
Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Modeling with COIN-OR Tools

Leo Lopes et al

July 19, 2006

Leo Lopes et al Modeling with COIN-OR Tools



Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Passing an instance to a Coin Solver
Simplest example: mps or lp file → cbc command line

Using a Traditional Modeling Language
Accessing Coin from AMPL
GAMS

A Pure C++ approach using FlopC++

Direct CBC/OSI Control

Using a Web Service

Useful Links

Leo Lopes et al Modeling with COIN-OR Tools



Use Cases
Passing an instance to a Coin Solver

Using a Traditional Modeling Language
A Pure C++ approach using FlopC++

Direct CBC/OSI Control
Using a Web Service

Useful Links

Simplest example: mps or lp file→ cbc command line

Getting help and reading problems in

I The command line tool is fairly spartan. cbc is designed primarily for
use as a library.
To get help on a command, type the command followed by ?

Enter ? for list of commands or help
Coin:import?
import : Import model from mps file
Coin:import gt2

At line 15 NAME GT2
...
Problem GT2 has 29 rows, 188 columns and 376 elements
Model was imported from ./gt2 in -7.92823e-19 seconds
Coin:
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Solving command and messages

I solve, primalSimplex, dualSimplex, ...: solves the problem using the
desired method. solve does Branch & Bound and provides valuable
information

Coin:solve
Cgl0004I processed model has 28 rows, 173 columns
(173 integer) and 346 elements
...
TwoMirCuts was tried 6 times and created 128 cuts of
which 8 were active after adding rounds of cuts
( 0.012001 seconds)
Result - Finished objective 21166 after 0 nodes and
101 iterations - took 0.380024 seconds
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Printing results

I solution: prints all nonzero variables to a file or stdout

Coin:solu £

82 x...0309 1 9.7109072e-14
85 x...0609 3 1.0425477e-13

...
176 x...1114 2 -6.1756156e-16
Coin: solu outputFile

Coin:
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Coin Support in AMPL

LP & IP cbc has support through its own plugin (driver)
I SOS, priorities, algorithms, etc.
I some features supported through suffixes, other through options.

NLP IPOPT (continuous), BONMIN (mixed-integer)
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The ampl plugin (driver) system

1. ampl creates a special instance file from a model and invokes the
solver as a subprocess, through a plugin (a driver in ampl
terminology)

2. The plugin uses a special library to read the instance and populate
the solver’s data structure

3. The plugin invokes the solver

4. The plugin uses the library to reformat the solver output in a way
that ampl can interpret it

5. When the plugin exits, ampl reads another file to populate its data
structures

Key Point: So long as both the solver and the plugin can be found (i.e.,
they are on the users’ path), there should be no problem
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Installing the cbc or ipopt plugin (driver)

1. Get the package (substitute Ipopt or Cbc for Pkg below):

svn co https://projects.coin-or.org/svn/Pkg/trunk pkg

2. Get the AMPL ASL library. There is a script with the distribution
that makes setting up the ASL very convenient:

cd cbc/ThirdParty/ASL
./get.ASL

(for Ipopt, there are other external packages needed)

3. Run configure from the root directory of the source distribution (pkg
in this case) and build.

cd ../..
./configure --prefix=/usr/local
make
make install
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Running cbc or ipopt from AMPL

Make sure the executable is on your path. Then simply choose cbc or
ipopt as the solver in AMPL:

I cbc example:

ampl: model ablu.mod; data ablu.dat;
ampl: option solver cbc;
ampl: option cbc_options "cuts=root log=2 feas=on slog=1"
ampl: solve;
ampl: display x;

I to see all the possible cbc options accessible from ampl, try on the
command line: cbc -verbose 7 -? | less

I to see all the possible ipopt options accessible from ampl, see:
http://www.coin-or.org/Ipopt/IPOPT options.html
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Coin Support in GAMS

LP & IP cbc has support out of the box
I cbc is accessible through its old name (sbb). In GAMS: coinsbb
I GLPK also accessible via an OSI interface: coinglpk

NLP No support as of version 22 of GAMS for any Coin Nonlinear Solver
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Running cbc from GAMS

1. Choose cbc as your default solver at install time
LP (Linear Programming) models can be solved by:
...

3. CoinCbc (demo or student license)
4. CoinGlpk (demo or student license)

...
Enter number for default, or hit enter
for previous default of CPLEX: 3

Make similar choices for MIP and RMIP
2. Select cbc on the command-line

gams transport.1 lp=coinsbb
3. Select cbc from within your model

option lp=coinsbb
You can also pass options to cbc using the special variables
m.integer1, m.integer2, and m.integer3
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Using Coin solvers from FlopC++ via OSI

I FlopC++ supports OSI natively. There is nothing different to do

I To select different solvers, simply pass the OsiSolverInteface desired:

#include "flopc.hpp"
using namespace flopc;
#include <OsiCbcSolverInterface.hpp>
...
class Paper : public MP_model {
public:

MP_set WIDTHS,PATTERNS;
...

Paper(int numWidths) :
MP_model(new OsiCbcSolverInterface),

WIDTHS(numWidths), PATTERNS(numWidths),
...
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Controlling the solution process
Column Generation in FlopC++

I Problems can be resolved without being regenerated

do {
ob = knapsack(numWidths, tabWidth,

&Paper.rowPrice[demC.offset], maxWidth, pat);

CoinPackedVector Pat;
Pat.setFull(numWidths, pat);

Paper->addCol(Pat,0,100,1);
Paper->resolve();

} while(ob>1.0001);
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Using Coin solvers directly via OSI

I Typically, build your application to a generic solver

class UFL {
private:
OsiSolverInterface * si;

...
I Fill in the Coin and Osi data structures with A, rhs, c , etc.

CoinPackedMatrix * matrix =
new CoinPackedMatrix(false,0,0);

matrix->setDimensions(0, n_cols);
for (i = 0; i < M; i++) { //demand constraints:
CoinPackedVector row;
for (j = 0; j < N; j++) row.insert(xindex(i,j), 1.0);
matrix->appendRow(row);

}
...
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Tighten the formulation
si is a pointer to an OsiSolverInterface

OsiCuts cutlist;
si->setInteger(integer_vars, N);
CglGomory * gomory = new CglGomory;
gomory->setLimit(100);
gomory->generateCuts(*si, cutlist);
CglKnapsackCover * knapsack = new CglKnapsackCover;
knapsack->generateCuts(*si, cutlist);
CglSimpleRounding * rounding = new CglSimpleRounding;
rounding->generateCuts(*si, cutlist);
CglOddHole * oddhole = new CglOddHole;
oddhole->generateCuts(*si, cutlist);
CglProbing * probe = new CglProbing;
probe->generateCuts(*si, cutlist);
si->applyCuts(cutlist);
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Solve!
si is a pointer to an OsiSolverInterface

I Instantiate the si pointer

si = new OsiCbcSolverInterface();

I solve!

si->branchAndBound();

I Get Results

double *sol = si->getColSolution();
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Access a Coin Solver over a web service
Soon to be part of COIN-OR!

1. Generate an OSiL file – an XML representation of an instance, and
encode solver options into an OSoL file.

2. Invoke the server remotely

string osil, osol, osrl;
...
string svc = "128.135.130.17:8080/os/clp/ClpSolverService.jws"
OSSolverAgent* osagent = new OSSolverAgent(svc);
// this is the synchronous solver invocation method.
osrl = osagent->solve(osil, osol);
// print the result
cout << osrl << endl;
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Useful Links

I projects.coin-or.org/Cbc/wiki/FAQ

I www.gams.com/gamscoin

I projects.coin-or.org/FlopC++

I Ted and Matt’s talk @ EURO ’06

I gsbkip.chicagogsb.edu/ostalks/ostalks.html
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