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IBM T. J. Watson Research Center

Matthew Saltzman
Clemson University

Institute for Operations Research and Management Science Annual Conference, October 19, 2003



Overview of COIN-OR 1

Agenda

• Overview of COIN-OR

• Overview of COIN-OR branch, cut, and price toolbox

– BCP
– OSI
– CGL
– CLP
– VOL

• Developing an application

– Basic concepts
– Design of BCP
– User API

• Example



Overview of COIN-OR 2

What is COIN-OR?

• The COIN-OR Project

– A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.

– An initiative promoting the development and use of interoperable,
open-source software for operations research.

– Soon to become a non-profit corporation known as the COIN-OR
Foundation

• The COIN-OR Repository

– A library of interoperable software tools for building optimization
codes, as well as a few stand alone packages.

– A venue for peer review of OR software tools.
– A development platform for open source projects, including a CVS

repository.
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What is Open Source Development?

• Open source development is a coding paradigm in which development is
done in a cooperative and distributed fashion.

• Strictly speaking, an open source license must satisfy the requirements
of the Open Source Definition.

• A license cannot call itself “open source” until it is approved by the Open
Source Initiative.

• Basic properties of an open source license

– Access to source code.
– The right to redistribute.
– The right to modify.

• The license may require that modifications also be kept open.
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Our Agenda

• Accelerate the pace of research in computational OR.

– Reuse instead of reinvent.
– Reduce development time and increase robustness.
– Increase interoperability (standards and interfaces).

• Provide for software what the open literature provides for theory.

– Peer review of software.
– Free distribution of ideas.
– Adherence to the principles of good scientific research.

• Define standards and interfaces that allow software components to
interoperate.

• Increase synergy between various development projects.

• Provide robust, open-source tools for practitioners.
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Components of the COIN-OR Library

OSI CLP SBB DFO OTSMULTIFARIOVOLBCPCGL

COIN

NLPAPI IPOPT

• Branch, cut, price toolbox

– OSI: Open Solver Interface
– CGL: Cut Generator Library
– BCP: Branch, Cut, and Price Library
– VOL: Volume Algorithm
– CLP: COIN-OR LP Solver
– SBB: Simple Branch and Bound
– COIN: COIN-OR Utility Library

• Stand-alone components

– IPOPT: Interior Point Optimization
– NLPAPI: Nonlinear Solver interface
– DFO: Derivative Free Optimization
– MULTIFARIO: Solution Manifolds
– OTS: Open Tabu Search
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BCP Overview

• Concept: Provide a framework in which the user has only to define the
core relaxation, along with classes of dynamically generated variables and
constraints.

– Branch and bound ⇒ core relaxation only
– Branch and cut ⇒ core relaxation plus constraints
– Branch and price ⇒ core relaxation plus variables
– Branch, cut, and price ⇒ the whole caboodle

• Existing frameworks

– SYMPHONY (parallel, C)
– COIN/BCP (parallel, C++)
– ABACUS (sequential, C++)

• Components

– Framework (BCP)
– LP Solver (OSI)
– Cut Generator (CGL)
– Utilities (COIN)
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OSI Overview

Uniform interface to LP solvers, including:

• CLP (COIN-OR)

• CPLEX (ILOG)

• DyLP (BonsaiG LP Solver)

• GLPK (GNU LP Kit)

• OSL (IBM)

• SoPlex (Konrad-Zuse-Zentrum für Informationstechnik Berlin)

• Volume (COIN-OR)

• XPRESS (Dash Optimization)

• MOSEK (under construction)
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CGL Overview

• Collection of cut generation routines integrated with OSI.

• Intended to provide robust implementations, including computational
tricks not usually published.

• Currently includes:

– Simple rounding cut
– Gomory cut
– Knapsack cover cut
– Rudimentary lift-and-project cut
– Odd hole cut
– Probing cut
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VOL Overview

• Generalized subgradient optimization algorithm.

• Compatible with branch, cut, and price:

– provides approximate primal and dual solutions,
– provides a valid lower bound (feasible dual solution), and
– provides a method for warm starting.
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CLP Overview

• A full-featured, open source LP solver.

• Has interfaces for primal, dual, and network simplex.

• Can be accessed through the OSI.

• Reasonably robust and fast.
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SBB Overview

• A lightweight generic MIP solver.

• Uses OSI to solve the LP relaxations.

• Uses CGL to generate cuts.

• Optimized for CLP.
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COIN Utility Library Overview

• Contains classes for

– Storage and manipulation of sparse vectors and matrices.
– Factorization of sparse matrices.
– Storage of solver warm start information.
– Message handling.
– Reading/writing of MPS files.
– Other utilities (simultaneous sorting, timing, . . . ).

• These are the classes common to many of the other algorithms.
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Basic Concepts

• We consider problem P :

min cTx
s.t. Ax ≤ b

xi ∈ Z ∀ i ∈ I

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

• Let P = conv{x ∈ Rn : Ax ≤ b, xi ∈ Z ∀ i ∈ I}.
• Basic Algorithmic Approach

– Use LP relaxations to produce lower bounds.
– Branch using hyperplanes.
– The LP relaxations are built up from a core relaxation with dynamically

generated objects (variables and constraints).
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Object Generation

• The efficiency of BCP depends heavily on the size (number of rows and
columns) and tightness of the LP relaxations.

• Tradeoff

– Small LP relaxations ⇒ faster LP solution.
– Big LP relaxations ⇒ better bounds.

• The goal is to keep relaxations small while not sacrificing bound quality.

• We must be able to easily move constraints and variables in and out of
the active set.

• This means dynamic generation and deletion.

• Defining a class of objects consists of defining methods for

– generating new objects, given the primal/dual solution to the current
LP relaxation,

– representing the object (for storage and/or sharing), and
– adding objects to a given LP relaxation.
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Getting Started

• The source can be obtained from www.coin-or.org as “tarball” or using
CVS.

• Platforms/Requirements

– Linux, gcc 2.95.3/2.96RH/3.2/3.3
– Windows, Visual C++, CygWin make (untested)
– Sun Solaris, gcc 2.95.3/3.2 or SunWorkshop C++
– AIX gcc 2.95.3/3.3
– Mac OS X

• Editing the Makefiles

– Makefile.location
– Makefile.<operating system>

• Make the necessary libraries. They’ll be installed in ${CoinDir}/lib.

– Change to appropriate directory and type make.
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BCP Modules

• The BCP library is divided into three basic modules:

– Tree Manager Controls overall execution by maintaining the search
tree and dispatching subproblems to the node processors.

– Node Processor Perform processing and branching operations.

– Object Generation Generate objects (cuts and/or variables).

• The division into separate modules is what allows the code to be
parallelizable.
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The User API

• The user API is implemented via a C++ class hierarchy.

• To develop an application, the user must derive the appropriate classes
override the appropriate methods.

• Classes for customizing the behavior of the modules

– BCP tm user
– BCP lp user
– BCP cg user
– BCP vg user

• Classes for defining user objects

– BCP cut
– BCP var
– BCP solution

• Allowing BCP to create instances of the user classes.

– The user must derive the class USER initialize.
– The function BCP user init() returns an instance of the derived

initializer class.
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Objects in BCP

• Most application-specific methods are related to handling of objects.

• Since representation is independent of the current LP, the user must
define methods to add objects to a given subproblem.

• For parallel execution, the objects need to be packed into (and unpacked
from) a buffer.

• Object Types

– Core objects are objects that are active in every subproblem
(BCP xxx core).

– Indexed objects are extra objects that can be uniquely identified by an
index (such as the edges of a graph) (BCP xxx indexed).

– Algorithmic objects are extra objects that have an abstract
representation (BCP xxx algo).
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Forming the LP Relaxations in BCP

The current LP relaxation looks like this:

core vars

co
re

 c
ut

s

core matrix

extra vars

ex
tr

a 
cu

ts

Reason for this split: efficiency.
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BCP Methods: Initialization

create_root()

initialize_core()

xx_init()

pack_module_data()

Create and initialize the 

user’s data structures

Set the core and extra

variables and cuts

Solver

Initialization

(Tree Manager)

Send data to the modules

BCP_user_init()
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BCP Methods: Steady State

Tree Manager Cut Generator

LP Solver Variable Generator

compare_tree_nodes()

unpack_module_data()

initialize_search_tree_node()

See the solver loop figure

unpack_module_data()

unpack_module_data()(un)pack_xxx_algo()

display_feasible_solution() generate_cuts()

pack_cut_algo()

generate_vars()

pack_var_algo()
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BCP Methods: Node Processing Loop

pack_feasible_solution()

Send primal and dual

solutions to CG and VG

generate_heuristic solution()

test_feasibility()

modify_LP_parameters()

pack_{primal/dual}_solution()

Strong branching functions

select_branching_candidates()

logical_fixing()

purge_slack_pool()

set_actions_for_children()

compare_branching_candidates()

unpack_{var/cut}_algo()

vars_to_cols() / cuts_to_rows()

generate_{vars/cuts}_in_lp()

compare_{vars/cuts}()

Generating and comparing 

cuts and variables

Possible fathoming
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Parameters and using the finished code

• Create a parameter file

• Run your code with the parameter file name as an argument (command
line switches will be added).

• BCP_ for BCP’s parameters

• Defined and documented in BCP tm par, BCP lp par, etc.

• Helper class for creating your parameters.

• Output controlled by verbosity parameters.
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Example: Uncapacitated Facility Location

• Data

– a set N of facilities and a set M of clients,
– transportation cost cij to service client i from depot j,
– fixed cost fj for using depot j, and
– the demand of di of client i.

• Variables

– xij is the amount of the demand for client i satisfied from depot j
– yj is 1 if the depot is used, 0 otherwise

min
∑

i∈M

∑

j∈N

cij

di
xij +

∑

j∈N

fjyj

s.t.
∑

j∈N

xij = di ∀i ∈ M,

∑

i∈M

xij ≤ (
∑

i∈M

di)yj ∀j ∈ N,

yj ∈ {0, 1} ∀j ∈ N

0≤ xij ≤ di ∀i ∈ M, j ∈ N
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UFL: Solution Approach

• The code for this example is available at

http://sagan.ie.lehigh.edu/coin/uflBCP.tar.gz

• We use a simple branch and cut scheme.

• We dynamically generate the following class disaggregated logical cuts

xij <= djyj, ∀i ∈ M, j ∈ N (1)

• These can be generated by complete enumeration.

• The indices i and j uniquely identify the cut., so we will use this to
create the packed form.

• The core relaxation will consist of the LP relaxation.
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UFL: User classes

User classes and methods

• UFL init

– tm init()
– lp init()

• UFL lp

– unpack module data()
– pack cut algo()
– unpack cut algo()
– generate cuts in lp()
– cuts to rows()

• UFL tm

– read data()
– initialize core()
– pack module data()

• UFL cut
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UFL: Initialization Methods

USER_initialize * BCP_user_init()
{

return new UFL_init;
}

BCP_lp_user *
UFL_init::lp_init(BCP_lp_prob& p)
{

return new UFL_lp;
}

BCP_tm_user * UFL_init::tm_init(BCP_tm_prob& p, const int argnum,
const char * const * arglist)

{
UFL_tm* tm = new UFL_tm;
tm->tm_par.read_from_file(arglist[1]);
tm->lp_par.read_from_file(arglist[1]);
return tm;

}
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BCP Buffers

• One construct that is pervasive in BCP is the BCP buffer.

• A BCP buffer consists of a character string into which data can be
packed for storage or communication (parallel code).

• The usual way of adding data to a buffer is to use the pack() method.

• The pack method returns a reference to the buffer, so that multiple calls
to pack() can be strung together.

• To pack integers i and j into a buffer and then unpack from the same
buffer again, the call would be:

int i = 0, j = 0;
BCP_buffer buf;

buf.pack(i).pack(j);
buf.unpack(i).unpack(j);
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UFL: Module Data

• Because BCP is a parallel code, there is no shared between modules.

• The pack module data() and unpack module data() methods allow
instance data to be broadcast to other modules.

• In the UFL, the data to be broadcast consists of the number of facilities
(N), the number of clients (N), and the demands.

• Here is what the pack and unpack methods look like.

void UFL_tm::pack_module_data(BCP_buffer& buf, BCP_process_t ptype)
{

lp_par.pack(buf);
buf.pack(M).pack(N).pack(demand,M);

}

void UFL_lp::unpack_module_data(BCP_buffer& buf) {
lp_par.unpack(buf);
buf.unpack(M).unpack(N).unpack(demand,M).unpack(capacity,N);

}
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UFL: Initializing the Core

• The core is specified as an instance of the BCP lp relax class, which can
be constructed from

– either a vector of BCP rows or BCP cols, and
– a set of rim vectors.

• In the initialize core() method, the user must also construct a vector of
BCP cut core and BCP var core objects.
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UFL: Initializing the Solver Interface

• In the BCP lp user class, we must initialize the solver interface to let
BCP know what solver we want to use.

• Here is what that looks like:

OsiSolverInterface* UFL_lp::initialize_solver_interface(){
#if COIN_USE_OSL

OsiOslSolverInterface* si = new OsiOslSolverInterface();
#endif
#if COIN_USE_CPX
OsiCpxSolverInterface* si = new OsiCpxSolverInterface();

#endif
#if COIN_USE_CLP

OsiClpSolverInterface* si = new OsiClpSolverInterface();
#endif

return si;
}
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UFL: Cut Class

class UFL_cut : public BCP_cut_algo{
public:

int i,j;
public:
UFL_cut(int ii, int jj):
BCP_cut_algo(-1 * INF, 0.0), i(ii), j(jj) {

}
UFL_cut(BCP_buffer& buf):

BCP_cut_algo(-1 * INF, 0.0), i(0), j(0) {
buf.unpack(i).unpack(j);

}
void pack(BCP_buffer& buf) const;

};

inline void UFL_cut::pack(BCP_buffer& buf) const{
buf.pack(i).pack(j);

}
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UFL: Generating Cuts

• To find violated cuts, we simply enumerate, as in this code snippet.

double violation;
vector< pair<int,int> > cut_v;
map<double,int> cut_violation; //map keeps violations sorted
map<double,int>::reverse_iterator it;

for (i = 0; i < M; i++){
for (j = 0; j < N; j++){

xind = xindex(i,j);
yind = yindex(j);
violation = lpres.x()[xind]-(demand[i]*lpres.x()[yind]);
if (violation > tolerance){

cut_v.push_back(make_pair(i,j));
cut_violation.insert(make_pair(violation,cutindex++));

}
}

}
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UFL: Constructing Cuts

• Next, we pass the most violated cuts back to BCP.

//Add the xxx most violated ones.
maxcuts = min((int)cut_v.size(),

lp_par.entry(UFL_lp_par::UFL_maxcuts_iteration));
it = cut_violation.rbegin();
while(newcuts<maxcuts){

cutindex = it->second;
violation = it->first;
new_cuts.push_back(new UFL_cut(cut_v[cutindex].first,

cut_v[cutindex].second));
newcuts++;
it++;

}
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UFL: Adding Cuts to the LP

• Here is the cuts to rows function that actually generates the rows to be
added to the LP relaxation.

void UFL_lp::cuts_to_rows(const BCP_vec<BCP_var*>& vars,
BCP_vec<BCP_cut*>& cuts,
BCP_vec<BCP_row*>& rows,
const BCP_lp_result& lpres,
BCP_object_origin origin, bool allow_multiple){
const int cutnum = cuts.size();
rows.reserve(cutnum);
for (int c = 0; c < cutnum; ++c) {

UFL_cut* mcut = dynamic_cast<const UFL_cut*>(cuts[c]);
if (mcut != 0){

CoinPackedVector cut;
cut.insert(xindex(mcut->i,mcut->j), 1.0);
cut.insert(yindex(mcut->j), -1.0 * demand[mcut->i]);
rows.push_back(new BCP_row(cut,-1.0 * INF, 0.0));

}
}

}
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Resources

• Documentation

– There is a user’s manual for BCP, but it is out of date.
– The most current documentation is in the source code—don’t be

afraid to use it.

• Other resources

– There are several mailing lists on which to post questions and we make
an effort to answer quickly.

– Also, there is a lot of good info at www.coin-or.org.
– There are some basic tutorials and other information, including the

example you saw today at sagan.ie.lehigh.edu/coin/.

• There is a user’s meeting Monday at 12:00 in International Ballroom A.

• There are three other sessions revolving around COIN software, including
a tutorial on OSI.
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Final advice

Use the source, Luke...

...and feel free to ask questions either by email or on the discussion list.


