tsp.gatech.edu/concorde.html.
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[20] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering
problem. Operations Research, 32(6):1195–1220, 1984.

[21] K. Hoffman and M. Padberg. LP-based combinatorial problem solving. Annals of Operations
Research, 4:145–194, 1985.

[22] T.H. Hultberg. FlopC++, 2004. Available from http://www.mat.ua.pt/thh/flopc/.
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