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Outline of Talk

e Overview of parallel tree search

— Knowledge sharing
— Data-intensive applications

e The Abstract Library for Parallel Search (ALPS)

— Scalability
— Data handling

e Conclusions
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Parallel Systems and Scalability

e Parallel System: Parallel algorithm + parallel architecture.

e Scalability: How well a parallel system takes advantage of increased
computing resources.

e [erms

Sequential runtime T

Parallel runtime T,

Parallel overhead T, = NT, — 1T
Speedup S =1T,/T,
Efficiency E=S/N
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Tree Search Algorithms

e Application Areas

— Discrete Optimization
— Artificial Intelligence
— Game Playing

— Theorem Proving

— Expert Systems

e Elements of Tree Search Algorithms

— Node splitting method (branching)
— Search order
x Depth-first search
x |terative Deepening
x Best-first search
— Pruning rules
x Feasibility
x Cost
— Bounding method (optimization only)
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Knowledge Generation and Sharing

e Knowledge is information generated during the course of the search that
guides the search.

— Knowledge generation changes the shape of the tree dynamically,
which makes load balancing difficult.

— The primary way in which parallel tree search algorithms differ is the
way in which knowledge is shared (Trienekens '92).

e Sharing knowledge helps eliminate the performance of redundant work
by guiding the search.

— If all processes have “perfect knowledge,” then no redundant work will

be performed.
— The goal is for the parallel search to be executed in roughly the same
manner as the sequential search.

e Knowledge sharing increases communication overhead and idle time.

e This is the fundamental tradeoff.
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Knowledge Bases

e Knowledge is shared through knowledge bases.

e Methods for disseminating knowledge

— Pull: Process requests information from the knowledge base

(asynchronously or synchronously).

— Push: Knowledge base broadcasts knowledge to processes.

— An important parameter to consider is whether the current task is
interrupted when knowledge is received or not.

e Basic examples of knowledge to be shared.

— Bounds
+ Upper (single global bound)
* Lower (need knowledge of distribution of bounds in tree)

— Node Descriptions
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Parallel Overhead in Tree Search

e Main contributors to parallel overhead

— Communication Overhead (cost of sharing knowledge)
— Idle Time
+ Handshaking (cost of sharing knowledge)
« Ramp Up/Down Time (cost of generating initial knowledge).
— Performance of Redundant Work (cost of not sharing knowledge).

e Redundant work is work that would not have been performed in the
sequential algorithm.

e Note again the fundamental tradeoff of knowledge sharing.
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Data-intensive Applications

e In applications such as branch, cut, and price, the amount of information
needed to describe each search tree node is very large.

e This can make memory an issue and also increase communication
overhead.

e Abstractly, we can think of each node as being described by a list of
objects.

e In our case, the objects are the cuts and variables.
e These objects can be generated throughout the search process.
e In BCP, the list of objects does not change much from parent to child.

e \We can therefore store the description of an entire subtree very compactly
using differencing.
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Knowledge Sharing in BCP

e In BCP, knowledge discovery consists of finding the cuts and variables
that form the LP relaxations.

e Generating these objects can be time consuming, so we want to share
them when they are found.

e Hence we have a new kind of knowledge that must be shared.
e Knowledge bases in BCP

— Node Pools
*x Node descriptions
« Lower bounds

— Object Pools

e Note that the sharing of lower bounds is important in enforcing the
search order and limiting redundant work.
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Previous Work

e Existing frameworks for implementing parallel BCP algorithms.

— SYMPHONY is written in C.
— COIN/BCP is written in C4+.

e Both frameworks implement a single-pool algorithm, in which there is a
central knowledge base for node descriptions.

e Computational experience

— The central node pool has perfect knowledge of the search tree and
effectively eliminates the performance of redundant work.

— The most serious scalability issues are ramp-up/ramp-down and
bottlenecks at the knowledge bases.

— Surprisingly, the object pools are a bigger bottleneck than the central
node pool.

— Ramp-up time can be a very serious issue for settings in which the
search tree is relatively small.
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The ALPS Project

e In partnership with IBM and the COIN-OR project.

e Multi-layered C++ class library for implementing scalable, parallel tree
search algorithms.

e Design is fully generic and portable.

— Support for implementing general tree search algorithms.

— Support for any bounding scheme.

— No assumptions on problem/algorithm type.

— No dependence on architecture/operating system.

— No dependence on third-party software (communications, solvers).

e Emphasis on parallel scalability.
e Support for large-scale, data-intensive applications (such as BCP).

e Support for advanced methods not available in commercial codes.
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The Library Hierarchy

Modular library design with minimal assumptions in each layer.

ALPS Abstract Library for Parallel Search

e manages the search tree.
e prioritizes based on quality.

BiCePS Branch, Constrain, and Price Software

e manages the data.
e adds notion of objects and differencing.
e assumes iterative bounding process.

BLIS BiCePS Linear Integer Solver

e implementation of BCP algorithm.
e objects are the cuts and variables.
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ALPS Design Overview

e Each processor hosts one or more knowledge bases.
e Knowledge base functions

— Receive and store knowledge from other knowledge bases.
— Field requests for knowledge from other knowledge bases.
— Generate new knowledge.

— May request knowledge from other knowledge bases.

e The knowledge bases communicate through knowledge brokers, which
contain routing information.

e Knowledge bases in BiCePS

— Node Pools
— Object Pools
— Node Processors
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BiCePS Design Overview

A subproblem is a set of objects with an objective.

Processing a subproblem
e solve a relaxation.

e generate new objects.
e tighten bounds.

e remove objects with value O.

If all else fails or when desired, branch.

Pool
Globa <
Pool

Subproblem

initial variables
and constraints

Y
solve relaxed |

subproblem

Y

generate new
variables and constraints
using the solution

Y
tighten bounds

Y

remove O—variables
and slack constraints

.

Yes

Create new subproblems
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Data Handling in BiCePS

Need to deal with HUGE numbers of objects.
Duplication is a big issue.
Goal is to avoid such duplication in generation and storage.

Objects have an encoded form containing information about how to add
the object to a relaxation.

Object pools allow generated objects to be shared.

Implementation:

1. From encoded form, obtain a hash value.

2. Object is looked up in hash map.

3. If it does not exist, then it is inserted.

4. A pointer to the unique copy in the hash map is added to the list.
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Improving Scalability

Dynamic granularity
Decentralization of knowledge
Elimination of synchronous messaging

Reduction in ramp-up/ramp-down time
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Improving Scalability: Granularity

Work unit is a subtree.

Advantages:

e less communication.

e more compact storage via differencing.

Disadvantage:

e more possibility of redundant work being done.
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Improving Scalability: Master - Hubs - Workers Paradigm

Master

e has global information about node quality.
e balances load between hubs (quantity and quality).

Hub

e manages collections of subtrees.
e balances load between workers

Worker

® processes one subtree.
e hub can interrupt.
e sends branch and quality information to hub.
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Improving Scalability: Master - Hubs - Workers Paradigm
Master Hubs Workers

U

-
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Improved Scalability: Asynchronous Messaging

Possible communication bottlenecks:

e [00 many messages.

— avoided by the increased task granularity.
— master-hub-worker paradigm also contributes.

e Too much synchronization (handshaking)

— almost no handshaking.
— must take place when a worker finishes exploring a subtree.
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Improving Scalability: Ramp-up/Ramp-down

e Ramp-up time: Time until all processors have useful work to do.

e Ramp-down time: Time during which there is not enough work for all
Processors.

e Ramp-up time is perhaps the most important scalability issue for branch
and bound when the bounding is computationally intensive.

e Controlling Ramp-up/ramp-down

— Branch more quickly.
— Use different branching rules (produce more children).
— Hub instructs workers when to change rules.
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Preliminary Conclusions

e We can achieve close to linear speedup with up to 32 processors using a
single-pool approach.

e However, there is still significant parallel overhead and this is not a
scalable solution.

e Performance of redundant work is not a problem with a single node pooal,
but may be with multiple pools.

e Efficient knowledge sharing is the key challenge.

e Synchronous requests for information and ramp-up time are the primary
scalability issue for BCP algorithms.

— For BCP, the object pools are the biggest bottleneck.
— We can try to control this by scaling the number of pools.
— Ramp up time is more difficult to control.
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What’s Currently Available

SYMPHONY: C library for implementing BCP

— User fills in stub functions.
— Supports shared or distributed memory.
— Documentation and source code available www.BranchAndCut.org.

COIN/BCP: C++ library for implementing BCP

— User derives classes from library.
— Documentation and source code available www.coin-or.org.

ALPS /BiCePS/BLIS

— In development and available soon.
— Will be distributed from CVS at www.coin-or.org.

The COIN-OR repository www.coin-or.org
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The COIN-OR Project

e Supports the development of interoperable, open source software for
operations research.

e Maintains a CVS repository for open source projects.

e Promotes peer review of open source software as a supplement to the
open literature.

e Software and documentation is freely downloadable from
WWW.CO1ln-or.org
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Scalability Issues: Motivation

Results solving VRP instances with SYMPHONY 2.8.2 (single node pool,
multiple cut pools) and OSL 3.0 on a 48-node Beowulf cluster

Tree Ramp Ramp Idle Idle
Instance Size Up Down (Nodes) (Cuts) CPU sec | Wallclock
A —n37 — k6 14305 1.70 2.02 12.31 40.06 1067.49 286.37
A —n39 — k5 483 0.81 0.05 0.35 1.30 54.17 14.49
A —n39 — k6 739 0.90 0.06 0.45 1.10 37.45 10.25
A —n44 — k6 3733 1.58 0.55 3.62 11.64 453.45 119.35
A — n45 — k6 493 0.59 0.05 0.42 1.06 65.09 17.10
A —n46 — k7 176 0.96 0.01 0.15 0.79 25.69 7.02
A —n48 — k7 4243 1.14 0.77 4.31 15.54 593.36 155.05
A —nb3 — k7 2808 1.32 0.48 2.95 9.44 385.68 100.98
A —nb5 — k9 6960 2.07 1.46 8.12 15.31 913.35 237.30
A —n65 — k9 18165 1.41 5.83 25.89 105.84 5190.83 1335.60
B — n45 — k6 1635 0.72 0.21 1.39 2.09 131.13 34.92
B — nb1 — k7 348 0.36 0.03 0.32 0.37 25.35 6.88
B — nb7 — k7 4036 0.76 0.39 3.21 5.52 494.13 131.87
B — n64 — k9 100 0.58 0.01 0.08 0.19 15.49 4.22
B — n67 — k10 16224 2.95 2.54 17.85 64.88 2351.30 618.73
4 NP's 74451 17.87 14.45 81.42 275.11 | 11803.97 3080.12
Per Node 0.0002 0.0002 0.0011 0.0037 0.1585 0.1655
8 NP's 82488 67.12 17.07 89.54 370.96 | 11834.68 1569.27
Per Node 0.0008 0.0002 0.0011 0.0045 0.1435 0.1522
16 NP’s 97078 203.54 41.19 110.36 1045.95 | 12881.44 908.68
Per Node 0.0021 0.0004 0.0011 0.0108 0.1327 0.1498
32 NP's 98991 640.74 49.09 135.74 3320.88 | 13044.33 545.73
Per Node 0.0065 0.0005 0.0014 0.0335 0.1318 0.1764




