
COIN-OR: Software Tools for Implementing
Custom Solvers

Ted Ralphs
Lehigh University

László Ladányi
IBM T. J. Watson Research Center

Matthew Saltzman
Clemson University

Institute for Operations Research and Management Science Annual Conference, October 19, 2003



Overview of COIN-OR 1

Agenda

• Overview of COIN-OR

• Overview of COIN-OR branch, cut, and price toolbox

– BCP
– OSI
– CGL
– CLP
– VOL

• Developing an application

– Basic concepts
– Design of BCP
– User API

• Example



Overview of COIN-OR 2

What is COIN-OR?

• The COIN-OR Project

– A consortium of researchers in both industry and academia dedicated
to improving the state of computational research in OR.

– An initiative promoting the development and use of interoperable,
open-source software for operations research.

– Soon to become a non-profit corporation known as the COIN-OR
Foundation

• The COIN-OR Repository

– A library of interoperable software tools for building optimization
codes, as well as a few stand alone packages.

– A venue for peer review of OR software tools.
– A development platform for open source projects, including a CVS

repository.



Overview of COIN-OR 3

What is Open Source Development?

• Open source development is a coding paradigm in which development is
done in a cooperative and distributed fashion.

• Strictly speaking, an open source license must satisfy the requirements
of the Open Source Definition.

• A license cannot call itself “open source” until it is approved by the Open
Source Initiative.

• Basic properties of an open source license

– Access to source code.
– The right to redistribute.
– The right to modify.

• The license may require that modifications also be kept open.



Overview of COIN-OR 4

Our Agenda

• Accelerate the pace of research in computational OR.

– Reuse instead of reinvent.
– Reduce development time and increase robustness.
– Increase interoperability (standards and interfaces).

• Provide for software what the open literature provides for theory.

– Peer review of software.
– Free distribution of ideas.
– Adherence to the principles of good scientific research.

• Define standards and interfaces that allow software components to
interoperate.

• Increase synergy between various development projects.

• Provide robust, open-source tools for practitioners.



INFORMS COIN-OR Workshop 5

Components of the COIN-OR Library

OSI CLP SBB DFO OTSMULTIFARIOVOLBCPCGL

COIN

NLPAPI IPOPT

• Branch, cut, price toolbox

– OSI: Open Solver Interface
– CGL: Cut Generator Library
– BCP: Branch, Cut, and Price Library
– VOL: Volume Algorithm
– CLP: COIN-OR LP Solver
– SBB: Simple Branch and Bound
– COIN: COIN-OR Utility Library

• Stand-alone components

– IPOPT: Interior Point Optimization
– NLPAPI: Nonlinear Solver interface
– DFO: Derivative Free Optimization
– MULTIFARIO: Solution Manifolds
– OTS: Open Tabu Search



Overview of BCP Toolbox 6

Agenda

• Overview of COIN-OR

• Overview of COIN-OR branch, cut, and price toolbox

– BCP
– OSI
– CGL
– CLP
– VOL

• Developing an application

– Basic concepts
– Design of BCP
– User API

• Example



Overview of BCP Toolbox 7

BCP Overview

• Concept: Provide a framework in which the user has only to define the
core relaxation, along with classes of dynamically generated variables and
constraints.

– Branch and bound ⇒ core relaxation only
– Branch and cut ⇒ core relaxation plus constraints
– Branch and price ⇒ core relaxation plus variables
– Branch, cut, and price ⇒ the whole caboodle

• Existing frameworks

– SYMPHONY (parallel, C)
– COIN/BCP (parallel, C++)
– ABACUS (sequential, C++)

• Components

– Framework (BCP)
– LP Solver (OSI)
– Cut Generator (CGL)
– Utilities (COIN)



Overview of BCP Toolbox 8

OSI Overview

Uniform interface to LP solvers, including:

• CLP (COIN-OR)

• CPLEX (ILOG)

• DyLP (BonsaiG LP Solver)

• GLPK (GNU LP Kit)

• OSL (IBM)

• SoPlex (Konrad-Zuse-Zentrum für Informationstechnik Berlin)

• Volume (COIN-OR)

• XPRESS (Dash Optimization)

• MOSEK (under construction)



Overview of BCP Toolbox 9

CGL Overview

• Collection of cut generation routines integrated with OSI.

• Intended to provide robust implementations, including computational
tricks not usually published.

• Currently includes:

– Simple rounding cut
– Gomory cut
– Knapsack cover cut
– Rudimentary lift-and-project cut
– Odd hole cut
– Probing cut



Overview of BCP Toolbox 10

VOL Overview

• Generalized subgradient optimization algorithm.

• Compatible with branch, cut, and price:

– provides approximate primal and dual solutions,
– provides a valid lower bound (feasible dual solution), and
– provides a method for warm starting.



Overview of BCP Toolbox 11

CLP Overview

• A full-featured, open source LP solver.

• Has interfaces for primal, dual, and network simplex.

• Can be accessed through the OSI.

• Reasonably robust and fast.



Overview of BCP Toolbox 12

SBB Overview

• A lightweight generic MIP solver.

• Uses OSI to solve the LP relaxations.

• Uses CGL to generate cuts.

• Optimized for CLP.



INFORMS COIN-OR Workshop 13

COIN Utility Library Overview

• Contains classes for

– Storage and manipulation of sparse vectors and matrices.
– Factorization of sparse matrices.
– Storage of solver warm start information.
– Message handling.
– Reading/writing of MPS files.
– Other utilities (simultaneous sorting, timing, . . . ).

• These are the classes common to many of the other algorithms.



Developing an Application 14

Agenda

• Overview of COIN-OR

• Overview of COIN-OR branch, cut, and price toolbox

– BCP
– OSI
– CGL
– CLP
– VOL

• Developing an application

– Basic concepts
– Design of BCP
– User API

• Example



Developing an Application 15

Basic Concepts

• We consider problem P :

min cTx
s.t. Ax ≤ b

xi ∈ Z ∀ i ∈ I

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

• Let P = conv{x ∈ Rn : Ax ≤ b, xi ∈ Z ∀ i ∈ I}.
• Basic Algorithmic Approach

– Use LP relaxations to produce lower bounds.
– Branch using hyperplanes.
– The LP relaxations are built up from a core relaxation with dynamically

generated objects (variables and constraints).



Developing an Application 16

Object Generation

• The efficiency of BCP depends heavily on the size (number of rows and
columns) and tightness of the LP relaxations.

• Tradeoff

– Small LP relaxations ⇒ faster LP solution.
– Big LP relaxations ⇒ better bounds.

• The goal is to keep relaxations small while not sacrificing bound quality.

• We must be able to easily move constraints and variables in and out of
the active set.

• This means dynamic generation and deletion.

• Defining a class of objects consists of defining methods for

– generating new objects, given the primal/dual solution to the current
LP relaxation,

– representing the object (for storage and/or sharing), and
– adding objects to a given LP relaxation.



Developing an Application 17

Getting Started

• The source can be obtained from www.coin-or.org as “tarball” or using
CVS.

• Platforms/Requirements

– Linux, gcc 2.95.3/2.96RH/3.2/3.3
– Windows, Visual C++, CygWin make (untested)
– Sun Solaris, gcc 2.95.3/3.2 or SunWorkshop C++
– AIX gcc 2.95.3/3.3
– Mac OS X

• Editing the Makefiles

– Makefile.location
– Makefile.<operating system>

• Make the necessary libraries. They’ll be installed in ${CoinDir}/lib.

– Change to appropriate directory and type make.



Developing an Application 18

BCP Modules

• The BCP library is divided into three basic modules:

– Tree Manager Controls overall execution by maintaining the search
tree and dispatching subproblems to the node processors.

– Node Processor Perform processing and branching operations.

– Object Generation Generate objects (cuts and/or variables).

• The division into separate modules is what allows the code to be
parallelizable.



Developing an Application 19

The User API

• The user API is implemented via a C++ class hierarchy.

• To develop an application, the user must derive the appropriate classes
override the appropriate methods.

• Classes for customizing the behavior of the modules

– BCP tm user
– BCP lp user
– BCP cg user
– BCP vg user

• Classes for defining user objects

– BCP cut
– BCP var
– BCP solution

• Allowing BCP to create instances of the user classes.

– The user must derive the class USER initialize.
– The function BCP user init() returns an instance of the derived

initializer class.



Developing an Application 20

Objects in BCP

• Most application-specific methods are related to handling of objects.

• Since representation is independent of the current LP, the user must
define methods to add objects to a given subproblem.

• For parallel execution, the objects need to be packed into (and unpacked
from) a buffer.

• Object Types

– Core objects are objects that are active in every subproblem
(BCP xxx core).

– Indexed objects are extra objects that can be uniquely identified by an
index (such as the edges of a graph) (BCP xxx indexed).

– Algorithmic objects are extra objects that have an abstract
representation (BCP xxx algo).



Developing an Application 21

Forming the LP Relaxations in BCP

The current LP relaxation looks like this:

core vars

co
re

 c
ut

s

core matrix

extra vars

ex
tr

a 
cu

ts

Reason for this split: efficiency.



Developing an Application 22

BCP Methods: Initialization

create_root()

initialize_core()

xx_init()

pack_module_data()

Create and initialize the 

user’s data structures

Set the core and extra

variables and cuts

Solver

Initialization

(Tree Manager)

Send data to the modules

BCP_user_init()



Developing an Application 23

BCP Methods: Steady State

Tree Manager Cut Generator

LP Solver Variable Generator

compare_tree_nodes()

unpack_module_data()

initialize_search_tree_node()

See the solver loop figure

unpack_module_data()

unpack_module_data()(un)pack_xxx_algo()

display_feasible_solution() generate_cuts()

pack_cut_algo()

generate_vars()

pack_var_algo()



Developing an Application 24

BCP Methods: Node Processing Loop

pack_feasible_solution()

Send primal and dual

solutions to CG and VG

generate_heuristic solution()

test_feasibility()

modify_LP_parameters()

pack_{primal/dual}_solution()

Strong branching functions

select_branching_candidates()

logical_fixing()

purge_slack_pool()

set_actions_for_children()

compare_branching_candidates()

unpack_{var/cut}_algo()

vars_to_cols() / cuts_to_rows()

generate_{vars/cuts}_in_lp()

compare_{vars/cuts}()

Generating and comparing 

cuts and variables

Possible fathoming



Developing an Application 25

Parameters and using the finished code

• Create a parameter file

• Run your code with the parameter file name as an argument (command
line switches will be added).

• BCP_ for BCP’s parameters

• Defined and documented in BCP tm par, BCP lp par, etc.

• Helper class for creating your parameters.

• Output controlled by verbosity parameters.



Developing an Application 26

Agenda

• Overview of COIN-OR

• Overview of COIN-OR branch, cut, and price toolbox

– BCP
– OSI
– CGL
– CLP
– VOL

• Developing an application

– Basic concepts
– Design of BCP
– User API

• Example



Developing an Application 27

Example: Uncapacitated Facility Location

• Data

– a set N of facilities and a set M of clients,
– transportation cost cij to service client i from depot j,
– fixed cost fj for using depot j, and
– the demand of di of client i.

• Variables

– xij is the amount of the demand for client i satisfied from depot j
– yj is 1 if the depot is used, 0 otherwise

min
∑

i∈M

∑

j∈N

cij

di
xij +

∑

j∈N

fjyj

s.t.
∑

j∈N

xij = di ∀i ∈ M,

∑

i∈M

xij ≤ (
∑

i∈M

di)yj ∀j ∈ N,

yj ∈ {0, 1} ∀j ∈ N

0≤ xij ≤ di ∀i ∈ M, j ∈ N



Developing an Application 28

UFL: Solution Approach

• The code for this example is available at

http://sagan.ie.lehigh.edu/coin/uflBCP.tar.gz

• We use a simple branch and cut scheme.

• We dynamically generate the following class disaggregated logical cuts

xij <= djyj, ∀i ∈ M, j ∈ N (1)

• These can be generated by complete enumeration.

• The indices i and j uniquely identify the cut., so we will use this to
create the packed form.

• The core relaxation will consist of the LP relaxation.



Developing an Application 29

UFL: User classes

User classes and methods

• UFL init

– tm init()
– lp init()

• UFL lp

– unpack module data()
– pack cut algo()
– unpack cut algo()
– generate cuts in lp()
– cuts to rows()

• UFL tm

– read data()
– initialize core()
– pack module data()

• UFL cut



Developing an Application 30

UFL: Initialization Methods

USER_initialize * BCP_user_init()
{

return new UFL_init;
}

BCP_lp_user *
UFL_init::lp_init(BCP_lp_prob& p)
{

return new UFL_lp;
}

BCP_tm_user * UFL_init::tm_init(BCP_tm_prob& p, const int argnum,
const char * const * arglist)

{
UFL_tm* tm = new UFL_tm;
tm->tm_par.read_from_file(arglist[1]);
tm->lp_par.read_from_file(arglist[1]);
return tm;

}



Developing an Application 31

BCP Buffers

• One construct that is pervasive in BCP is the BCP buffer.

• A BCP buffer consists of a character string into which data can be
packed for storage or communication (parallel code).

• The usual way of adding data to a buffer is to use the pack() method.

• The pack method returns a reference to the buffer, so that multiple calls
to pack() can be strung together.

• To pack integers i and j into a buffer and then unpack from the same
buffer again, the call would be:

int i = 0, j = 0;
BCP_buffer buf;

buf.pack(i).pack(j);
buf.unpack(i).unpack(j);



Developing an Application 32

UFL: Module Data

• Because BCP is a parallel code, there is no shared between modules.

• The pack module data() and unpack module data() methods allow
instance data to be broadcast to other modules.

• In the UFL, the data to be broadcast consists of the number of facilities
(N), the number of clients (N), and the demands.

• Here is what the pack and unpack methods look like.

void UFL_tm::pack_module_data(BCP_buffer& buf, BCP_process_t ptype)
{

lp_par.pack(buf);
buf.pack(M).pack(N).pack(demand,M);

}

void UFL_lp::unpack_module_data(BCP_buffer& buf) {
lp_par.unpack(buf);
buf.unpack(M).unpack(N).unpack(demand,M).unpack(capacity,N);

}



Developing an Application 33

UFL: Initializing the Core

• The core is specified as an instance of the BCP lp relax class, which can
be constructed from

– either a vector of BCP rows or BCP cols, and
– a set of rim vectors.

• In the initialize core() method, the user must also construct a vector of
BCP cut core and BCP var core objects.



Developing an Application 34

UFL: Initializing the Solver Interface

• In the BCP lp user class, we must initialize the solver interface to let
BCP know what solver we want to use.

• Here is what that looks like:

OsiSolverInterface* UFL_lp::initialize_solver_interface(){
#if COIN_USE_OSL

OsiOslSolverInterface* si = new OsiOslSolverInterface();
#endif
#if COIN_USE_CPX
OsiCpxSolverInterface* si = new OsiCpxSolverInterface();

#endif
#if COIN_USE_CLP

OsiClpSolverInterface* si = new OsiClpSolverInterface();
#endif

return si;
}



Developing an Application 35

UFL: Cut Class

class UFL_cut : public BCP_cut_algo{
public:

int i,j;
public:
UFL_cut(int ii, int jj):
BCP_cut_algo(-1 * INF, 0.0), i(ii), j(jj) {

}
UFL_cut(BCP_buffer& buf):

BCP_cut_algo(-1 * INF, 0.0), i(0), j(0) {
buf.unpack(i).unpack(j);

}
void pack(BCP_buffer& buf) const;

};

inline void UFL_cut::pack(BCP_buffer& buf) const{
buf.pack(i).pack(j);

}



Developing an Application 36

UFL: Generating Cuts

• To find violated cuts, we simply enumerate, as in this code snippet.

double violation;
vector< pair<int,int> > cut_v;
map<double,int> cut_violation; //map keeps violations sorted
map<double,int>::reverse_iterator it;

for (i = 0; i < M; i++){
for (j = 0; j < N; j++){

xind = xindex(i,j);
yind = yindex(j);
violation = lpres.x()[xind]-(demand[i]*lpres.x()[yind]);
if (violation > tolerance){

cut_v.push_back(make_pair(i,j));
cut_violation.insert(make_pair(violation,cutindex++));

}
}

}



Developing an Application 37

UFL: Constructing Cuts

• Next, we pass the most violated cuts back to BCP.

//Add the xxx most violated ones.
maxcuts = min((int)cut_v.size(),

lp_par.entry(UFL_lp_par::UFL_maxcuts_iteration));
it = cut_violation.rbegin();
while(newcuts<maxcuts){

cutindex = it->second;
violation = it->first;
new_cuts.push_back(new UFL_cut(cut_v[cutindex].first,

cut_v[cutindex].second));
newcuts++;
it++;

}



Developing an Application 38

UFL: Adding Cuts to the LP

• Here is the cuts to rows function that actually generates the rows to be
added to the LP relaxation.

void UFL_lp::cuts_to_rows(const BCP_vec<BCP_var*>& vars,
BCP_vec<BCP_cut*>& cuts,
BCP_vec<BCP_row*>& rows,
const BCP_lp_result& lpres,
BCP_object_origin origin, bool allow_multiple){
const int cutnum = cuts.size();
rows.reserve(cutnum);
for (int c = 0; c < cutnum; ++c) {

UFL_cut* mcut = dynamic_cast<const UFL_cut*>(cuts[c]);
if (mcut != 0){

CoinPackedVector cut;
cut.insert(xindex(mcut->i,mcut->j), 1.0);
cut.insert(yindex(mcut->j), -1.0 * demand[mcut->i]);
rows.push_back(new BCP_row(cut,-1.0 * INF, 0.0));

}
}

}



Developing an Application 39

Resources

• Documentation

– There is a user’s manual for BCP, but it is out of date.
– The most current documentation is in the source code—don’t be

afraid to use it.

• Other resources

– There are several mailing lists on which to post questions and we make
an effort to answer quickly.

– Also, there is a lot of good info at www.coin-or.org.
– There are some basic tutorials and other information, including the

example you saw today at sagan.ie.lehigh.edu/coin/.

• There is a user’s meeting Monday at 12:00 in International Ballroom A.

• There are three other sessions revolving around COIN software, including
a tutorial on OSI.



Developing an Application 40

Final advice

Use the source, Luke...

...and feel free to ask questions either by email or on the discussion list.


