
Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Modeling with COIN-OR Tools

Leo Lopes et al

July 19, 2006

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Passing an instance to a Coin Solver
Simplest example: mps or lp file → cbc command line

Using a Traditional Modeling Language
Accessing Coin from AMPL
GAMS

A Pure C++ approach using FlopC++

Direct CBC/OSI Control

Using a Web Service

Useful Links

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Simplest example: mps or lp file→ cbc command line

Getting help and reading problems in

I The command line tool is fairly spartan. cbc is designed primarily for
use as a library.
To get help on a command, type the command followed by ?

Enter ? for list of commands or help
Coin:import?
import : Import model from mps file
Coin:import gt2

At line 15 NAME GT2
...
Problem GT2 has 29 rows, 188 columns and 376 elements
Model was imported from ./gt2 in -7.92823e-19 seconds
Coin:

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Simplest example: mps or lp file→ cbc command line

Solving command and messages

I solve, primalSimplex, dualSimplex, ...: solves the problem using the
desired method. solve does Branch & Bound and provides valuable
information

Coin:solve
Cgl0004I processed model has 28 rows, 173 columns
(173 integer) and 346 elements
...
TwoMirCuts was tried 6 times and created 128 cuts of
which 8 were active after adding rounds of cuts
(0.012001 seconds)
Result - Finished objective 21166 after 0 nodes and
101 iterations - took 0.380024 seconds

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Simplest example: mps or lp file→ cbc command line

Printing results

I solution: prints all nonzero variables to a file or stdout

Coin:solu £

82 x...0309 1 9.7109072e-14
85 x...0609 3 1.0425477e-13

...
176 x...1114 2 -6.1756156e-16
Coin: solu outputFile

Coin:

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

Coin Support in AMPL

LP & IP cbc has support through its own plugin (driver)
I SOS, priorities, algorithms, etc.
I some features supported through suffixes, other through options.

NLP IPOPT (continuous), BONMIN (mixed-integer)

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

The ampl plugin (driver) system

1. ampl creates a special instance file from a model and invokes the
solver as a subprocess, through a plugin (a driver in ampl
terminology)

2. The plugin uses a special library to read the instance and populate
the solver’s data structure

3. The plugin invokes the solver

4. The plugin uses the library to reformat the solver output in a way
that ampl can interpret it

5. When the plugin exits, ampl reads another file to populate its data
structures

Key Point: So long as both the solver and the plugin can be found (i.e.,
they are on the users’ path), there should be no problem

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

Installing the cbc or ipopt plugin (driver)

1. Get the package (substitute Ipopt or Cbc for Pkg below):

svn co https://projects.coin-or.org/svn/Pkg/trunk pkg

2. Get the AMPL ASL library. There is a script with the distribution
that makes setting up the ASL very convenient:

cd cbc/ThirdParty/ASL
./get.ASL

(for Ipopt, there are other external packages needed)

3. Run configure from the root directory of the source distribution (pkg
in this case) and build.

cd ../..
./configure --prefix=/usr/local
make
make install

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

Running cbc or ipopt from AMPL

Make sure the executable is on your path. Then simply choose cbc or
ipopt as the solver in AMPL:

I cbc example:

ampl: model ablu.mod; data ablu.dat;
ampl: option solver cbc;
ampl: option cbc_options "cuts=root log=2 feas=on slog=1"
ampl: solve;
ampl: display x;

I to see all the possible cbc options accessible from ampl, try on the
command line: cbc -verbose 7 -? | less

I to see all the possible ipopt options accessible from ampl, see:
http://www.coin-or.org/Ipopt/IPOPT options.html

Leo Lopes et al Modeling with COIN-OR Tools

http://www.coin-or.org/Ipopt/IPOPT_options.html

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

Coin Support in GAMS

LP & IP cbc has support out of the box
I cbc is accessible through its old name (sbb). In GAMS: coinsbb
I GLPK also accessible via an OSI interface: coinglpk

NLP No support as of version 22 of GAMS for any Coin Nonlinear Solver

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Accessing Coin from AMPL
GAMS

Running cbc from GAMS

1. Choose cbc as your default solver at install time
LP (Linear Programming) models can be solved by:
...

3. CoinCbc (demo or student license)
4. CoinGlpk (demo or student license)

...
Enter number for default, or hit enter
for previous default of CPLEX: 3

Make similar choices for MIP and RMIP
2. Select cbc on the command-line

gams transport.1 lp=coinsbb
3. Select cbc from within your model

option lp=coinsbb
You can also pass options to cbc using the special variables
m.integer1, m.integer2, and m.integer3

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Using Coin solvers from FlopC++ via OSI

I FlopC++ supports OSI natively. There is nothing different to do

I To select different solvers, simply pass the OsiSolverInteface desired:

#include "flopc.hpp"
using namespace flopc;
#include <OsiCbcSolverInterface.hpp>
...
class Paper : public MP_model {
public:

MP_set WIDTHS,PATTERNS;
...

Paper(int numWidths) :
MP_model(new OsiCbcSolverInterface),

WIDTHS(numWidths), PATTERNS(numWidths),
...

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Controlling the solution process
Column Generation in FlopC++

I Problems can be resolved without being regenerated

do {
ob = knapsack(numWidths, tabWidth,

&Paper.rowPrice[demC.offset], maxWidth, pat);

CoinPackedVector Pat;
Pat.setFull(numWidths, pat);

Paper->addCol(Pat,0,100,1);
Paper->resolve();

} while(ob>1.0001);

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Using Coin solvers directly via OSI

I Typically, build your application to a generic solver

class UFL {
private:
OsiSolverInterface * si;

...
I Fill in the Coin and Osi data structures with A, rhs, c , etc.

CoinPackedMatrix * matrix =
new CoinPackedMatrix(false,0,0);

matrix->setDimensions(0, n_cols);
for (i = 0; i < M; i++) { //demand constraints:
CoinPackedVector row;
for (j = 0; j < N; j++) row.insert(xindex(i,j), 1.0);
matrix->appendRow(row);

}
...

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Tighten the formulation
si is a pointer to an OsiSolverInterface

OsiCuts cutlist;
si->setInteger(integer_vars, N);
CglGomory * gomory = new CglGomory;
gomory->setLimit(100);
gomory->generateCuts(*si, cutlist);
CglKnapsackCover * knapsack = new CglKnapsackCover;
knapsack->generateCuts(*si, cutlist);
CglSimpleRounding * rounding = new CglSimpleRounding;
rounding->generateCuts(*si, cutlist);
CglOddHole * oddhole = new CglOddHole;
oddhole->generateCuts(*si, cutlist);
CglProbing * probe = new CglProbing;
probe->generateCuts(*si, cutlist);
si->applyCuts(cutlist);

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Solve!
si is a pointer to an OsiSolverInterface

I Instantiate the si pointer

si = new OsiCbcSolverInterface();

I solve!

si->branchAndBound();

I Get Results

double *sol = si->getColSolution();

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Access a Coin Solver over a web service
Soon to be part of COIN-OR!

1. Generate an OSiL file – an XML representation of an instance, and
encode solver options into an OSoL file.

2. Invoke the server remotely

string osil, osol, osrl;
...
string svc = "128.135.130.17:8080/os/clp/ClpSolverService.jws"
OSSolverAgent* osagent = new OSSolverAgent(svc);
// this is the synchronous solver invocation method.
osrl = osagent->solve(osil, osol);
// print the result
cout << osrl << endl;

Leo Lopes et al Modeling with COIN-OR Tools

Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Useful Links

I projects.coin-or.org/Cbc/wiki/FAQ

I www.gams.com/gamscoin

I projects.coin-or.org/FlopC++

I Ted and Matt’s talk @ EURO ’06

I gsbkip.chicagogsb.edu/ostalks/ostalks.html

Leo Lopes et al Modeling with COIN-OR Tools

projects.coin-or.org/Cbc/wiki/FAQ
www.gams.com/gamscoin
projects.coin-or.org/FlopC++
gsbkip.chicagogsb.edu/ostalks/ostalks.html

	Use Cases
	Passing an instance to a Coin Solver
	Simplest example: mps or lp file cbc command line

	Using a Traditional Modeling Language
	Accessing Coin from AMPL
	GAMS

	A Pure C++ approach using FlopC++
	Direct CBC/OSI Control
	Using a Web Service
	Useful Links

