
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Experience with CGL in the PICO Mixed-
Integer Programming Solver

Cynthia A. Phillips, Sandia National Laboratories

Joint work with

Jonathan Eckstein, Rutgers

William Hart, Sandia

Slide 2

Parallel Integer and Combinatorial Optimizer (PICO)

Mixed-Integer programming solver built on top of PEBBL’s general

branch-and-bound framework

• Historical (and continuing) raison d’être: massively parallel

(scalable)

– Distributed memory (MPI), C++

• More recent interest in improved serial performance

• Portable, flexible

– Serial, small LAN, Cplant, ASCI Red, Red Storm

• Allows exploitation of problem-specific knowledge/structure

• Open Source release

– Always support a free LP solver

Slide 3

PICO uses Pieces of COIN-OR for Branch+Cut

• Osi - Open Solver Interface

– PicoLPInterface class derived from this

• Cgl - Cut Generation Library

– PICO cut finder wrapper class to use Cgl generators

• Clp - COIN LP Solver

– Current PICO default

Local differences with official version

• Portability

• Bug fixes not yet incorporated (frequently component interaction)

• Some changes needed to compile derived classes

– Some changes to data ownership, protection levels

Slide 4

COIN in ACRO

We maintain version of COIN pieces we use in Acro cvs repository

• In third-party packages section

• Single checkout of all pieces (PICO, PEBBL, utilib, COIN)

• ACRO daily QA

– Daily checkout and build on many different platforms

• Linux, solaris, Mac OS X, cygwin, Irix, SGI, etc

– Daily tests

– Daily tracking of changes in COIN

– Daily summary emails to developers

Slide 5

Generic Branch and Cut of a MIP Subproblem

• In PICO, searching Pool of previously-generated cuts is a finder

– Only store globally-valid cuts

• MIP Solver must specify finder schedule, branching schedule

LP Solver Cut Finders
x*

Acx ≤ bc

Fathom or Solve branch

Slide 6

Calls to Cut Generation Library (Cgl)

• Takes an OsiSolverInterface as input

– Gets all problem data from the interface

– Assumes the point to cut off (x*) is the current solution

• Solver must look like it just solved the LP

• Fills a container with OsiRowCuts

Slide 7

PicoLPInterface

Inherits all of OsiSolverInterface

Added capabilities for branch-and-cut:

• Integrality management

– OSI solver always thinks all variables are continuous (LP)

– PICO overrides query methods (like isBinary(var)) for CGL

– Issues with using OSI’s setInteger()

• LP-only solvers can consider that an error

• Possible reset of internal data structures

• Other changes for row addition/deletion (Ojas will cover)

– Track row numbers for loaded cuts

– Explicit basis manipulation

• Currently support: CLP, Cplex, Soplex, glpk

Slide 8

PicoLPInterface Functionality - RestoreLP

• Make OsiSolverInterface solver look like it has just solved a problem

• Currently needed when

– Start from an externally-computed (or saved) root solution

– Cuts age out

– Pseudocost (gradient) initialization

– A cut finder modifies the OsiSolverInterface object

• Solver-independent, hopefully efficient method:

– Reset the basis and bounds

– Resolve

Slide 9

PicoRowCuts

• Sparse, pointer to an OsiRowCut

• One sided (upper bound)

• Sorted by column index (for dot product)

• Non-zero coefficients only on structural variables and core row

slacks/artificials

• Use solver infinity consistently

• Hash value

• Reference count

• Age

• Persistence

• ID (short handle), cut finder, etc, for debugging

Slide 10

picoRowCuts - Hashing

• Store Hash value on construction:

• Compute Canonical Form for vector coefficients:

– Round to given accuracy (default .01)

– Scale so largest absolute value is 1

– Must round first

• Hash value is hash of canonical form

• Parallel vectors should hash to the same value

• Store cut pool and loaded cuts in hash tables

Slide 11

Testing for Parallel Cuts

Test for redundancy or domination

• Hash values must be equal

• Must have same direction (sign on first element)

• Must have no angle between them (within tolerance):

cos θ12 =
a1 • a2

a1 a2

=1

Slide 12

PICO Cut Finders

• Takes PicoLPInterface and a solution vector

• Returns an array of PicoRowCuts

• Explicitly signals infeasibility detection

– Cgl uses infeasible cuts. Some solvers consider that an error.

• Wrapper class for Cgl generators

– Interprets infeasibility

– Eliminates redundancy for each call

– Primitive global validity claims (safe defaults)

– Corrections to avoid LP stomping

– Substitutes for cut row slacks (pending)

– Cut-finder-specific initialization (e.g. reducing output)

Slide 13

Pico Cut Finders

• A PICO cut finder knows classes of applicable MIPs

• At the start of the MIP computation, call cut finder with the

problem representation

– Cut finder determines whether it applies to this problem

• e.g. checking for cutting/packing structure

– Cut finder can set up data structures

Slide 14

Issue: Branch and Cut Context

• CGL cut finders have no notion of core rows vs. cuts (temporary)

• Generally view the current problem (bounds etc) as single problem

• Correctness issues

– Nonzero coefficients on slacks of volatile rows (substitution)

• Possible efficiency issues

– Global validity

Slide 15

Global Validity

Cuts like the TSP subtour elimination cuts are globally valid (apply to

all subproblems).

• Can be shared

Recall a basic form for Gomory cuts (for binary problems):

XL = variables at lower bound , XU = variables at upper bound uj

• CGL Gomory cut finder uses OsiSolver interface to get bounds

– Resulting Gomory cuts only valid in subtree (bounds match)

x i − g j  x j − l j()
x j ∈xL

∑ − g j  u j − x j()≥ x i

* 
x j ∈xU

∑

 l j

Slide 16

Global Validity

PICO maintains its own version of CGL Gomory cuts

• By using original binary status, makes globally valid cuts

– Not necessarily a total improvement (denser)

– Only globally valid if applied to globally valid rows

• We plan to add some parameters to tune

– # cuts generated

– Which rows considered

Currently no obvious way to pass parameters into CGL cut finders

– PICO can use start-up call

Slide 17

Cut Finder Quality Measure

• Each call to a cut finder has a quality measure based on cuts

“credited” to the call (more later)

• Compute after LP resolve

• Quality of one cut = dual value times violation of old LP optimal

• Time = finder run time + (part of) LP solve

– Forced nonzero

• One-run finder quality =

• qf quality of first run on a subproblem

– Tracked for whole computation using exponential smoothing

• Quality for a single solve

– Initialized to qf + small factor if it loses to branching (grows
with number of consecutive losses)

cut quality∑
time

Slide 18

Eliminating cross-finder redundancy

Given sets of cuts from multiple finders (from same x*), when we

identify a pair of parallel cuts:

• Credit goes to the strongest cut, ties to the fastest (avg) finder

• Weaker cut eliminated unless its from the cut pool with positive

reference count.

• If one finder proves infeasibility, it gets all the credit (+ bonus)

Slide 19

Cut Finder Scheduling

• For the first few problems (default 10) sweep

– All finders get a chance at the post-branch x*

• After this first phase, zero-quality finders get small nonzero quality

• Competition phase

– Proportional-share stride scheduling like PICO main scheduler

Incorporate cuts and resolve when:

• There are a lot of cuts waiting

• No finder is ready

• Ready finders are all much worse than ones run since last resolve

Slide 20

Proportional Share Scheduling: Simple Example

Job J1, priority p1 = 3. Job J2, priority p2=5

Interpretation: Dispatch job J1 3 times for every 5 dispatches of J2.

• Ticket ui. Initialized to 0.

• Always run the job with the lowest ticket.

• After running increment ticket by
1

pi

0
1

3

1

3

1

3

2

3

2

3

2

3
1 1

0 0
1

5

2

5

2

5

3

5

4

5

4

5
1

J1:

J2:

Slide 21

Scheduling Cut Finders in Competition

Competition phase

• Proportional-share stride scheduling like PICO main scheduler

• Finders dispatched according to quality (q) and readiness (r)

• Dispatch finder with lowest ticket value

– dynamic/delayed ticket computation

where uf is ticket before last run, t last runtime
u f +

t

rf q f

Slide 22

When to Branch

Branching competes with the cut finders

• Quality

– Let q be the expected bound movement (based on pseudocosts
and solution value)

– Let t be expected time for LP solve (save history with
exponential smoothing)

– Quality is

• Readiness is as a function that grows with k, the number of LP

solves since the last branch (b-subscripted objects are weights)

q + ε

t

ρb max 0,1− βbexp −γ bk(){ }

Slide 23

Debugging Features

• Tracking watched points (e.g. known optima)

– Throw an exception if

• watched point violates an added global cut

•Watched point violates an applicable local cut

• Pseudorandom timings

Slide 24

AMPL-PICO Interface

Standard AMPL interfaces

PICO AMPL Symbol Environment

AMPL

Software

AMPL Model File AMPL Problem

Specification Files

PICO

Executable

AMPL Solution

Specification Files
AMPL

Software

AMPL Solver

Output

Unix ScriptsAMPL Model File Tailored PICO

C++ Files

C++ Compiler

Tailored PICO

Executable

PICO Output

Slide 25

AMPL-PICO Interface

• Write cutting-plane and approximate-solution code using AMPL

variables

• Mapping transparent

• Announce cut finders to the driver object at start time.

Data

Files

Model

Files
AMPL

Solver:

PICO

Exact

Compute

Approximate

Solution

IP

LP

Cutting Planes

gen_milp_app

Slide 26

PICO CGL Cut Finder Defaults

• CGL cut finders currently enabled by default

– Gomory cuts (PICO version)

– MIR2

– 2MIR

– Flow cuts

– Clique cuts

– Probing (except on 64-bit architectures, etc)

• Others disabled for various reasons

– Dominated

– Needs special structure

• pending verification or implementation of enforcement

– Possibly producing errors/incorrect cuts

• Goal: command-line interface for enable/disable

• With user-defined cuts, almost all CGL cuts will be off by default

Slide 27

Next Steps for Cuts

• Throttling cuts

– Adding all (except for redundancy filtering) is too slow

• Cut management parameter tuning

– Try automated optimization

• Learn from MINTO/PARINO

– Thanks Jeff Linderoth!

